xref: /linux/drivers/clocksource/timer-fsl-ftm.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Freescale FlexTimer Module (FTM) timer driver.
3  *
4  * Copyright 2014 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clockchips.h>
14 #include <linux/clocksource.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/sched_clock.h>
21 #include <linux/slab.h>
22 
23 #define FTM_SC		0x00
24 #define FTM_SC_CLK_SHIFT	3
25 #define FTM_SC_CLK_MASK	(0x3 << FTM_SC_CLK_SHIFT)
26 #define FTM_SC_CLK(c)	((c) << FTM_SC_CLK_SHIFT)
27 #define FTM_SC_PS_MASK	0x7
28 #define FTM_SC_TOIE	BIT(6)
29 #define FTM_SC_TOF	BIT(7)
30 
31 #define FTM_CNT		0x04
32 #define FTM_MOD		0x08
33 #define FTM_CNTIN	0x4C
34 
35 #define FTM_PS_MAX	7
36 
37 struct ftm_clock_device {
38 	void __iomem *clksrc_base;
39 	void __iomem *clkevt_base;
40 	unsigned long periodic_cyc;
41 	unsigned long ps;
42 	bool big_endian;
43 };
44 
45 static struct ftm_clock_device *priv;
46 
47 static inline u32 ftm_readl(void __iomem *addr)
48 {
49 	if (priv->big_endian)
50 		return ioread32be(addr);
51 	else
52 		return ioread32(addr);
53 }
54 
55 static inline void ftm_writel(u32 val, void __iomem *addr)
56 {
57 	if (priv->big_endian)
58 		iowrite32be(val, addr);
59 	else
60 		iowrite32(val, addr);
61 }
62 
63 static inline void ftm_counter_enable(void __iomem *base)
64 {
65 	u32 val;
66 
67 	/* select and enable counter clock source */
68 	val = ftm_readl(base + FTM_SC);
69 	val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
70 	val |= priv->ps | FTM_SC_CLK(1);
71 	ftm_writel(val, base + FTM_SC);
72 }
73 
74 static inline void ftm_counter_disable(void __iomem *base)
75 {
76 	u32 val;
77 
78 	/* disable counter clock source */
79 	val = ftm_readl(base + FTM_SC);
80 	val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
81 	ftm_writel(val, base + FTM_SC);
82 }
83 
84 static inline void ftm_irq_acknowledge(void __iomem *base)
85 {
86 	u32 val;
87 
88 	val = ftm_readl(base + FTM_SC);
89 	val &= ~FTM_SC_TOF;
90 	ftm_writel(val, base + FTM_SC);
91 }
92 
93 static inline void ftm_irq_enable(void __iomem *base)
94 {
95 	u32 val;
96 
97 	val = ftm_readl(base + FTM_SC);
98 	val |= FTM_SC_TOIE;
99 	ftm_writel(val, base + FTM_SC);
100 }
101 
102 static inline void ftm_irq_disable(void __iomem *base)
103 {
104 	u32 val;
105 
106 	val = ftm_readl(base + FTM_SC);
107 	val &= ~FTM_SC_TOIE;
108 	ftm_writel(val, base + FTM_SC);
109 }
110 
111 static inline void ftm_reset_counter(void __iomem *base)
112 {
113 	/*
114 	 * The CNT register contains the FTM counter value.
115 	 * Reset clears the CNT register. Writing any value to COUNT
116 	 * updates the counter with its initial value, CNTIN.
117 	 */
118 	ftm_writel(0x00, base + FTM_CNT);
119 }
120 
121 static u64 notrace ftm_read_sched_clock(void)
122 {
123 	return ftm_readl(priv->clksrc_base + FTM_CNT);
124 }
125 
126 static int ftm_set_next_event(unsigned long delta,
127 				struct clock_event_device *unused)
128 {
129 	/*
130 	 * The CNNIN and MOD are all double buffer registers, writing
131 	 * to the MOD register latches the value into a buffer. The MOD
132 	 * register is updated with the value of its write buffer with
133 	 * the following scenario:
134 	 * a, the counter source clock is diabled.
135 	 */
136 	ftm_counter_disable(priv->clkevt_base);
137 
138 	/* Force the value of CNTIN to be loaded into the FTM counter */
139 	ftm_reset_counter(priv->clkevt_base);
140 
141 	/*
142 	 * The counter increments until the value of MOD is reached,
143 	 * at which point the counter is reloaded with the value of CNTIN.
144 	 * The TOF (the overflow flag) bit is set when the FTM counter
145 	 * changes from MOD to CNTIN. So we should using the delta - 1.
146 	 */
147 	ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD);
148 
149 	ftm_counter_enable(priv->clkevt_base);
150 
151 	ftm_irq_enable(priv->clkevt_base);
152 
153 	return 0;
154 }
155 
156 static int ftm_set_oneshot(struct clock_event_device *evt)
157 {
158 	ftm_counter_disable(priv->clkevt_base);
159 	return 0;
160 }
161 
162 static int ftm_set_periodic(struct clock_event_device *evt)
163 {
164 	ftm_set_next_event(priv->periodic_cyc, evt);
165 	return 0;
166 }
167 
168 static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id)
169 {
170 	struct clock_event_device *evt = dev_id;
171 
172 	ftm_irq_acknowledge(priv->clkevt_base);
173 
174 	if (likely(clockevent_state_oneshot(evt))) {
175 		ftm_irq_disable(priv->clkevt_base);
176 		ftm_counter_disable(priv->clkevt_base);
177 	}
178 
179 	evt->event_handler(evt);
180 
181 	return IRQ_HANDLED;
182 }
183 
184 static struct clock_event_device ftm_clockevent = {
185 	.name			= "Freescale ftm timer",
186 	.features		= CLOCK_EVT_FEAT_PERIODIC |
187 				  CLOCK_EVT_FEAT_ONESHOT,
188 	.set_state_periodic	= ftm_set_periodic,
189 	.set_state_oneshot	= ftm_set_oneshot,
190 	.set_next_event		= ftm_set_next_event,
191 	.rating			= 300,
192 };
193 
194 static struct irqaction ftm_timer_irq = {
195 	.name		= "Freescale ftm timer",
196 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
197 	.handler	= ftm_evt_interrupt,
198 	.dev_id		= &ftm_clockevent,
199 };
200 
201 static int __init ftm_clockevent_init(unsigned long freq, int irq)
202 {
203 	int err;
204 
205 	ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN);
206 	ftm_writel(~0u, priv->clkevt_base + FTM_MOD);
207 
208 	ftm_reset_counter(priv->clkevt_base);
209 
210 	err = setup_irq(irq, &ftm_timer_irq);
211 	if (err) {
212 		pr_err("ftm: setup irq failed: %d\n", err);
213 		return err;
214 	}
215 
216 	ftm_clockevent.cpumask = cpumask_of(0);
217 	ftm_clockevent.irq = irq;
218 
219 	clockevents_config_and_register(&ftm_clockevent,
220 					freq / (1 << priv->ps),
221 					1, 0xffff);
222 
223 	ftm_counter_enable(priv->clkevt_base);
224 
225 	return 0;
226 }
227 
228 static int __init ftm_clocksource_init(unsigned long freq)
229 {
230 	int err;
231 
232 	ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN);
233 	ftm_writel(~0u, priv->clksrc_base + FTM_MOD);
234 
235 	ftm_reset_counter(priv->clksrc_base);
236 
237 	sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps));
238 	err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm",
239 				    freq / (1 << priv->ps), 300, 16,
240 				    clocksource_mmio_readl_up);
241 	if (err) {
242 		pr_err("ftm: init clock source mmio failed: %d\n", err);
243 		return err;
244 	}
245 
246 	ftm_counter_enable(priv->clksrc_base);
247 
248 	return 0;
249 }
250 
251 static int __init __ftm_clk_init(struct device_node *np, char *cnt_name,
252 				 char *ftm_name)
253 {
254 	struct clk *clk;
255 	int err;
256 
257 	clk = of_clk_get_by_name(np, cnt_name);
258 	if (IS_ERR(clk)) {
259 		pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk));
260 		return PTR_ERR(clk);
261 	}
262 	err = clk_prepare_enable(clk);
263 	if (err) {
264 		pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
265 			cnt_name, err);
266 		return err;
267 	}
268 
269 	clk = of_clk_get_by_name(np, ftm_name);
270 	if (IS_ERR(clk)) {
271 		pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk));
272 		return PTR_ERR(clk);
273 	}
274 	err = clk_prepare_enable(clk);
275 	if (err)
276 		pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
277 			ftm_name, err);
278 
279 	return clk_get_rate(clk);
280 }
281 
282 static unsigned long __init ftm_clk_init(struct device_node *np)
283 {
284 	long freq;
285 
286 	freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt");
287 	if (freq <= 0)
288 		return 0;
289 
290 	freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src");
291 	if (freq <= 0)
292 		return 0;
293 
294 	return freq;
295 }
296 
297 static int __init ftm_calc_closest_round_cyc(unsigned long freq)
298 {
299 	priv->ps = 0;
300 
301 	/* The counter register is only using the lower 16 bits, and
302 	 * if the 'freq' value is to big here, then the periodic_cyc
303 	 * may exceed 0xFFFF.
304 	 */
305 	do {
306 		priv->periodic_cyc = DIV_ROUND_CLOSEST(freq,
307 						HZ * (1 << priv->ps++));
308 	} while (priv->periodic_cyc > 0xFFFF);
309 
310 	if (priv->ps > FTM_PS_MAX) {
311 		pr_err("ftm: the prescaler is %lu > %d\n",
312 				priv->ps, FTM_PS_MAX);
313 		return -EINVAL;
314 	}
315 
316 	return 0;
317 }
318 
319 static int __init ftm_timer_init(struct device_node *np)
320 {
321 	unsigned long freq;
322 	int ret, irq;
323 
324 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
325 	if (!priv)
326 		return -ENOMEM;
327 
328 	ret = -ENXIO;
329 	priv->clkevt_base = of_iomap(np, 0);
330 	if (!priv->clkevt_base) {
331 		pr_err("ftm: unable to map event timer registers\n");
332 		goto err_clkevt;
333 	}
334 
335 	priv->clksrc_base = of_iomap(np, 1);
336 	if (!priv->clksrc_base) {
337 		pr_err("ftm: unable to map source timer registers\n");
338 		goto err_clksrc;
339 	}
340 
341 	ret = -EINVAL;
342 	irq = irq_of_parse_and_map(np, 0);
343 	if (irq <= 0) {
344 		pr_err("ftm: unable to get IRQ from DT, %d\n", irq);
345 		goto err;
346 	}
347 
348 	priv->big_endian = of_property_read_bool(np, "big-endian");
349 
350 	freq = ftm_clk_init(np);
351 	if (!freq)
352 		goto err;
353 
354 	ret = ftm_calc_closest_round_cyc(freq);
355 	if (ret)
356 		goto err;
357 
358 	ret = ftm_clocksource_init(freq);
359 	if (ret)
360 		goto err;
361 
362 	ret = ftm_clockevent_init(freq, irq);
363 	if (ret)
364 		goto err;
365 
366 	return 0;
367 
368 err:
369 	iounmap(priv->clksrc_base);
370 err_clksrc:
371 	iounmap(priv->clkevt_base);
372 err_clkevt:
373 	kfree(priv);
374 	return ret;
375 }
376 TIMER_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);
377