xref: /linux/drivers/clocksource/timer-digicolor.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Conexant Digicolor timer driver
4  *
5  * Author: Baruch Siach <baruch@tkos.co.il>
6  *
7  * Copyright (C) 2014 Paradox Innovation Ltd.
8  *
9  * Based on:
10  *	Allwinner SoCs hstimer driver
11  *
12  * Copyright (C) 2013 Maxime Ripard
13  *
14  * Maxime Ripard <maxime.ripard@free-electrons.com>
15  */
16 
17 /*
18  * Conexant Digicolor SoCs have 8 configurable timers, named from "Timer A" to
19  * "Timer H". Timer A is the only one with watchdog support, so it is dedicated
20  * to the watchdog driver. This driver uses Timer B for sched_clock(), and
21  * Timer C for clockevents.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/clk.h>
27 #include <linux/clockchips.h>
28 #include <linux/interrupt.h>
29 #include <linux/irq.h>
30 #include <linux/irqreturn.h>
31 #include <linux/sched/clock.h>
32 #include <linux/sched_clock.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 
37 enum {
38 	TIMER_A,
39 	TIMER_B,
40 	TIMER_C,
41 	TIMER_D,
42 	TIMER_E,
43 	TIMER_F,
44 	TIMER_G,
45 	TIMER_H,
46 };
47 
48 #define CONTROL(t)	((t)*8)
49 #define COUNT(t)	((t)*8 + 4)
50 
51 #define CONTROL_DISABLE		0
52 #define CONTROL_ENABLE		BIT(0)
53 #define CONTROL_MODE(m)		((m) << 4)
54 #define CONTROL_MODE_ONESHOT	CONTROL_MODE(1)
55 #define CONTROL_MODE_PERIODIC	CONTROL_MODE(2)
56 
57 struct digicolor_timer {
58 	struct clock_event_device ce;
59 	void __iomem *base;
60 	u32 ticks_per_jiffy;
61 	int timer_id; /* one of TIMER_* */
62 };
63 
64 static struct digicolor_timer *dc_timer(struct clock_event_device *ce)
65 {
66 	return container_of(ce, struct digicolor_timer, ce);
67 }
68 
69 static inline void dc_timer_disable(struct clock_event_device *ce)
70 {
71 	struct digicolor_timer *dt = dc_timer(ce);
72 	writeb(CONTROL_DISABLE, dt->base + CONTROL(dt->timer_id));
73 }
74 
75 static inline void dc_timer_enable(struct clock_event_device *ce, u32 mode)
76 {
77 	struct digicolor_timer *dt = dc_timer(ce);
78 	writeb(CONTROL_ENABLE | mode, dt->base + CONTROL(dt->timer_id));
79 }
80 
81 static inline void dc_timer_set_count(struct clock_event_device *ce,
82 				      unsigned long count)
83 {
84 	struct digicolor_timer *dt = dc_timer(ce);
85 	writel(count, dt->base + COUNT(dt->timer_id));
86 }
87 
88 static int digicolor_clkevt_shutdown(struct clock_event_device *ce)
89 {
90 	dc_timer_disable(ce);
91 	return 0;
92 }
93 
94 static int digicolor_clkevt_set_oneshot(struct clock_event_device *ce)
95 {
96 	dc_timer_disable(ce);
97 	dc_timer_enable(ce, CONTROL_MODE_ONESHOT);
98 	return 0;
99 }
100 
101 static int digicolor_clkevt_set_periodic(struct clock_event_device *ce)
102 {
103 	struct digicolor_timer *dt = dc_timer(ce);
104 
105 	dc_timer_disable(ce);
106 	dc_timer_set_count(ce, dt->ticks_per_jiffy);
107 	dc_timer_enable(ce, CONTROL_MODE_PERIODIC);
108 	return 0;
109 }
110 
111 static int digicolor_clkevt_next_event(unsigned long evt,
112 				       struct clock_event_device *ce)
113 {
114 	dc_timer_disable(ce);
115 	dc_timer_set_count(ce, evt);
116 	dc_timer_enable(ce, CONTROL_MODE_ONESHOT);
117 
118 	return 0;
119 }
120 
121 static struct digicolor_timer dc_timer_dev = {
122 	.ce = {
123 		.name = "digicolor_tick",
124 		.rating = 340,
125 		.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
126 		.set_state_shutdown = digicolor_clkevt_shutdown,
127 		.set_state_periodic = digicolor_clkevt_set_periodic,
128 		.set_state_oneshot = digicolor_clkevt_set_oneshot,
129 		.tick_resume = digicolor_clkevt_shutdown,
130 		.set_next_event = digicolor_clkevt_next_event,
131 	},
132 	.timer_id = TIMER_C,
133 };
134 
135 static irqreturn_t digicolor_timer_interrupt(int irq, void *dev_id)
136 {
137 	struct clock_event_device *evt = dev_id;
138 
139 	evt->event_handler(evt);
140 
141 	return IRQ_HANDLED;
142 }
143 
144 static u64 notrace digicolor_timer_sched_read(void)
145 {
146 	return ~readl(dc_timer_dev.base + COUNT(TIMER_B));
147 }
148 
149 static int __init digicolor_timer_init(struct device_node *node)
150 {
151 	unsigned long rate;
152 	struct clk *clk;
153 	int ret, irq;
154 
155 	/*
156 	 * timer registers are shared with the watchdog timer;
157 	 * don't map exclusively
158 	 */
159 	dc_timer_dev.base = of_iomap(node, 0);
160 	if (!dc_timer_dev.base) {
161 		pr_err("Can't map registers\n");
162 		return -ENXIO;
163 	}
164 
165 	irq = irq_of_parse_and_map(node, dc_timer_dev.timer_id);
166 	if (irq <= 0) {
167 		pr_err("Can't parse IRQ\n");
168 		return -EINVAL;
169 	}
170 
171 	clk = of_clk_get(node, 0);
172 	if (IS_ERR(clk)) {
173 		pr_err("Can't get timer clock\n");
174 		return PTR_ERR(clk);
175 	}
176 	clk_prepare_enable(clk);
177 	rate = clk_get_rate(clk);
178 	dc_timer_dev.ticks_per_jiffy = DIV_ROUND_UP(rate, HZ);
179 
180 	writeb(CONTROL_DISABLE, dc_timer_dev.base + CONTROL(TIMER_B));
181 	writel(UINT_MAX, dc_timer_dev.base + COUNT(TIMER_B));
182 	writeb(CONTROL_ENABLE, dc_timer_dev.base + CONTROL(TIMER_B));
183 
184 	sched_clock_register(digicolor_timer_sched_read, 32, rate);
185 	clocksource_mmio_init(dc_timer_dev.base + COUNT(TIMER_B), node->name,
186 			      rate, 340, 32, clocksource_mmio_readl_down);
187 
188 	ret = request_irq(irq, digicolor_timer_interrupt,
189 			  IRQF_TIMER | IRQF_IRQPOLL, "digicolor_timerC",
190 			  &dc_timer_dev.ce);
191 	if (ret) {
192 		pr_warn("request of timer irq %d failed (%d)\n", irq, ret);
193 		return ret;
194 	}
195 
196 	dc_timer_dev.ce.cpumask = cpu_possible_mask;
197 	dc_timer_dev.ce.irq = irq;
198 
199 	clockevents_config_and_register(&dc_timer_dev.ce, rate, 0, 0xffffffff);
200 
201 	return 0;
202 }
203 TIMER_OF_DECLARE(conexant_digicolor, "cnxt,cx92755-timer",
204 		       digicolor_timer_init);
205