xref: /linux/drivers/clocksource/timer-cadence-ttc.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file contains driver for the Cadence Triple Timer Counter Rev 06
4  *
5  *  Copyright (C) 2011-2013 Xilinx
6  *
7  * based on arch/mips/kernel/time.c timer driver
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/interrupt.h>
12 #include <linux/clockchips.h>
13 #include <linux/clocksource.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/slab.h>
17 #include <linux/sched_clock.h>
18 #include <linux/module.h>
19 #include <linux/of_platform.h>
20 
21 /*
22  * This driver configures the 2 16/32-bit count-up timers as follows:
23  *
24  * T1: Timer 1, clocksource for generic timekeeping
25  * T2: Timer 2, clockevent source for hrtimers
26  * T3: Timer 3, <unused>
27  *
28  * The input frequency to the timer module for emulation is 2.5MHz which is
29  * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
30  * the timers are clocked at 78.125KHz (12.8 us resolution).
31 
32  * The input frequency to the timer module in silicon is configurable and
33  * obtained from device tree. The pre-scaler of 32 is used.
34  */
35 
36 /*
37  * Timer Register Offset Definitions of Timer 1, Increment base address by 4
38  * and use same offsets for Timer 2
39  */
40 #define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
41 #define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
42 #define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
43 #define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
44 #define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
45 #define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
46 
47 #define TTC_CNT_CNTRL_DISABLE_MASK	0x1
48 
49 #define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
50 #define TTC_CLK_CNTRL_PSV_MASK		0x1e
51 #define TTC_CLK_CNTRL_PSV_SHIFT		1
52 
53 /*
54  * Setup the timers to use pre-scaling, using a fixed value for now that will
55  * work across most input frequency, but it may need to be more dynamic
56  */
57 #define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
58 #define PRESCALE		2048	/* The exponent must match this */
59 #define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
60 #define CLK_CNTRL_PRESCALE_EN	1
61 #define CNT_CNTRL_RESET		(1 << 4)
62 
63 #define MAX_F_ERR 50
64 
65 /**
66  * struct ttc_timer - This definition defines local timer structure
67  *
68  * @base_addr:	Base address of timer
69  * @freq:	Timer input clock frequency
70  * @clk:	Associated clock source
71  * @clk_rate_change_nb	Notifier block for clock rate changes
72  */
73 struct ttc_timer {
74 	void __iomem *base_addr;
75 	unsigned long freq;
76 	struct clk *clk;
77 	struct notifier_block clk_rate_change_nb;
78 };
79 
80 #define to_ttc_timer(x) \
81 		container_of(x, struct ttc_timer, clk_rate_change_nb)
82 
83 struct ttc_timer_clocksource {
84 	u32			scale_clk_ctrl_reg_old;
85 	u32			scale_clk_ctrl_reg_new;
86 	struct ttc_timer	ttc;
87 	struct clocksource	cs;
88 };
89 
90 #define to_ttc_timer_clksrc(x) \
91 		container_of(x, struct ttc_timer_clocksource, cs)
92 
93 struct ttc_timer_clockevent {
94 	struct ttc_timer		ttc;
95 	struct clock_event_device	ce;
96 };
97 
98 #define to_ttc_timer_clkevent(x) \
99 		container_of(x, struct ttc_timer_clockevent, ce)
100 
101 static void __iomem *ttc_sched_clock_val_reg;
102 
103 /**
104  * ttc_set_interval - Set the timer interval value
105  *
106  * @timer:	Pointer to the timer instance
107  * @cycles:	Timer interval ticks
108  **/
109 static void ttc_set_interval(struct ttc_timer *timer,
110 					unsigned long cycles)
111 {
112 	u32 ctrl_reg;
113 
114 	/* Disable the counter, set the counter value  and re-enable counter */
115 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
116 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
117 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
118 
119 	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
120 
121 	/*
122 	 * Reset the counter (0x10) so that it starts from 0, one-shot
123 	 * mode makes this needed for timing to be right.
124 	 */
125 	ctrl_reg |= CNT_CNTRL_RESET;
126 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
127 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
128 }
129 
130 /**
131  * ttc_clock_event_interrupt - Clock event timer interrupt handler
132  *
133  * @irq:	IRQ number of the Timer
134  * @dev_id:	void pointer to the ttc_timer instance
135  *
136  * returns: Always IRQ_HANDLED - success
137  **/
138 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
139 {
140 	struct ttc_timer_clockevent *ttce = dev_id;
141 	struct ttc_timer *timer = &ttce->ttc;
142 
143 	/* Acknowledge the interrupt and call event handler */
144 	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
145 
146 	ttce->ce.event_handler(&ttce->ce);
147 
148 	return IRQ_HANDLED;
149 }
150 
151 /**
152  * __ttc_clocksource_read - Reads the timer counter register
153  *
154  * returns: Current timer counter register value
155  **/
156 static u64 __ttc_clocksource_read(struct clocksource *cs)
157 {
158 	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
159 
160 	return (u64)readl_relaxed(timer->base_addr +
161 				TTC_COUNT_VAL_OFFSET);
162 }
163 
164 static u64 notrace ttc_sched_clock_read(void)
165 {
166 	return readl_relaxed(ttc_sched_clock_val_reg);
167 }
168 
169 /**
170  * ttc_set_next_event - Sets the time interval for next event
171  *
172  * @cycles:	Timer interval ticks
173  * @evt:	Address of clock event instance
174  *
175  * returns: Always 0 - success
176  **/
177 static int ttc_set_next_event(unsigned long cycles,
178 					struct clock_event_device *evt)
179 {
180 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
181 	struct ttc_timer *timer = &ttce->ttc;
182 
183 	ttc_set_interval(timer, cycles);
184 	return 0;
185 }
186 
187 /**
188  * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
189  *
190  * @evt:	Address of clock event instance
191  **/
192 static int ttc_shutdown(struct clock_event_device *evt)
193 {
194 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
195 	struct ttc_timer *timer = &ttce->ttc;
196 	u32 ctrl_reg;
197 
198 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
199 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
200 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
201 	return 0;
202 }
203 
204 static int ttc_set_periodic(struct clock_event_device *evt)
205 {
206 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
207 	struct ttc_timer *timer = &ttce->ttc;
208 
209 	ttc_set_interval(timer,
210 			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
211 	return 0;
212 }
213 
214 static int ttc_resume(struct clock_event_device *evt)
215 {
216 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
217 	struct ttc_timer *timer = &ttce->ttc;
218 	u32 ctrl_reg;
219 
220 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
221 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
222 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
223 	return 0;
224 }
225 
226 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
227 		unsigned long event, void *data)
228 {
229 	struct clk_notifier_data *ndata = data;
230 	struct ttc_timer *ttc = to_ttc_timer(nb);
231 	struct ttc_timer_clocksource *ttccs = container_of(ttc,
232 			struct ttc_timer_clocksource, ttc);
233 
234 	switch (event) {
235 	case PRE_RATE_CHANGE:
236 	{
237 		u32 psv;
238 		unsigned long factor, rate_low, rate_high;
239 
240 		if (ndata->new_rate > ndata->old_rate) {
241 			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
242 					ndata->old_rate);
243 			rate_low = ndata->old_rate;
244 			rate_high = ndata->new_rate;
245 		} else {
246 			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
247 					ndata->new_rate);
248 			rate_low = ndata->new_rate;
249 			rate_high = ndata->old_rate;
250 		}
251 
252 		if (!is_power_of_2(factor))
253 				return NOTIFY_BAD;
254 
255 		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
256 			return NOTIFY_BAD;
257 
258 		factor = __ilog2_u32(factor);
259 
260 		/*
261 		 * store timer clock ctrl register so we can restore it in case
262 		 * of an abort.
263 		 */
264 		ttccs->scale_clk_ctrl_reg_old =
265 			readl_relaxed(ttccs->ttc.base_addr +
266 			TTC_CLK_CNTRL_OFFSET);
267 
268 		psv = (ttccs->scale_clk_ctrl_reg_old &
269 				TTC_CLK_CNTRL_PSV_MASK) >>
270 				TTC_CLK_CNTRL_PSV_SHIFT;
271 		if (ndata->new_rate < ndata->old_rate)
272 			psv -= factor;
273 		else
274 			psv += factor;
275 
276 		/* prescaler within legal range? */
277 		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
278 			return NOTIFY_BAD;
279 
280 		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
281 			~TTC_CLK_CNTRL_PSV_MASK;
282 		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
283 
284 
285 		/* scale down: adjust divider in post-change notification */
286 		if (ndata->new_rate < ndata->old_rate)
287 			return NOTIFY_DONE;
288 
289 		/* scale up: adjust divider now - before frequency change */
290 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
291 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
292 		break;
293 	}
294 	case POST_RATE_CHANGE:
295 		/* scale up: pre-change notification did the adjustment */
296 		if (ndata->new_rate > ndata->old_rate)
297 			return NOTIFY_OK;
298 
299 		/* scale down: adjust divider now - after frequency change */
300 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
301 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
302 		break;
303 
304 	case ABORT_RATE_CHANGE:
305 		/* we have to undo the adjustment in case we scale up */
306 		if (ndata->new_rate < ndata->old_rate)
307 			return NOTIFY_OK;
308 
309 		/* restore original register value */
310 		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
311 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
312 		fallthrough;
313 	default:
314 		return NOTIFY_DONE;
315 	}
316 
317 	return NOTIFY_DONE;
318 }
319 
320 static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
321 					 u32 timer_width)
322 {
323 	struct ttc_timer_clocksource *ttccs;
324 	int err;
325 
326 	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
327 	if (!ttccs)
328 		return -ENOMEM;
329 
330 	ttccs->ttc.clk = clk;
331 
332 	err = clk_prepare_enable(ttccs->ttc.clk);
333 	if (err) {
334 		kfree(ttccs);
335 		return err;
336 	}
337 
338 	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
339 
340 	ttccs->ttc.clk_rate_change_nb.notifier_call =
341 		ttc_rate_change_clocksource_cb;
342 	ttccs->ttc.clk_rate_change_nb.next = NULL;
343 
344 	err = clk_notifier_register(ttccs->ttc.clk,
345 				    &ttccs->ttc.clk_rate_change_nb);
346 	if (err)
347 		pr_warn("Unable to register clock notifier.\n");
348 
349 	ttccs->ttc.base_addr = base;
350 	ttccs->cs.name = "ttc_clocksource";
351 	ttccs->cs.rating = 200;
352 	ttccs->cs.read = __ttc_clocksource_read;
353 	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
354 	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
355 
356 	/*
357 	 * Setup the clock source counter to be an incrementing counter
358 	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
359 	 * it by 32 also. Let it start running now.
360 	 */
361 	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
362 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
363 		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
364 	writel_relaxed(CNT_CNTRL_RESET,
365 		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
366 
367 	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
368 	if (err) {
369 		kfree(ttccs);
370 		return err;
371 	}
372 
373 	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
374 	sched_clock_register(ttc_sched_clock_read, timer_width,
375 			     ttccs->ttc.freq / PRESCALE);
376 
377 	return 0;
378 }
379 
380 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
381 		unsigned long event, void *data)
382 {
383 	struct clk_notifier_data *ndata = data;
384 	struct ttc_timer *ttc = to_ttc_timer(nb);
385 	struct ttc_timer_clockevent *ttcce = container_of(ttc,
386 			struct ttc_timer_clockevent, ttc);
387 
388 	switch (event) {
389 	case POST_RATE_CHANGE:
390 		/* update cached frequency */
391 		ttc->freq = ndata->new_rate;
392 
393 		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
394 
395 		fallthrough;
396 	case PRE_RATE_CHANGE:
397 	case ABORT_RATE_CHANGE:
398 	default:
399 		return NOTIFY_DONE;
400 	}
401 }
402 
403 static int __init ttc_setup_clockevent(struct clk *clk,
404 				       void __iomem *base, u32 irq)
405 {
406 	struct ttc_timer_clockevent *ttcce;
407 	int err;
408 
409 	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
410 	if (!ttcce)
411 		return -ENOMEM;
412 
413 	ttcce->ttc.clk = clk;
414 
415 	err = clk_prepare_enable(ttcce->ttc.clk);
416 	if (err)
417 		goto out_kfree;
418 
419 	ttcce->ttc.clk_rate_change_nb.notifier_call =
420 		ttc_rate_change_clockevent_cb;
421 	ttcce->ttc.clk_rate_change_nb.next = NULL;
422 
423 	err = clk_notifier_register(ttcce->ttc.clk,
424 				    &ttcce->ttc.clk_rate_change_nb);
425 	if (err) {
426 		pr_warn("Unable to register clock notifier.\n");
427 		goto out_kfree;
428 	}
429 
430 	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
431 
432 	ttcce->ttc.base_addr = base;
433 	ttcce->ce.name = "ttc_clockevent";
434 	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
435 	ttcce->ce.set_next_event = ttc_set_next_event;
436 	ttcce->ce.set_state_shutdown = ttc_shutdown;
437 	ttcce->ce.set_state_periodic = ttc_set_periodic;
438 	ttcce->ce.set_state_oneshot = ttc_shutdown;
439 	ttcce->ce.tick_resume = ttc_resume;
440 	ttcce->ce.rating = 200;
441 	ttcce->ce.irq = irq;
442 	ttcce->ce.cpumask = cpu_possible_mask;
443 
444 	/*
445 	 * Setup the clock event timer to be an interval timer which
446 	 * is prescaled by 32 using the interval interrupt. Leave it
447 	 * disabled for now.
448 	 */
449 	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
450 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
451 		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
452 	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
453 
454 	err = request_irq(irq, ttc_clock_event_interrupt,
455 			  IRQF_TIMER, ttcce->ce.name, ttcce);
456 	if (err)
457 		goto out_kfree;
458 
459 	clockevents_config_and_register(&ttcce->ce,
460 			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
461 
462 	return 0;
463 
464 out_kfree:
465 	kfree(ttcce);
466 	return err;
467 }
468 
469 static int __init ttc_timer_probe(struct platform_device *pdev)
470 {
471 	unsigned int irq;
472 	void __iomem *timer_baseaddr;
473 	struct clk *clk_cs, *clk_ce;
474 	static int initialized;
475 	int clksel, ret;
476 	u32 timer_width = 16;
477 	struct device_node *timer = pdev->dev.of_node;
478 
479 	if (initialized)
480 		return 0;
481 
482 	initialized = 1;
483 
484 	/*
485 	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
486 	 * and use it. Note that the event timer uses the interrupt and it's the
487 	 * 2nd TTC hence the irq_of_parse_and_map(,1)
488 	 */
489 	timer_baseaddr = of_iomap(timer, 0);
490 	if (!timer_baseaddr) {
491 		pr_err("ERROR: invalid timer base address\n");
492 		return -ENXIO;
493 	}
494 
495 	irq = irq_of_parse_and_map(timer, 1);
496 	if (irq <= 0) {
497 		pr_err("ERROR: invalid interrupt number\n");
498 		return -EINVAL;
499 	}
500 
501 	of_property_read_u32(timer, "timer-width", &timer_width);
502 
503 	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
504 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
505 	clk_cs = of_clk_get(timer, clksel);
506 	if (IS_ERR(clk_cs)) {
507 		pr_err("ERROR: timer input clock not found\n");
508 		return PTR_ERR(clk_cs);
509 	}
510 
511 	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
512 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
513 	clk_ce = of_clk_get(timer, clksel);
514 	if (IS_ERR(clk_ce)) {
515 		pr_err("ERROR: timer input clock not found\n");
516 		return PTR_ERR(clk_ce);
517 	}
518 
519 	ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
520 	if (ret)
521 		return ret;
522 
523 	ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
524 	if (ret)
525 		return ret;
526 
527 	pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq);
528 
529 	return 0;
530 }
531 
532 static const struct of_device_id ttc_timer_of_match[] = {
533 	{.compatible = "cdns,ttc"},
534 	{},
535 };
536 
537 MODULE_DEVICE_TABLE(of, ttc_timer_of_match);
538 
539 static struct platform_driver ttc_timer_driver = {
540 	.driver = {
541 		.name	= "cdns_ttc_timer",
542 		.of_match_table = ttc_timer_of_match,
543 	},
544 };
545 builtin_platform_driver_probe(ttc_timer_driver, ttc_timer_probe);
546