xref: /linux/drivers/clocksource/timer-cadence-ttc.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * This file contains driver for the Cadence Triple Timer Counter Rev 06
3  *
4  *  Copyright (C) 2011-2013 Xilinx
5  *
6  * based on arch/mips/kernel/time.c timer driver
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/clk.h>
19 #include <linux/interrupt.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/slab.h>
25 #include <linux/sched_clock.h>
26 
27 /*
28  * This driver configures the 2 16/32-bit count-up timers as follows:
29  *
30  * T1: Timer 1, clocksource for generic timekeeping
31  * T2: Timer 2, clockevent source for hrtimers
32  * T3: Timer 3, <unused>
33  *
34  * The input frequency to the timer module for emulation is 2.5MHz which is
35  * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
36  * the timers are clocked at 78.125KHz (12.8 us resolution).
37 
38  * The input frequency to the timer module in silicon is configurable and
39  * obtained from device tree. The pre-scaler of 32 is used.
40  */
41 
42 /*
43  * Timer Register Offset Definitions of Timer 1, Increment base address by 4
44  * and use same offsets for Timer 2
45  */
46 #define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
47 #define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
48 #define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
49 #define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
50 #define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
51 #define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
52 
53 #define TTC_CNT_CNTRL_DISABLE_MASK	0x1
54 
55 #define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
56 #define TTC_CLK_CNTRL_PSV_MASK		0x1e
57 #define TTC_CLK_CNTRL_PSV_SHIFT		1
58 
59 /*
60  * Setup the timers to use pre-scaling, using a fixed value for now that will
61  * work across most input frequency, but it may need to be more dynamic
62  */
63 #define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
64 #define PRESCALE		2048	/* The exponent must match this */
65 #define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
66 #define CLK_CNTRL_PRESCALE_EN	1
67 #define CNT_CNTRL_RESET		(1 << 4)
68 
69 #define MAX_F_ERR 50
70 
71 /**
72  * struct ttc_timer - This definition defines local timer structure
73  *
74  * @base_addr:	Base address of timer
75  * @freq:	Timer input clock frequency
76  * @clk:	Associated clock source
77  * @clk_rate_change_nb	Notifier block for clock rate changes
78  */
79 struct ttc_timer {
80 	void __iomem *base_addr;
81 	unsigned long freq;
82 	struct clk *clk;
83 	struct notifier_block clk_rate_change_nb;
84 };
85 
86 #define to_ttc_timer(x) \
87 		container_of(x, struct ttc_timer, clk_rate_change_nb)
88 
89 struct ttc_timer_clocksource {
90 	u32			scale_clk_ctrl_reg_old;
91 	u32			scale_clk_ctrl_reg_new;
92 	struct ttc_timer	ttc;
93 	struct clocksource	cs;
94 };
95 
96 #define to_ttc_timer_clksrc(x) \
97 		container_of(x, struct ttc_timer_clocksource, cs)
98 
99 struct ttc_timer_clockevent {
100 	struct ttc_timer		ttc;
101 	struct clock_event_device	ce;
102 };
103 
104 #define to_ttc_timer_clkevent(x) \
105 		container_of(x, struct ttc_timer_clockevent, ce)
106 
107 static void __iomem *ttc_sched_clock_val_reg;
108 
109 /**
110  * ttc_set_interval - Set the timer interval value
111  *
112  * @timer:	Pointer to the timer instance
113  * @cycles:	Timer interval ticks
114  **/
115 static void ttc_set_interval(struct ttc_timer *timer,
116 					unsigned long cycles)
117 {
118 	u32 ctrl_reg;
119 
120 	/* Disable the counter, set the counter value  and re-enable counter */
121 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
122 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
123 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
124 
125 	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
126 
127 	/*
128 	 * Reset the counter (0x10) so that it starts from 0, one-shot
129 	 * mode makes this needed for timing to be right.
130 	 */
131 	ctrl_reg |= CNT_CNTRL_RESET;
132 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
133 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
134 }
135 
136 /**
137  * ttc_clock_event_interrupt - Clock event timer interrupt handler
138  *
139  * @irq:	IRQ number of the Timer
140  * @dev_id:	void pointer to the ttc_timer instance
141  *
142  * returns: Always IRQ_HANDLED - success
143  **/
144 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
145 {
146 	struct ttc_timer_clockevent *ttce = dev_id;
147 	struct ttc_timer *timer = &ttce->ttc;
148 
149 	/* Acknowledge the interrupt and call event handler */
150 	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
151 
152 	ttce->ce.event_handler(&ttce->ce);
153 
154 	return IRQ_HANDLED;
155 }
156 
157 /**
158  * __ttc_clocksource_read - Reads the timer counter register
159  *
160  * returns: Current timer counter register value
161  **/
162 static u64 __ttc_clocksource_read(struct clocksource *cs)
163 {
164 	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
165 
166 	return (u64)readl_relaxed(timer->base_addr +
167 				TTC_COUNT_VAL_OFFSET);
168 }
169 
170 static u64 notrace ttc_sched_clock_read(void)
171 {
172 	return readl_relaxed(ttc_sched_clock_val_reg);
173 }
174 
175 /**
176  * ttc_set_next_event - Sets the time interval for next event
177  *
178  * @cycles:	Timer interval ticks
179  * @evt:	Address of clock event instance
180  *
181  * returns: Always 0 - success
182  **/
183 static int ttc_set_next_event(unsigned long cycles,
184 					struct clock_event_device *evt)
185 {
186 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
187 	struct ttc_timer *timer = &ttce->ttc;
188 
189 	ttc_set_interval(timer, cycles);
190 	return 0;
191 }
192 
193 /**
194  * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
195  *
196  * @evt:	Address of clock event instance
197  **/
198 static int ttc_shutdown(struct clock_event_device *evt)
199 {
200 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
201 	struct ttc_timer *timer = &ttce->ttc;
202 	u32 ctrl_reg;
203 
204 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
205 	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
206 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
207 	return 0;
208 }
209 
210 static int ttc_set_periodic(struct clock_event_device *evt)
211 {
212 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
213 	struct ttc_timer *timer = &ttce->ttc;
214 
215 	ttc_set_interval(timer,
216 			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
217 	return 0;
218 }
219 
220 static int ttc_resume(struct clock_event_device *evt)
221 {
222 	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
223 	struct ttc_timer *timer = &ttce->ttc;
224 	u32 ctrl_reg;
225 
226 	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
227 	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
228 	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
229 	return 0;
230 }
231 
232 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
233 		unsigned long event, void *data)
234 {
235 	struct clk_notifier_data *ndata = data;
236 	struct ttc_timer *ttc = to_ttc_timer(nb);
237 	struct ttc_timer_clocksource *ttccs = container_of(ttc,
238 			struct ttc_timer_clocksource, ttc);
239 
240 	switch (event) {
241 	case PRE_RATE_CHANGE:
242 	{
243 		u32 psv;
244 		unsigned long factor, rate_low, rate_high;
245 
246 		if (ndata->new_rate > ndata->old_rate) {
247 			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
248 					ndata->old_rate);
249 			rate_low = ndata->old_rate;
250 			rate_high = ndata->new_rate;
251 		} else {
252 			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
253 					ndata->new_rate);
254 			rate_low = ndata->new_rate;
255 			rate_high = ndata->old_rate;
256 		}
257 
258 		if (!is_power_of_2(factor))
259 				return NOTIFY_BAD;
260 
261 		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
262 			return NOTIFY_BAD;
263 
264 		factor = __ilog2_u32(factor);
265 
266 		/*
267 		 * store timer clock ctrl register so we can restore it in case
268 		 * of an abort.
269 		 */
270 		ttccs->scale_clk_ctrl_reg_old =
271 			readl_relaxed(ttccs->ttc.base_addr +
272 			TTC_CLK_CNTRL_OFFSET);
273 
274 		psv = (ttccs->scale_clk_ctrl_reg_old &
275 				TTC_CLK_CNTRL_PSV_MASK) >>
276 				TTC_CLK_CNTRL_PSV_SHIFT;
277 		if (ndata->new_rate < ndata->old_rate)
278 			psv -= factor;
279 		else
280 			psv += factor;
281 
282 		/* prescaler within legal range? */
283 		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
284 			return NOTIFY_BAD;
285 
286 		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
287 			~TTC_CLK_CNTRL_PSV_MASK;
288 		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
289 
290 
291 		/* scale down: adjust divider in post-change notification */
292 		if (ndata->new_rate < ndata->old_rate)
293 			return NOTIFY_DONE;
294 
295 		/* scale up: adjust divider now - before frequency change */
296 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
297 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
298 		break;
299 	}
300 	case POST_RATE_CHANGE:
301 		/* scale up: pre-change notification did the adjustment */
302 		if (ndata->new_rate > ndata->old_rate)
303 			return NOTIFY_OK;
304 
305 		/* scale down: adjust divider now - after frequency change */
306 		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
307 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
308 		break;
309 
310 	case ABORT_RATE_CHANGE:
311 		/* we have to undo the adjustment in case we scale up */
312 		if (ndata->new_rate < ndata->old_rate)
313 			return NOTIFY_OK;
314 
315 		/* restore original register value */
316 		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
317 			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
318 		/* fall through */
319 	default:
320 		return NOTIFY_DONE;
321 	}
322 
323 	return NOTIFY_DONE;
324 }
325 
326 static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
327 					 u32 timer_width)
328 {
329 	struct ttc_timer_clocksource *ttccs;
330 	int err;
331 
332 	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
333 	if (!ttccs)
334 		return -ENOMEM;
335 
336 	ttccs->ttc.clk = clk;
337 
338 	err = clk_prepare_enable(ttccs->ttc.clk);
339 	if (err) {
340 		kfree(ttccs);
341 		return err;
342 	}
343 
344 	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
345 
346 	ttccs->ttc.clk_rate_change_nb.notifier_call =
347 		ttc_rate_change_clocksource_cb;
348 	ttccs->ttc.clk_rate_change_nb.next = NULL;
349 
350 	err = clk_notifier_register(ttccs->ttc.clk,
351 				    &ttccs->ttc.clk_rate_change_nb);
352 	if (err)
353 		pr_warn("Unable to register clock notifier.\n");
354 
355 	ttccs->ttc.base_addr = base;
356 	ttccs->cs.name = "ttc_clocksource";
357 	ttccs->cs.rating = 200;
358 	ttccs->cs.read = __ttc_clocksource_read;
359 	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
360 	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
361 
362 	/*
363 	 * Setup the clock source counter to be an incrementing counter
364 	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
365 	 * it by 32 also. Let it start running now.
366 	 */
367 	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
368 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
369 		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
370 	writel_relaxed(CNT_CNTRL_RESET,
371 		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
372 
373 	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
374 	if (err) {
375 		kfree(ttccs);
376 		return err;
377 	}
378 
379 	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
380 	sched_clock_register(ttc_sched_clock_read, timer_width,
381 			     ttccs->ttc.freq / PRESCALE);
382 
383 	return 0;
384 }
385 
386 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
387 		unsigned long event, void *data)
388 {
389 	struct clk_notifier_data *ndata = data;
390 	struct ttc_timer *ttc = to_ttc_timer(nb);
391 	struct ttc_timer_clockevent *ttcce = container_of(ttc,
392 			struct ttc_timer_clockevent, ttc);
393 
394 	switch (event) {
395 	case POST_RATE_CHANGE:
396 		/* update cached frequency */
397 		ttc->freq = ndata->new_rate;
398 
399 		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
400 
401 		/* fall through */
402 	case PRE_RATE_CHANGE:
403 	case ABORT_RATE_CHANGE:
404 	default:
405 		return NOTIFY_DONE;
406 	}
407 }
408 
409 static int __init ttc_setup_clockevent(struct clk *clk,
410 				       void __iomem *base, u32 irq)
411 {
412 	struct ttc_timer_clockevent *ttcce;
413 	int err;
414 
415 	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
416 	if (!ttcce)
417 		return -ENOMEM;
418 
419 	ttcce->ttc.clk = clk;
420 
421 	err = clk_prepare_enable(ttcce->ttc.clk);
422 	if (err) {
423 		kfree(ttcce);
424 		return err;
425 	}
426 
427 	ttcce->ttc.clk_rate_change_nb.notifier_call =
428 		ttc_rate_change_clockevent_cb;
429 	ttcce->ttc.clk_rate_change_nb.next = NULL;
430 
431 	err = clk_notifier_register(ttcce->ttc.clk,
432 				    &ttcce->ttc.clk_rate_change_nb);
433 	if (err) {
434 		pr_warn("Unable to register clock notifier.\n");
435 		return err;
436 	}
437 
438 	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
439 
440 	ttcce->ttc.base_addr = base;
441 	ttcce->ce.name = "ttc_clockevent";
442 	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
443 	ttcce->ce.set_next_event = ttc_set_next_event;
444 	ttcce->ce.set_state_shutdown = ttc_shutdown;
445 	ttcce->ce.set_state_periodic = ttc_set_periodic;
446 	ttcce->ce.set_state_oneshot = ttc_shutdown;
447 	ttcce->ce.tick_resume = ttc_resume;
448 	ttcce->ce.rating = 200;
449 	ttcce->ce.irq = irq;
450 	ttcce->ce.cpumask = cpu_possible_mask;
451 
452 	/*
453 	 * Setup the clock event timer to be an interval timer which
454 	 * is prescaled by 32 using the interval interrupt. Leave it
455 	 * disabled for now.
456 	 */
457 	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
458 	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
459 		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
460 	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
461 
462 	err = request_irq(irq, ttc_clock_event_interrupt,
463 			  IRQF_TIMER, ttcce->ce.name, ttcce);
464 	if (err) {
465 		kfree(ttcce);
466 		return err;
467 	}
468 
469 	clockevents_config_and_register(&ttcce->ce,
470 			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
471 
472 	return 0;
473 }
474 
475 /**
476  * ttc_timer_init - Initialize the timer
477  *
478  * Initializes the timer hardware and register the clock source and clock event
479  * timers with Linux kernal timer framework
480  */
481 static int __init ttc_timer_init(struct device_node *timer)
482 {
483 	unsigned int irq;
484 	void __iomem *timer_baseaddr;
485 	struct clk *clk_cs, *clk_ce;
486 	static int initialized;
487 	int clksel, ret;
488 	u32 timer_width = 16;
489 
490 	if (initialized)
491 		return 0;
492 
493 	initialized = 1;
494 
495 	/*
496 	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
497 	 * and use it. Note that the event timer uses the interrupt and it's the
498 	 * 2nd TTC hence the irq_of_parse_and_map(,1)
499 	 */
500 	timer_baseaddr = of_iomap(timer, 0);
501 	if (!timer_baseaddr) {
502 		pr_err("ERROR: invalid timer base address\n");
503 		return -ENXIO;
504 	}
505 
506 	irq = irq_of_parse_and_map(timer, 1);
507 	if (irq <= 0) {
508 		pr_err("ERROR: invalid interrupt number\n");
509 		return -EINVAL;
510 	}
511 
512 	of_property_read_u32(timer, "timer-width", &timer_width);
513 
514 	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
515 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
516 	clk_cs = of_clk_get(timer, clksel);
517 	if (IS_ERR(clk_cs)) {
518 		pr_err("ERROR: timer input clock not found\n");
519 		return PTR_ERR(clk_cs);
520 	}
521 
522 	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
523 	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
524 	clk_ce = of_clk_get(timer, clksel);
525 	if (IS_ERR(clk_ce)) {
526 		pr_err("ERROR: timer input clock not found\n");
527 		return PTR_ERR(clk_ce);
528 	}
529 
530 	ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
531 	if (ret)
532 		return ret;
533 
534 	ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
535 	if (ret)
536 		return ret;
537 
538 	pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq);
539 
540 	return 0;
541 }
542 
543 TIMER_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);
544