1 /* 2 * SuperH Timer Support - TMU 3 * 4 * Copyright (C) 2009 Magnus Damm 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/init.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/ioport.h> 25 #include <linux/irq.h> 26 #include <linux/module.h> 27 #include <linux/of.h> 28 #include <linux/platform_device.h> 29 #include <linux/pm_domain.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/sh_timer.h> 32 #include <linux/slab.h> 33 #include <linux/spinlock.h> 34 35 enum sh_tmu_model { 36 SH_TMU, 37 SH_TMU_SH3, 38 }; 39 40 struct sh_tmu_device; 41 42 struct sh_tmu_channel { 43 struct sh_tmu_device *tmu; 44 unsigned int index; 45 46 void __iomem *base; 47 int irq; 48 49 unsigned long periodic; 50 struct clock_event_device ced; 51 struct clocksource cs; 52 bool cs_enabled; 53 unsigned int enable_count; 54 }; 55 56 struct sh_tmu_device { 57 struct platform_device *pdev; 58 59 void __iomem *mapbase; 60 struct clk *clk; 61 unsigned long rate; 62 63 enum sh_tmu_model model; 64 65 raw_spinlock_t lock; /* Protect the shared start/stop register */ 66 67 struct sh_tmu_channel *channels; 68 unsigned int num_channels; 69 70 bool has_clockevent; 71 bool has_clocksource; 72 }; 73 74 #define TSTR -1 /* shared register */ 75 #define TCOR 0 /* channel register */ 76 #define TCNT 1 /* channel register */ 77 #define TCR 2 /* channel register */ 78 79 #define TCR_UNF (1 << 8) 80 #define TCR_UNIE (1 << 5) 81 #define TCR_TPSC_CLK4 (0 << 0) 82 #define TCR_TPSC_CLK16 (1 << 0) 83 #define TCR_TPSC_CLK64 (2 << 0) 84 #define TCR_TPSC_CLK256 (3 << 0) 85 #define TCR_TPSC_CLK1024 (4 << 0) 86 #define TCR_TPSC_MASK (7 << 0) 87 88 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr) 89 { 90 unsigned long offs; 91 92 if (reg_nr == TSTR) { 93 switch (ch->tmu->model) { 94 case SH_TMU_SH3: 95 return ioread8(ch->tmu->mapbase + 2); 96 case SH_TMU: 97 return ioread8(ch->tmu->mapbase + 4); 98 } 99 } 100 101 offs = reg_nr << 2; 102 103 if (reg_nr == TCR) 104 return ioread16(ch->base + offs); 105 else 106 return ioread32(ch->base + offs); 107 } 108 109 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr, 110 unsigned long value) 111 { 112 unsigned long offs; 113 114 if (reg_nr == TSTR) { 115 switch (ch->tmu->model) { 116 case SH_TMU_SH3: 117 return iowrite8(value, ch->tmu->mapbase + 2); 118 case SH_TMU: 119 return iowrite8(value, ch->tmu->mapbase + 4); 120 } 121 } 122 123 offs = reg_nr << 2; 124 125 if (reg_nr == TCR) 126 iowrite16(value, ch->base + offs); 127 else 128 iowrite32(value, ch->base + offs); 129 } 130 131 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start) 132 { 133 unsigned long flags, value; 134 135 /* start stop register shared by multiple timer channels */ 136 raw_spin_lock_irqsave(&ch->tmu->lock, flags); 137 value = sh_tmu_read(ch, TSTR); 138 139 if (start) 140 value |= 1 << ch->index; 141 else 142 value &= ~(1 << ch->index); 143 144 sh_tmu_write(ch, TSTR, value); 145 raw_spin_unlock_irqrestore(&ch->tmu->lock, flags); 146 } 147 148 static int __sh_tmu_enable(struct sh_tmu_channel *ch) 149 { 150 int ret; 151 152 /* enable clock */ 153 ret = clk_enable(ch->tmu->clk); 154 if (ret) { 155 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n", 156 ch->index); 157 return ret; 158 } 159 160 /* make sure channel is disabled */ 161 sh_tmu_start_stop_ch(ch, 0); 162 163 /* maximum timeout */ 164 sh_tmu_write(ch, TCOR, 0xffffffff); 165 sh_tmu_write(ch, TCNT, 0xffffffff); 166 167 /* configure channel to parent clock / 4, irq off */ 168 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4); 169 170 /* enable channel */ 171 sh_tmu_start_stop_ch(ch, 1); 172 173 return 0; 174 } 175 176 static int sh_tmu_enable(struct sh_tmu_channel *ch) 177 { 178 if (ch->enable_count++ > 0) 179 return 0; 180 181 pm_runtime_get_sync(&ch->tmu->pdev->dev); 182 dev_pm_syscore_device(&ch->tmu->pdev->dev, true); 183 184 return __sh_tmu_enable(ch); 185 } 186 187 static void __sh_tmu_disable(struct sh_tmu_channel *ch) 188 { 189 /* disable channel */ 190 sh_tmu_start_stop_ch(ch, 0); 191 192 /* disable interrupts in TMU block */ 193 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4); 194 195 /* stop clock */ 196 clk_disable(ch->tmu->clk); 197 } 198 199 static void sh_tmu_disable(struct sh_tmu_channel *ch) 200 { 201 if (WARN_ON(ch->enable_count == 0)) 202 return; 203 204 if (--ch->enable_count > 0) 205 return; 206 207 __sh_tmu_disable(ch); 208 209 dev_pm_syscore_device(&ch->tmu->pdev->dev, false); 210 pm_runtime_put(&ch->tmu->pdev->dev); 211 } 212 213 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta, 214 int periodic) 215 { 216 /* stop timer */ 217 sh_tmu_start_stop_ch(ch, 0); 218 219 /* acknowledge interrupt */ 220 sh_tmu_read(ch, TCR); 221 222 /* enable interrupt */ 223 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4); 224 225 /* reload delta value in case of periodic timer */ 226 if (periodic) 227 sh_tmu_write(ch, TCOR, delta); 228 else 229 sh_tmu_write(ch, TCOR, 0xffffffff); 230 231 sh_tmu_write(ch, TCNT, delta); 232 233 /* start timer */ 234 sh_tmu_start_stop_ch(ch, 1); 235 } 236 237 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id) 238 { 239 struct sh_tmu_channel *ch = dev_id; 240 241 /* disable or acknowledge interrupt */ 242 if (clockevent_state_oneshot(&ch->ced)) 243 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4); 244 else 245 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4); 246 247 /* notify clockevent layer */ 248 ch->ced.event_handler(&ch->ced); 249 return IRQ_HANDLED; 250 } 251 252 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs) 253 { 254 return container_of(cs, struct sh_tmu_channel, cs); 255 } 256 257 static u64 sh_tmu_clocksource_read(struct clocksource *cs) 258 { 259 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); 260 261 return sh_tmu_read(ch, TCNT) ^ 0xffffffff; 262 } 263 264 static int sh_tmu_clocksource_enable(struct clocksource *cs) 265 { 266 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); 267 int ret; 268 269 if (WARN_ON(ch->cs_enabled)) 270 return 0; 271 272 ret = sh_tmu_enable(ch); 273 if (!ret) 274 ch->cs_enabled = true; 275 276 return ret; 277 } 278 279 static void sh_tmu_clocksource_disable(struct clocksource *cs) 280 { 281 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); 282 283 if (WARN_ON(!ch->cs_enabled)) 284 return; 285 286 sh_tmu_disable(ch); 287 ch->cs_enabled = false; 288 } 289 290 static void sh_tmu_clocksource_suspend(struct clocksource *cs) 291 { 292 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); 293 294 if (!ch->cs_enabled) 295 return; 296 297 if (--ch->enable_count == 0) { 298 __sh_tmu_disable(ch); 299 pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev); 300 } 301 } 302 303 static void sh_tmu_clocksource_resume(struct clocksource *cs) 304 { 305 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); 306 307 if (!ch->cs_enabled) 308 return; 309 310 if (ch->enable_count++ == 0) { 311 pm_genpd_syscore_poweron(&ch->tmu->pdev->dev); 312 __sh_tmu_enable(ch); 313 } 314 } 315 316 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch, 317 const char *name) 318 { 319 struct clocksource *cs = &ch->cs; 320 321 cs->name = name; 322 cs->rating = 200; 323 cs->read = sh_tmu_clocksource_read; 324 cs->enable = sh_tmu_clocksource_enable; 325 cs->disable = sh_tmu_clocksource_disable; 326 cs->suspend = sh_tmu_clocksource_suspend; 327 cs->resume = sh_tmu_clocksource_resume; 328 cs->mask = CLOCKSOURCE_MASK(32); 329 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; 330 331 dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n", 332 ch->index); 333 334 clocksource_register_hz(cs, ch->tmu->rate); 335 return 0; 336 } 337 338 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced) 339 { 340 return container_of(ced, struct sh_tmu_channel, ced); 341 } 342 343 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic) 344 { 345 sh_tmu_enable(ch); 346 347 if (periodic) { 348 ch->periodic = (ch->tmu->rate + HZ/2) / HZ; 349 sh_tmu_set_next(ch, ch->periodic, 1); 350 } 351 } 352 353 static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced) 354 { 355 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); 356 357 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) 358 sh_tmu_disable(ch); 359 return 0; 360 } 361 362 static int sh_tmu_clock_event_set_state(struct clock_event_device *ced, 363 int periodic) 364 { 365 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); 366 367 /* deal with old setting first */ 368 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) 369 sh_tmu_disable(ch); 370 371 dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n", 372 ch->index, periodic ? "periodic" : "oneshot"); 373 sh_tmu_clock_event_start(ch, periodic); 374 return 0; 375 } 376 377 static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced) 378 { 379 return sh_tmu_clock_event_set_state(ced, 0); 380 } 381 382 static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced) 383 { 384 return sh_tmu_clock_event_set_state(ced, 1); 385 } 386 387 static int sh_tmu_clock_event_next(unsigned long delta, 388 struct clock_event_device *ced) 389 { 390 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); 391 392 BUG_ON(!clockevent_state_oneshot(ced)); 393 394 /* program new delta value */ 395 sh_tmu_set_next(ch, delta, 0); 396 return 0; 397 } 398 399 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced) 400 { 401 pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev); 402 } 403 404 static void sh_tmu_clock_event_resume(struct clock_event_device *ced) 405 { 406 pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev); 407 } 408 409 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch, 410 const char *name) 411 { 412 struct clock_event_device *ced = &ch->ced; 413 int ret; 414 415 ced->name = name; 416 ced->features = CLOCK_EVT_FEAT_PERIODIC; 417 ced->features |= CLOCK_EVT_FEAT_ONESHOT; 418 ced->rating = 200; 419 ced->cpumask = cpu_possible_mask; 420 ced->set_next_event = sh_tmu_clock_event_next; 421 ced->set_state_shutdown = sh_tmu_clock_event_shutdown; 422 ced->set_state_periodic = sh_tmu_clock_event_set_periodic; 423 ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot; 424 ced->suspend = sh_tmu_clock_event_suspend; 425 ced->resume = sh_tmu_clock_event_resume; 426 427 dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n", 428 ch->index); 429 430 clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff); 431 432 ret = request_irq(ch->irq, sh_tmu_interrupt, 433 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, 434 dev_name(&ch->tmu->pdev->dev), ch); 435 if (ret) { 436 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n", 437 ch->index, ch->irq); 438 return; 439 } 440 } 441 442 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name, 443 bool clockevent, bool clocksource) 444 { 445 if (clockevent) { 446 ch->tmu->has_clockevent = true; 447 sh_tmu_register_clockevent(ch, name); 448 } else if (clocksource) { 449 ch->tmu->has_clocksource = true; 450 sh_tmu_register_clocksource(ch, name); 451 } 452 453 return 0; 454 } 455 456 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index, 457 bool clockevent, bool clocksource, 458 struct sh_tmu_device *tmu) 459 { 460 /* Skip unused channels. */ 461 if (!clockevent && !clocksource) 462 return 0; 463 464 ch->tmu = tmu; 465 ch->index = index; 466 467 if (tmu->model == SH_TMU_SH3) 468 ch->base = tmu->mapbase + 4 + ch->index * 12; 469 else 470 ch->base = tmu->mapbase + 8 + ch->index * 12; 471 472 ch->irq = platform_get_irq(tmu->pdev, index); 473 if (ch->irq < 0) { 474 dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n", 475 ch->index); 476 return ch->irq; 477 } 478 479 ch->cs_enabled = false; 480 ch->enable_count = 0; 481 482 return sh_tmu_register(ch, dev_name(&tmu->pdev->dev), 483 clockevent, clocksource); 484 } 485 486 static int sh_tmu_map_memory(struct sh_tmu_device *tmu) 487 { 488 struct resource *res; 489 490 res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0); 491 if (!res) { 492 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n"); 493 return -ENXIO; 494 } 495 496 tmu->mapbase = ioremap_nocache(res->start, resource_size(res)); 497 if (tmu->mapbase == NULL) 498 return -ENXIO; 499 500 return 0; 501 } 502 503 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu) 504 { 505 struct device_node *np = tmu->pdev->dev.of_node; 506 507 tmu->model = SH_TMU; 508 tmu->num_channels = 3; 509 510 of_property_read_u32(np, "#renesas,channels", &tmu->num_channels); 511 512 if (tmu->num_channels != 2 && tmu->num_channels != 3) { 513 dev_err(&tmu->pdev->dev, "invalid number of channels %u\n", 514 tmu->num_channels); 515 return -EINVAL; 516 } 517 518 return 0; 519 } 520 521 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev) 522 { 523 unsigned int i; 524 int ret; 525 526 tmu->pdev = pdev; 527 528 raw_spin_lock_init(&tmu->lock); 529 530 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { 531 ret = sh_tmu_parse_dt(tmu); 532 if (ret < 0) 533 return ret; 534 } else if (pdev->dev.platform_data) { 535 const struct platform_device_id *id = pdev->id_entry; 536 struct sh_timer_config *cfg = pdev->dev.platform_data; 537 538 tmu->model = id->driver_data; 539 tmu->num_channels = hweight8(cfg->channels_mask); 540 } else { 541 dev_err(&tmu->pdev->dev, "missing platform data\n"); 542 return -ENXIO; 543 } 544 545 /* Get hold of clock. */ 546 tmu->clk = clk_get(&tmu->pdev->dev, "fck"); 547 if (IS_ERR(tmu->clk)) { 548 dev_err(&tmu->pdev->dev, "cannot get clock\n"); 549 return PTR_ERR(tmu->clk); 550 } 551 552 ret = clk_prepare(tmu->clk); 553 if (ret < 0) 554 goto err_clk_put; 555 556 /* Determine clock rate. */ 557 ret = clk_enable(tmu->clk); 558 if (ret < 0) 559 goto err_clk_unprepare; 560 561 tmu->rate = clk_get_rate(tmu->clk) / 4; 562 clk_disable(tmu->clk); 563 564 /* Map the memory resource. */ 565 ret = sh_tmu_map_memory(tmu); 566 if (ret < 0) { 567 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n"); 568 goto err_clk_unprepare; 569 } 570 571 /* Allocate and setup the channels. */ 572 tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels, 573 GFP_KERNEL); 574 if (tmu->channels == NULL) { 575 ret = -ENOMEM; 576 goto err_unmap; 577 } 578 579 /* 580 * Use the first channel as a clock event device and the second channel 581 * as a clock source. 582 */ 583 for (i = 0; i < tmu->num_channels; ++i) { 584 ret = sh_tmu_channel_setup(&tmu->channels[i], i, 585 i == 0, i == 1, tmu); 586 if (ret < 0) 587 goto err_unmap; 588 } 589 590 platform_set_drvdata(pdev, tmu); 591 592 return 0; 593 594 err_unmap: 595 kfree(tmu->channels); 596 iounmap(tmu->mapbase); 597 err_clk_unprepare: 598 clk_unprepare(tmu->clk); 599 err_clk_put: 600 clk_put(tmu->clk); 601 return ret; 602 } 603 604 static int sh_tmu_probe(struct platform_device *pdev) 605 { 606 struct sh_tmu_device *tmu = platform_get_drvdata(pdev); 607 int ret; 608 609 if (!is_early_platform_device(pdev)) { 610 pm_runtime_set_active(&pdev->dev); 611 pm_runtime_enable(&pdev->dev); 612 } 613 614 if (tmu) { 615 dev_info(&pdev->dev, "kept as earlytimer\n"); 616 goto out; 617 } 618 619 tmu = kzalloc(sizeof(*tmu), GFP_KERNEL); 620 if (tmu == NULL) 621 return -ENOMEM; 622 623 ret = sh_tmu_setup(tmu, pdev); 624 if (ret) { 625 kfree(tmu); 626 pm_runtime_idle(&pdev->dev); 627 return ret; 628 } 629 if (is_early_platform_device(pdev)) 630 return 0; 631 632 out: 633 if (tmu->has_clockevent || tmu->has_clocksource) 634 pm_runtime_irq_safe(&pdev->dev); 635 else 636 pm_runtime_idle(&pdev->dev); 637 638 return 0; 639 } 640 641 static int sh_tmu_remove(struct platform_device *pdev) 642 { 643 return -EBUSY; /* cannot unregister clockevent and clocksource */ 644 } 645 646 static const struct platform_device_id sh_tmu_id_table[] = { 647 { "sh-tmu", SH_TMU }, 648 { "sh-tmu-sh3", SH_TMU_SH3 }, 649 { } 650 }; 651 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table); 652 653 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = { 654 { .compatible = "renesas,tmu" }, 655 { } 656 }; 657 MODULE_DEVICE_TABLE(of, sh_tmu_of_table); 658 659 static struct platform_driver sh_tmu_device_driver = { 660 .probe = sh_tmu_probe, 661 .remove = sh_tmu_remove, 662 .driver = { 663 .name = "sh_tmu", 664 .of_match_table = of_match_ptr(sh_tmu_of_table), 665 }, 666 .id_table = sh_tmu_id_table, 667 }; 668 669 static int __init sh_tmu_init(void) 670 { 671 return platform_driver_register(&sh_tmu_device_driver); 672 } 673 674 static void __exit sh_tmu_exit(void) 675 { 676 platform_driver_unregister(&sh_tmu_device_driver); 677 } 678 679 early_platform_init("earlytimer", &sh_tmu_device_driver); 680 subsys_initcall(sh_tmu_init); 681 module_exit(sh_tmu_exit); 682 683 MODULE_AUTHOR("Magnus Damm"); 684 MODULE_DESCRIPTION("SuperH TMU Timer Driver"); 685 MODULE_LICENSE("GPL v2"); 686