1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SuperH Timer Support - MTU2 4 * 5 * Copyright (C) 2009 Magnus Damm 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/clockchips.h> 10 #include <linux/delay.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/interrupt.h> 14 #include <linux/io.h> 15 #include <linux/ioport.h> 16 #include <linux/irq.h> 17 #include <linux/module.h> 18 #include <linux/of.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_domain.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sh_timer.h> 23 #include <linux/slab.h> 24 #include <linux/spinlock.h> 25 26 #ifdef CONFIG_SUPERH 27 #include <asm/platform_early.h> 28 #endif 29 30 struct sh_mtu2_device; 31 32 struct sh_mtu2_channel { 33 struct sh_mtu2_device *mtu; 34 unsigned int index; 35 36 void __iomem *base; 37 38 struct clock_event_device ced; 39 }; 40 41 struct sh_mtu2_device { 42 struct platform_device *pdev; 43 44 void __iomem *mapbase; 45 struct clk *clk; 46 47 raw_spinlock_t lock; /* Protect the shared registers */ 48 49 struct sh_mtu2_channel *channels; 50 unsigned int num_channels; 51 52 bool has_clockevent; 53 }; 54 55 #define TSTR -1 /* shared register */ 56 #define TCR 0 /* channel register */ 57 #define TMDR 1 /* channel register */ 58 #define TIOR 2 /* channel register */ 59 #define TIER 3 /* channel register */ 60 #define TSR 4 /* channel register */ 61 #define TCNT 5 /* channel register */ 62 #define TGR 6 /* channel register */ 63 64 #define TCR_CCLR_NONE (0 << 5) 65 #define TCR_CCLR_TGRA (1 << 5) 66 #define TCR_CCLR_TGRB (2 << 5) 67 #define TCR_CCLR_SYNC (3 << 5) 68 #define TCR_CCLR_TGRC (5 << 5) 69 #define TCR_CCLR_TGRD (6 << 5) 70 #define TCR_CCLR_MASK (7 << 5) 71 #define TCR_CKEG_RISING (0 << 3) 72 #define TCR_CKEG_FALLING (1 << 3) 73 #define TCR_CKEG_BOTH (2 << 3) 74 #define TCR_CKEG_MASK (3 << 3) 75 /* Values 4 to 7 are channel-dependent */ 76 #define TCR_TPSC_P1 (0 << 0) 77 #define TCR_TPSC_P4 (1 << 0) 78 #define TCR_TPSC_P16 (2 << 0) 79 #define TCR_TPSC_P64 (3 << 0) 80 #define TCR_TPSC_CH0_TCLKA (4 << 0) 81 #define TCR_TPSC_CH0_TCLKB (5 << 0) 82 #define TCR_TPSC_CH0_TCLKC (6 << 0) 83 #define TCR_TPSC_CH0_TCLKD (7 << 0) 84 #define TCR_TPSC_CH1_TCLKA (4 << 0) 85 #define TCR_TPSC_CH1_TCLKB (5 << 0) 86 #define TCR_TPSC_CH1_P256 (6 << 0) 87 #define TCR_TPSC_CH1_TCNT2 (7 << 0) 88 #define TCR_TPSC_CH2_TCLKA (4 << 0) 89 #define TCR_TPSC_CH2_TCLKB (5 << 0) 90 #define TCR_TPSC_CH2_TCLKC (6 << 0) 91 #define TCR_TPSC_CH2_P1024 (7 << 0) 92 #define TCR_TPSC_CH34_P256 (4 << 0) 93 #define TCR_TPSC_CH34_P1024 (5 << 0) 94 #define TCR_TPSC_CH34_TCLKA (6 << 0) 95 #define TCR_TPSC_CH34_TCLKB (7 << 0) 96 #define TCR_TPSC_MASK (7 << 0) 97 98 #define TMDR_BFE (1 << 6) 99 #define TMDR_BFB (1 << 5) 100 #define TMDR_BFA (1 << 4) 101 #define TMDR_MD_NORMAL (0 << 0) 102 #define TMDR_MD_PWM_1 (2 << 0) 103 #define TMDR_MD_PWM_2 (3 << 0) 104 #define TMDR_MD_PHASE_1 (4 << 0) 105 #define TMDR_MD_PHASE_2 (5 << 0) 106 #define TMDR_MD_PHASE_3 (6 << 0) 107 #define TMDR_MD_PHASE_4 (7 << 0) 108 #define TMDR_MD_PWM_SYNC (8 << 0) 109 #define TMDR_MD_PWM_COMP_CREST (13 << 0) 110 #define TMDR_MD_PWM_COMP_TROUGH (14 << 0) 111 #define TMDR_MD_PWM_COMP_BOTH (15 << 0) 112 #define TMDR_MD_MASK (15 << 0) 113 114 #define TIOC_IOCH(n) ((n) << 4) 115 #define TIOC_IOCL(n) ((n) << 0) 116 #define TIOR_OC_RETAIN (0 << 0) 117 #define TIOR_OC_0_CLEAR (1 << 0) 118 #define TIOR_OC_0_SET (2 << 0) 119 #define TIOR_OC_0_TOGGLE (3 << 0) 120 #define TIOR_OC_1_CLEAR (5 << 0) 121 #define TIOR_OC_1_SET (6 << 0) 122 #define TIOR_OC_1_TOGGLE (7 << 0) 123 #define TIOR_IC_RISING (8 << 0) 124 #define TIOR_IC_FALLING (9 << 0) 125 #define TIOR_IC_BOTH (10 << 0) 126 #define TIOR_IC_TCNT (12 << 0) 127 #define TIOR_MASK (15 << 0) 128 129 #define TIER_TTGE (1 << 7) 130 #define TIER_TTGE2 (1 << 6) 131 #define TIER_TCIEU (1 << 5) 132 #define TIER_TCIEV (1 << 4) 133 #define TIER_TGIED (1 << 3) 134 #define TIER_TGIEC (1 << 2) 135 #define TIER_TGIEB (1 << 1) 136 #define TIER_TGIEA (1 << 0) 137 138 #define TSR_TCFD (1 << 7) 139 #define TSR_TCFU (1 << 5) 140 #define TSR_TCFV (1 << 4) 141 #define TSR_TGFD (1 << 3) 142 #define TSR_TGFC (1 << 2) 143 #define TSR_TGFB (1 << 1) 144 #define TSR_TGFA (1 << 0) 145 146 static unsigned long mtu2_reg_offs[] = { 147 [TCR] = 0, 148 [TMDR] = 1, 149 [TIOR] = 2, 150 [TIER] = 4, 151 [TSR] = 5, 152 [TCNT] = 6, 153 [TGR] = 8, 154 }; 155 156 static inline unsigned long sh_mtu2_read(struct sh_mtu2_channel *ch, int reg_nr) 157 { 158 unsigned long offs; 159 160 if (reg_nr == TSTR) 161 return ioread8(ch->mtu->mapbase + 0x280); 162 163 offs = mtu2_reg_offs[reg_nr]; 164 165 if ((reg_nr == TCNT) || (reg_nr == TGR)) 166 return ioread16(ch->base + offs); 167 else 168 return ioread8(ch->base + offs); 169 } 170 171 static inline void sh_mtu2_write(struct sh_mtu2_channel *ch, int reg_nr, 172 unsigned long value) 173 { 174 unsigned long offs; 175 176 if (reg_nr == TSTR) 177 return iowrite8(value, ch->mtu->mapbase + 0x280); 178 179 offs = mtu2_reg_offs[reg_nr]; 180 181 if ((reg_nr == TCNT) || (reg_nr == TGR)) 182 iowrite16(value, ch->base + offs); 183 else 184 iowrite8(value, ch->base + offs); 185 } 186 187 static void sh_mtu2_start_stop_ch(struct sh_mtu2_channel *ch, int start) 188 { 189 unsigned long flags, value; 190 191 /* start stop register shared by multiple timer channels */ 192 raw_spin_lock_irqsave(&ch->mtu->lock, flags); 193 value = sh_mtu2_read(ch, TSTR); 194 195 if (start) 196 value |= 1 << ch->index; 197 else 198 value &= ~(1 << ch->index); 199 200 sh_mtu2_write(ch, TSTR, value); 201 raw_spin_unlock_irqrestore(&ch->mtu->lock, flags); 202 } 203 204 static int sh_mtu2_enable(struct sh_mtu2_channel *ch) 205 { 206 unsigned long periodic; 207 unsigned long rate; 208 int ret; 209 210 pm_runtime_get_sync(&ch->mtu->pdev->dev); 211 dev_pm_syscore_device(&ch->mtu->pdev->dev, true); 212 213 /* enable clock */ 214 ret = clk_enable(ch->mtu->clk); 215 if (ret) { 216 dev_err(&ch->mtu->pdev->dev, "ch%u: cannot enable clock\n", 217 ch->index); 218 return ret; 219 } 220 221 /* make sure channel is disabled */ 222 sh_mtu2_start_stop_ch(ch, 0); 223 224 rate = clk_get_rate(ch->mtu->clk) / 64; 225 periodic = (rate + HZ/2) / HZ; 226 227 /* 228 * "Periodic Counter Operation" 229 * Clear on TGRA compare match, divide clock by 64. 230 */ 231 sh_mtu2_write(ch, TCR, TCR_CCLR_TGRA | TCR_TPSC_P64); 232 sh_mtu2_write(ch, TIOR, TIOC_IOCH(TIOR_OC_0_CLEAR) | 233 TIOC_IOCL(TIOR_OC_0_CLEAR)); 234 sh_mtu2_write(ch, TGR, periodic); 235 sh_mtu2_write(ch, TCNT, 0); 236 sh_mtu2_write(ch, TMDR, TMDR_MD_NORMAL); 237 sh_mtu2_write(ch, TIER, TIER_TGIEA); 238 239 /* enable channel */ 240 sh_mtu2_start_stop_ch(ch, 1); 241 242 return 0; 243 } 244 245 static void sh_mtu2_disable(struct sh_mtu2_channel *ch) 246 { 247 /* disable channel */ 248 sh_mtu2_start_stop_ch(ch, 0); 249 250 /* stop clock */ 251 clk_disable(ch->mtu->clk); 252 253 dev_pm_syscore_device(&ch->mtu->pdev->dev, false); 254 pm_runtime_put(&ch->mtu->pdev->dev); 255 } 256 257 static irqreturn_t sh_mtu2_interrupt(int irq, void *dev_id) 258 { 259 struct sh_mtu2_channel *ch = dev_id; 260 261 /* acknowledge interrupt */ 262 sh_mtu2_read(ch, TSR); 263 sh_mtu2_write(ch, TSR, ~TSR_TGFA); 264 265 /* notify clockevent layer */ 266 ch->ced.event_handler(&ch->ced); 267 return IRQ_HANDLED; 268 } 269 270 static struct sh_mtu2_channel *ced_to_sh_mtu2(struct clock_event_device *ced) 271 { 272 return container_of(ced, struct sh_mtu2_channel, ced); 273 } 274 275 static int sh_mtu2_clock_event_shutdown(struct clock_event_device *ced) 276 { 277 struct sh_mtu2_channel *ch = ced_to_sh_mtu2(ced); 278 279 if (clockevent_state_periodic(ced)) 280 sh_mtu2_disable(ch); 281 282 return 0; 283 } 284 285 static int sh_mtu2_clock_event_set_periodic(struct clock_event_device *ced) 286 { 287 struct sh_mtu2_channel *ch = ced_to_sh_mtu2(ced); 288 289 if (clockevent_state_periodic(ced)) 290 sh_mtu2_disable(ch); 291 292 dev_info(&ch->mtu->pdev->dev, "ch%u: used for periodic clock events\n", 293 ch->index); 294 sh_mtu2_enable(ch); 295 return 0; 296 } 297 298 static void sh_mtu2_clock_event_suspend(struct clock_event_device *ced) 299 { 300 dev_pm_genpd_suspend(&ced_to_sh_mtu2(ced)->mtu->pdev->dev); 301 } 302 303 static void sh_mtu2_clock_event_resume(struct clock_event_device *ced) 304 { 305 dev_pm_genpd_resume(&ced_to_sh_mtu2(ced)->mtu->pdev->dev); 306 } 307 308 static void sh_mtu2_register_clockevent(struct sh_mtu2_channel *ch, 309 const char *name) 310 { 311 struct clock_event_device *ced = &ch->ced; 312 313 ced->name = name; 314 ced->features = CLOCK_EVT_FEAT_PERIODIC; 315 ced->rating = 200; 316 ced->cpumask = cpu_possible_mask; 317 ced->set_state_shutdown = sh_mtu2_clock_event_shutdown; 318 ced->set_state_periodic = sh_mtu2_clock_event_set_periodic; 319 ced->suspend = sh_mtu2_clock_event_suspend; 320 ced->resume = sh_mtu2_clock_event_resume; 321 322 dev_info(&ch->mtu->pdev->dev, "ch%u: used for clock events\n", 323 ch->index); 324 clockevents_register_device(ced); 325 } 326 327 static int sh_mtu2_register(struct sh_mtu2_channel *ch, const char *name) 328 { 329 ch->mtu->has_clockevent = true; 330 sh_mtu2_register_clockevent(ch, name); 331 332 return 0; 333 } 334 335 static const unsigned int sh_mtu2_channel_offsets[] = { 336 0x300, 0x380, 0x000, 337 }; 338 339 static int sh_mtu2_setup_channel(struct sh_mtu2_channel *ch, unsigned int index, 340 struct sh_mtu2_device *mtu) 341 { 342 char name[6]; 343 int irq; 344 int ret; 345 346 ch->mtu = mtu; 347 348 sprintf(name, "tgi%ua", index); 349 irq = platform_get_irq_byname(mtu->pdev, name); 350 if (irq < 0) { 351 /* Skip channels with no declared interrupt. */ 352 return 0; 353 } 354 355 ret = request_irq(irq, sh_mtu2_interrupt, 356 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, 357 dev_name(&ch->mtu->pdev->dev), ch); 358 if (ret) { 359 dev_err(&ch->mtu->pdev->dev, "ch%u: failed to request irq %d\n", 360 index, irq); 361 return ret; 362 } 363 364 ch->base = mtu->mapbase + sh_mtu2_channel_offsets[index]; 365 ch->index = index; 366 367 return sh_mtu2_register(ch, dev_name(&mtu->pdev->dev)); 368 } 369 370 static int sh_mtu2_map_memory(struct sh_mtu2_device *mtu) 371 { 372 struct resource *res; 373 374 res = platform_get_resource(mtu->pdev, IORESOURCE_MEM, 0); 375 if (!res) { 376 dev_err(&mtu->pdev->dev, "failed to get I/O memory\n"); 377 return -ENXIO; 378 } 379 380 mtu->mapbase = ioremap(res->start, resource_size(res)); 381 if (mtu->mapbase == NULL) 382 return -ENXIO; 383 384 return 0; 385 } 386 387 static int sh_mtu2_setup(struct sh_mtu2_device *mtu, 388 struct platform_device *pdev) 389 { 390 unsigned int i; 391 int ret; 392 393 mtu->pdev = pdev; 394 395 raw_spin_lock_init(&mtu->lock); 396 397 /* Get hold of clock. */ 398 mtu->clk = clk_get(&mtu->pdev->dev, "fck"); 399 if (IS_ERR(mtu->clk)) { 400 dev_err(&mtu->pdev->dev, "cannot get clock\n"); 401 return PTR_ERR(mtu->clk); 402 } 403 404 ret = clk_prepare(mtu->clk); 405 if (ret < 0) 406 goto err_clk_put; 407 408 /* Map the memory resource. */ 409 ret = sh_mtu2_map_memory(mtu); 410 if (ret < 0) { 411 dev_err(&mtu->pdev->dev, "failed to remap I/O memory\n"); 412 goto err_clk_unprepare; 413 } 414 415 /* Allocate and setup the channels. */ 416 ret = platform_irq_count(pdev); 417 if (ret < 0) 418 goto err_unmap; 419 420 mtu->num_channels = min_t(unsigned int, ret, 421 ARRAY_SIZE(sh_mtu2_channel_offsets)); 422 423 mtu->channels = kcalloc(mtu->num_channels, sizeof(*mtu->channels), 424 GFP_KERNEL); 425 if (mtu->channels == NULL) { 426 ret = -ENOMEM; 427 goto err_unmap; 428 } 429 430 for (i = 0; i < mtu->num_channels; ++i) { 431 ret = sh_mtu2_setup_channel(&mtu->channels[i], i, mtu); 432 if (ret < 0) 433 goto err_unmap; 434 } 435 436 platform_set_drvdata(pdev, mtu); 437 438 return 0; 439 440 err_unmap: 441 kfree(mtu->channels); 442 iounmap(mtu->mapbase); 443 err_clk_unprepare: 444 clk_unprepare(mtu->clk); 445 err_clk_put: 446 clk_put(mtu->clk); 447 return ret; 448 } 449 450 static int sh_mtu2_probe(struct platform_device *pdev) 451 { 452 struct sh_mtu2_device *mtu = platform_get_drvdata(pdev); 453 int ret; 454 455 if (!is_sh_early_platform_device(pdev)) { 456 pm_runtime_set_active(&pdev->dev); 457 pm_runtime_enable(&pdev->dev); 458 } 459 460 if (mtu) { 461 dev_info(&pdev->dev, "kept as earlytimer\n"); 462 goto out; 463 } 464 465 mtu = kzalloc(sizeof(*mtu), GFP_KERNEL); 466 if (mtu == NULL) 467 return -ENOMEM; 468 469 ret = sh_mtu2_setup(mtu, pdev); 470 if (ret) { 471 kfree(mtu); 472 pm_runtime_idle(&pdev->dev); 473 return ret; 474 } 475 if (is_sh_early_platform_device(pdev)) 476 return 0; 477 478 out: 479 if (mtu->has_clockevent) 480 pm_runtime_irq_safe(&pdev->dev); 481 else 482 pm_runtime_idle(&pdev->dev); 483 484 return 0; 485 } 486 487 static const struct platform_device_id sh_mtu2_id_table[] = { 488 { "sh-mtu2", 0 }, 489 { }, 490 }; 491 MODULE_DEVICE_TABLE(platform, sh_mtu2_id_table); 492 493 static const struct of_device_id sh_mtu2_of_table[] __maybe_unused = { 494 { .compatible = "renesas,mtu2" }, 495 { } 496 }; 497 MODULE_DEVICE_TABLE(of, sh_mtu2_of_table); 498 499 static struct platform_driver sh_mtu2_device_driver = { 500 .probe = sh_mtu2_probe, 501 .driver = { 502 .name = "sh_mtu2", 503 .of_match_table = of_match_ptr(sh_mtu2_of_table), 504 .suppress_bind_attrs = true, 505 }, 506 .id_table = sh_mtu2_id_table, 507 }; 508 509 static int __init sh_mtu2_init(void) 510 { 511 return platform_driver_register(&sh_mtu2_device_driver); 512 } 513 514 static void __exit sh_mtu2_exit(void) 515 { 516 platform_driver_unregister(&sh_mtu2_device_driver); 517 } 518 519 #ifdef CONFIG_SUPERH 520 sh_early_platform_init("earlytimer", &sh_mtu2_device_driver); 521 #endif 522 523 subsys_initcall(sh_mtu2_init); 524 module_exit(sh_mtu2_exit); 525 526 MODULE_AUTHOR("Magnus Damm"); 527 MODULE_DESCRIPTION("SuperH MTU2 Timer Driver"); 528