xref: /linux/drivers/clocksource/sh_cmt.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_domain.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 struct sh_cmt_device;
36 
37 /*
38  * The CMT comes in 5 different identified flavours, depending not only on the
39  * SoC but also on the particular instance. The following table lists the main
40  * characteristics of those flavours.
41  *
42  *			16B	32B	32B-F	48B	48B-2
43  * -----------------------------------------------------------------------------
44  * Channels		2	1/4	1	6	2/8
45  * Control Width	16	16	16	16	32
46  * Counter Width	16	32	32	32/48	32/48
47  * Shared Start/Stop	Y	Y	Y	Y	N
48  *
49  * The 48-bit gen2 version has a per-channel start/stop register located in the
50  * channel registers block. All other versions have a shared start/stop register
51  * located in the global space.
52  *
53  * Channels are indexed from 0 to N-1 in the documentation. The channel index
54  * infers the start/stop bit position in the control register and the channel
55  * registers block address. Some CMT instances have a subset of channels
56  * available, in which case the index in the documentation doesn't match the
57  * "real" index as implemented in hardware. This is for instance the case with
58  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59  * in the documentation but using start/stop bit 5 and having its registers
60  * block at 0x60.
61  *
62  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
63  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64  */
65 
66 enum sh_cmt_model {
67 	SH_CMT_16BIT,
68 	SH_CMT_32BIT,
69 	SH_CMT_32BIT_FAST,
70 	SH_CMT_48BIT,
71 	SH_CMT_48BIT_GEN2,
72 };
73 
74 struct sh_cmt_info {
75 	enum sh_cmt_model model;
76 
77 	unsigned long width; /* 16 or 32 bit version of hardware block */
78 	unsigned long overflow_bit;
79 	unsigned long clear_bits;
80 
81 	/* callbacks for CMSTR and CMCSR access */
82 	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
83 	void (*write_control)(void __iomem *base, unsigned long offs,
84 			      unsigned long value);
85 
86 	/* callbacks for CMCNT and CMCOR access */
87 	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
88 	void (*write_count)(void __iomem *base, unsigned long offs,
89 			    unsigned long value);
90 };
91 
92 struct sh_cmt_channel {
93 	struct sh_cmt_device *cmt;
94 
95 	unsigned int index;	/* Index in the documentation */
96 	unsigned int hwidx;	/* Real hardware index */
97 
98 	void __iomem *iostart;
99 	void __iomem *ioctrl;
100 
101 	unsigned int timer_bit;
102 	unsigned long flags;
103 	unsigned long match_value;
104 	unsigned long next_match_value;
105 	unsigned long max_match_value;
106 	unsigned long rate;
107 	raw_spinlock_t lock;
108 	struct clock_event_device ced;
109 	struct clocksource cs;
110 	unsigned long total_cycles;
111 	bool cs_enabled;
112 };
113 
114 struct sh_cmt_device {
115 	struct platform_device *pdev;
116 
117 	const struct sh_cmt_info *info;
118 
119 	void __iomem *mapbase;
120 	struct clk *clk;
121 
122 	raw_spinlock_t lock; /* Protect the shared start/stop register */
123 
124 	struct sh_cmt_channel *channels;
125 	unsigned int num_channels;
126 	unsigned int hw_channels;
127 
128 	bool has_clockevent;
129 	bool has_clocksource;
130 };
131 
132 #define SH_CMT16_CMCSR_CMF		(1 << 7)
133 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
134 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
135 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
136 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
137 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
138 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
139 
140 #define SH_CMT32_CMCSR_CMF		(1 << 15)
141 #define SH_CMT32_CMCSR_OVF		(1 << 14)
142 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
143 #define SH_CMT32_CMCSR_STTF		(1 << 12)
144 #define SH_CMT32_CMCSR_STPF		(1 << 11)
145 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
146 #define SH_CMT32_CMCSR_CMS		(1 << 9)
147 #define SH_CMT32_CMCSR_CMM		(1 << 8)
148 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
149 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
150 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
151 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
152 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
153 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
154 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
158 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
159 
160 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
161 {
162 	return ioread16(base + (offs << 1));
163 }
164 
165 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
166 {
167 	return ioread32(base + (offs << 2));
168 }
169 
170 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
171 			   unsigned long value)
172 {
173 	iowrite16(value, base + (offs << 1));
174 }
175 
176 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
177 			   unsigned long value)
178 {
179 	iowrite32(value, base + (offs << 2));
180 }
181 
182 static const struct sh_cmt_info sh_cmt_info[] = {
183 	[SH_CMT_16BIT] = {
184 		.model = SH_CMT_16BIT,
185 		.width = 16,
186 		.overflow_bit = SH_CMT16_CMCSR_CMF,
187 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
188 		.read_control = sh_cmt_read16,
189 		.write_control = sh_cmt_write16,
190 		.read_count = sh_cmt_read16,
191 		.write_count = sh_cmt_write16,
192 	},
193 	[SH_CMT_32BIT] = {
194 		.model = SH_CMT_32BIT,
195 		.width = 32,
196 		.overflow_bit = SH_CMT32_CMCSR_CMF,
197 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198 		.read_control = sh_cmt_read16,
199 		.write_control = sh_cmt_write16,
200 		.read_count = sh_cmt_read32,
201 		.write_count = sh_cmt_write32,
202 	},
203 	[SH_CMT_32BIT_FAST] = {
204 		.model = SH_CMT_32BIT_FAST,
205 		.width = 32,
206 		.overflow_bit = SH_CMT32_CMCSR_CMF,
207 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
208 		.read_control = sh_cmt_read16,
209 		.write_control = sh_cmt_write16,
210 		.read_count = sh_cmt_read32,
211 		.write_count = sh_cmt_write32,
212 	},
213 	[SH_CMT_48BIT] = {
214 		.model = SH_CMT_48BIT,
215 		.width = 32,
216 		.overflow_bit = SH_CMT32_CMCSR_CMF,
217 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218 		.read_control = sh_cmt_read32,
219 		.write_control = sh_cmt_write32,
220 		.read_count = sh_cmt_read32,
221 		.write_count = sh_cmt_write32,
222 	},
223 	[SH_CMT_48BIT_GEN2] = {
224 		.model = SH_CMT_48BIT_GEN2,
225 		.width = 32,
226 		.overflow_bit = SH_CMT32_CMCSR_CMF,
227 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 		.read_control = sh_cmt_read32,
229 		.write_control = sh_cmt_write32,
230 		.read_count = sh_cmt_read32,
231 		.write_count = sh_cmt_write32,
232 	},
233 };
234 
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
238 
239 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
240 {
241 	if (ch->iostart)
242 		return ch->cmt->info->read_control(ch->iostart, 0);
243 	else
244 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
245 }
246 
247 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
248 				      unsigned long value)
249 {
250 	if (ch->iostart)
251 		ch->cmt->info->write_control(ch->iostart, 0, value);
252 	else
253 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 }
255 
256 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257 {
258 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 }
260 
261 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
262 				      unsigned long value)
263 {
264 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
265 }
266 
267 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
268 {
269 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
270 }
271 
272 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
273 				      unsigned long value)
274 {
275 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276 }
277 
278 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
279 				      unsigned long value)
280 {
281 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
282 }
283 
284 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
285 					int *has_wrapped)
286 {
287 	unsigned long v1, v2, v3;
288 	int o1, o2;
289 
290 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291 
292 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
293 	do {
294 		o2 = o1;
295 		v1 = sh_cmt_read_cmcnt(ch);
296 		v2 = sh_cmt_read_cmcnt(ch);
297 		v3 = sh_cmt_read_cmcnt(ch);
298 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
299 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
300 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
301 
302 	*has_wrapped = o1;
303 	return v2;
304 }
305 
306 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
307 {
308 	unsigned long flags, value;
309 
310 	/* start stop register shared by multiple timer channels */
311 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
312 	value = sh_cmt_read_cmstr(ch);
313 
314 	if (start)
315 		value |= 1 << ch->timer_bit;
316 	else
317 		value &= ~(1 << ch->timer_bit);
318 
319 	sh_cmt_write_cmstr(ch, value);
320 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
321 }
322 
323 static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
324 {
325 	int k, ret;
326 
327 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
328 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
329 
330 	/* enable clock */
331 	ret = clk_enable(ch->cmt->clk);
332 	if (ret) {
333 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334 			ch->index);
335 		goto err0;
336 	}
337 
338 	/* make sure channel is disabled */
339 	sh_cmt_start_stop_ch(ch, 0);
340 
341 	/* configure channel, periodic mode and maximum timeout */
342 	if (ch->cmt->info->width == 16) {
343 		*rate = clk_get_rate(ch->cmt->clk) / 512;
344 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
345 				   SH_CMT16_CMCSR_CKS512);
346 	} else {
347 		*rate = clk_get_rate(ch->cmt->clk) / 8;
348 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
349 				   SH_CMT32_CMCSR_CMTOUT_IE |
350 				   SH_CMT32_CMCSR_CMR_IRQ |
351 				   SH_CMT32_CMCSR_CKS_RCLK8);
352 	}
353 
354 	sh_cmt_write_cmcor(ch, 0xffffffff);
355 	sh_cmt_write_cmcnt(ch, 0);
356 
357 	/*
358 	 * According to the sh73a0 user's manual, as CMCNT can be operated
359 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
360 	 * modifying CMCNT register; two RCLK cycles are necessary before
361 	 * this register is either read or any modification of the value
362 	 * it holds is reflected in the LSI's actual operation.
363 	 *
364 	 * While at it, we're supposed to clear out the CMCNT as of this
365 	 * moment, so make sure it's processed properly here.  This will
366 	 * take RCLKx2 at maximum.
367 	 */
368 	for (k = 0; k < 100; k++) {
369 		if (!sh_cmt_read_cmcnt(ch))
370 			break;
371 		udelay(1);
372 	}
373 
374 	if (sh_cmt_read_cmcnt(ch)) {
375 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
376 			ch->index);
377 		ret = -ETIMEDOUT;
378 		goto err1;
379 	}
380 
381 	/* enable channel */
382 	sh_cmt_start_stop_ch(ch, 1);
383 	return 0;
384  err1:
385 	/* stop clock */
386 	clk_disable(ch->cmt->clk);
387 
388  err0:
389 	return ret;
390 }
391 
392 static void sh_cmt_disable(struct sh_cmt_channel *ch)
393 {
394 	/* disable channel */
395 	sh_cmt_start_stop_ch(ch, 0);
396 
397 	/* disable interrupts in CMT block */
398 	sh_cmt_write_cmcsr(ch, 0);
399 
400 	/* stop clock */
401 	clk_disable(ch->cmt->clk);
402 
403 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
404 	pm_runtime_put(&ch->cmt->pdev->dev);
405 }
406 
407 /* private flags */
408 #define FLAG_CLOCKEVENT (1 << 0)
409 #define FLAG_CLOCKSOURCE (1 << 1)
410 #define FLAG_REPROGRAM (1 << 2)
411 #define FLAG_SKIPEVENT (1 << 3)
412 #define FLAG_IRQCONTEXT (1 << 4)
413 
414 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
415 					      int absolute)
416 {
417 	unsigned long new_match;
418 	unsigned long value = ch->next_match_value;
419 	unsigned long delay = 0;
420 	unsigned long now = 0;
421 	int has_wrapped;
422 
423 	now = sh_cmt_get_counter(ch, &has_wrapped);
424 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
425 
426 	if (has_wrapped) {
427 		/* we're competing with the interrupt handler.
428 		 *  -> let the interrupt handler reprogram the timer.
429 		 *  -> interrupt number two handles the event.
430 		 */
431 		ch->flags |= FLAG_SKIPEVENT;
432 		return;
433 	}
434 
435 	if (absolute)
436 		now = 0;
437 
438 	do {
439 		/* reprogram the timer hardware,
440 		 * but don't save the new match value yet.
441 		 */
442 		new_match = now + value + delay;
443 		if (new_match > ch->max_match_value)
444 			new_match = ch->max_match_value;
445 
446 		sh_cmt_write_cmcor(ch, new_match);
447 
448 		now = sh_cmt_get_counter(ch, &has_wrapped);
449 		if (has_wrapped && (new_match > ch->match_value)) {
450 			/* we are changing to a greater match value,
451 			 * so this wrap must be caused by the counter
452 			 * matching the old value.
453 			 * -> first interrupt reprograms the timer.
454 			 * -> interrupt number two handles the event.
455 			 */
456 			ch->flags |= FLAG_SKIPEVENT;
457 			break;
458 		}
459 
460 		if (has_wrapped) {
461 			/* we are changing to a smaller match value,
462 			 * so the wrap must be caused by the counter
463 			 * matching the new value.
464 			 * -> save programmed match value.
465 			 * -> let isr handle the event.
466 			 */
467 			ch->match_value = new_match;
468 			break;
469 		}
470 
471 		/* be safe: verify hardware settings */
472 		if (now < new_match) {
473 			/* timer value is below match value, all good.
474 			 * this makes sure we won't miss any match events.
475 			 * -> save programmed match value.
476 			 * -> let isr handle the event.
477 			 */
478 			ch->match_value = new_match;
479 			break;
480 		}
481 
482 		/* the counter has reached a value greater
483 		 * than our new match value. and since the
484 		 * has_wrapped flag isn't set we must have
485 		 * programmed a too close event.
486 		 * -> increase delay and retry.
487 		 */
488 		if (delay)
489 			delay <<= 1;
490 		else
491 			delay = 1;
492 
493 		if (!delay)
494 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
495 				 ch->index);
496 
497 	} while (delay);
498 }
499 
500 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
501 {
502 	if (delta > ch->max_match_value)
503 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
504 			 ch->index);
505 
506 	ch->next_match_value = delta;
507 	sh_cmt_clock_event_program_verify(ch, 0);
508 }
509 
510 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511 {
512 	unsigned long flags;
513 
514 	raw_spin_lock_irqsave(&ch->lock, flags);
515 	__sh_cmt_set_next(ch, delta);
516 	raw_spin_unlock_irqrestore(&ch->lock, flags);
517 }
518 
519 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
520 {
521 	struct sh_cmt_channel *ch = dev_id;
522 
523 	/* clear flags */
524 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
525 			   ch->cmt->info->clear_bits);
526 
527 	/* update clock source counter to begin with if enabled
528 	 * the wrap flag should be cleared by the timer specific
529 	 * isr before we end up here.
530 	 */
531 	if (ch->flags & FLAG_CLOCKSOURCE)
532 		ch->total_cycles += ch->match_value + 1;
533 
534 	if (!(ch->flags & FLAG_REPROGRAM))
535 		ch->next_match_value = ch->max_match_value;
536 
537 	ch->flags |= FLAG_IRQCONTEXT;
538 
539 	if (ch->flags & FLAG_CLOCKEVENT) {
540 		if (!(ch->flags & FLAG_SKIPEVENT)) {
541 			if (clockevent_state_oneshot(&ch->ced)) {
542 				ch->next_match_value = ch->max_match_value;
543 				ch->flags |= FLAG_REPROGRAM;
544 			}
545 
546 			ch->ced.event_handler(&ch->ced);
547 		}
548 	}
549 
550 	ch->flags &= ~FLAG_SKIPEVENT;
551 
552 	if (ch->flags & FLAG_REPROGRAM) {
553 		ch->flags &= ~FLAG_REPROGRAM;
554 		sh_cmt_clock_event_program_verify(ch, 1);
555 
556 		if (ch->flags & FLAG_CLOCKEVENT)
557 			if ((clockevent_state_shutdown(&ch->ced))
558 			    || (ch->match_value == ch->next_match_value))
559 				ch->flags &= ~FLAG_REPROGRAM;
560 	}
561 
562 	ch->flags &= ~FLAG_IRQCONTEXT;
563 
564 	return IRQ_HANDLED;
565 }
566 
567 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
568 {
569 	int ret = 0;
570 	unsigned long flags;
571 
572 	raw_spin_lock_irqsave(&ch->lock, flags);
573 
574 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
575 		ret = sh_cmt_enable(ch, &ch->rate);
576 
577 	if (ret)
578 		goto out;
579 	ch->flags |= flag;
580 
581 	/* setup timeout if no clockevent */
582 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
583 		__sh_cmt_set_next(ch, ch->max_match_value);
584  out:
585 	raw_spin_unlock_irqrestore(&ch->lock, flags);
586 
587 	return ret;
588 }
589 
590 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
591 {
592 	unsigned long flags;
593 	unsigned long f;
594 
595 	raw_spin_lock_irqsave(&ch->lock, flags);
596 
597 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598 	ch->flags &= ~flag;
599 
600 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
601 		sh_cmt_disable(ch);
602 
603 	/* adjust the timeout to maximum if only clocksource left */
604 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605 		__sh_cmt_set_next(ch, ch->max_match_value);
606 
607 	raw_spin_unlock_irqrestore(&ch->lock, flags);
608 }
609 
610 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
611 {
612 	return container_of(cs, struct sh_cmt_channel, cs);
613 }
614 
615 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
616 {
617 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
618 	unsigned long flags, raw;
619 	unsigned long value;
620 	int has_wrapped;
621 
622 	raw_spin_lock_irqsave(&ch->lock, flags);
623 	value = ch->total_cycles;
624 	raw = sh_cmt_get_counter(ch, &has_wrapped);
625 
626 	if (unlikely(has_wrapped))
627 		raw += ch->match_value + 1;
628 	raw_spin_unlock_irqrestore(&ch->lock, flags);
629 
630 	return value + raw;
631 }
632 
633 static int sh_cmt_clocksource_enable(struct clocksource *cs)
634 {
635 	int ret;
636 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
637 
638 	WARN_ON(ch->cs_enabled);
639 
640 	ch->total_cycles = 0;
641 
642 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
643 	if (!ret) {
644 		__clocksource_update_freq_hz(cs, ch->rate);
645 		ch->cs_enabled = true;
646 	}
647 	return ret;
648 }
649 
650 static void sh_cmt_clocksource_disable(struct clocksource *cs)
651 {
652 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
653 
654 	WARN_ON(!ch->cs_enabled);
655 
656 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657 	ch->cs_enabled = false;
658 }
659 
660 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
661 {
662 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
663 
664 	if (!ch->cs_enabled)
665 		return;
666 
667 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
668 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
669 }
670 
671 static void sh_cmt_clocksource_resume(struct clocksource *cs)
672 {
673 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
674 
675 	if (!ch->cs_enabled)
676 		return;
677 
678 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
679 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
680 }
681 
682 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
683 				       const char *name)
684 {
685 	struct clocksource *cs = &ch->cs;
686 
687 	cs->name = name;
688 	cs->rating = 125;
689 	cs->read = sh_cmt_clocksource_read;
690 	cs->enable = sh_cmt_clocksource_enable;
691 	cs->disable = sh_cmt_clocksource_disable;
692 	cs->suspend = sh_cmt_clocksource_suspend;
693 	cs->resume = sh_cmt_clocksource_resume;
694 	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
695 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
696 
697 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
698 		 ch->index);
699 
700 	/* Register with dummy 1 Hz value, gets updated in ->enable() */
701 	clocksource_register_hz(cs, 1);
702 	return 0;
703 }
704 
705 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
706 {
707 	return container_of(ced, struct sh_cmt_channel, ced);
708 }
709 
710 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
711 {
712 	struct clock_event_device *ced = &ch->ced;
713 
714 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
715 
716 	/* TODO: calculate good shift from rate and counter bit width */
717 
718 	ced->shift = 32;
719 	ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
720 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
721 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
722 
723 	if (periodic)
724 		sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
725 	else
726 		sh_cmt_set_next(ch, ch->max_match_value);
727 }
728 
729 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
730 {
731 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
732 
733 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
734 	return 0;
735 }
736 
737 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
738 					int periodic)
739 {
740 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
741 
742 	/* deal with old setting first */
743 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
744 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
745 
746 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
747 		 ch->index, periodic ? "periodic" : "oneshot");
748 	sh_cmt_clock_event_start(ch, periodic);
749 	return 0;
750 }
751 
752 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
753 {
754 	return sh_cmt_clock_event_set_state(ced, 0);
755 }
756 
757 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
758 {
759 	return sh_cmt_clock_event_set_state(ced, 1);
760 }
761 
762 static int sh_cmt_clock_event_next(unsigned long delta,
763 				   struct clock_event_device *ced)
764 {
765 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766 
767 	BUG_ON(!clockevent_state_oneshot(ced));
768 	if (likely(ch->flags & FLAG_IRQCONTEXT))
769 		ch->next_match_value = delta - 1;
770 	else
771 		sh_cmt_set_next(ch, delta - 1);
772 
773 	return 0;
774 }
775 
776 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
777 {
778 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
779 
780 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
781 	clk_unprepare(ch->cmt->clk);
782 }
783 
784 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
785 {
786 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
787 
788 	clk_prepare(ch->cmt->clk);
789 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
790 }
791 
792 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
793 				      const char *name)
794 {
795 	struct clock_event_device *ced = &ch->ced;
796 	int irq;
797 	int ret;
798 
799 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
800 	if (irq < 0) {
801 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
802 			ch->index);
803 		return irq;
804 	}
805 
806 	ret = request_irq(irq, sh_cmt_interrupt,
807 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
808 			  dev_name(&ch->cmt->pdev->dev), ch);
809 	if (ret) {
810 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
811 			ch->index, irq);
812 		return ret;
813 	}
814 
815 	ced->name = name;
816 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
817 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
818 	ced->rating = 125;
819 	ced->cpumask = cpu_possible_mask;
820 	ced->set_next_event = sh_cmt_clock_event_next;
821 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
822 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
823 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
824 	ced->suspend = sh_cmt_clock_event_suspend;
825 	ced->resume = sh_cmt_clock_event_resume;
826 
827 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
828 		 ch->index);
829 	clockevents_register_device(ced);
830 
831 	return 0;
832 }
833 
834 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
835 			   bool clockevent, bool clocksource)
836 {
837 	int ret;
838 
839 	if (clockevent) {
840 		ch->cmt->has_clockevent = true;
841 		ret = sh_cmt_register_clockevent(ch, name);
842 		if (ret < 0)
843 			return ret;
844 	}
845 
846 	if (clocksource) {
847 		ch->cmt->has_clocksource = true;
848 		sh_cmt_register_clocksource(ch, name);
849 	}
850 
851 	return 0;
852 }
853 
854 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
855 				unsigned int hwidx, bool clockevent,
856 				bool clocksource, struct sh_cmt_device *cmt)
857 {
858 	int ret;
859 
860 	/* Skip unused channels. */
861 	if (!clockevent && !clocksource)
862 		return 0;
863 
864 	ch->cmt = cmt;
865 	ch->index = index;
866 	ch->hwidx = hwidx;
867 
868 	/*
869 	 * Compute the address of the channel control register block. For the
870 	 * timers with a per-channel start/stop register, compute its address
871 	 * as well.
872 	 */
873 	switch (cmt->info->model) {
874 	case SH_CMT_16BIT:
875 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
876 		break;
877 	case SH_CMT_32BIT:
878 	case SH_CMT_48BIT:
879 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
880 		break;
881 	case SH_CMT_32BIT_FAST:
882 		/*
883 		 * The 32-bit "fast" timer has a single channel at hwidx 5 but
884 		 * is located at offset 0x40 instead of 0x60 for some reason.
885 		 */
886 		ch->ioctrl = cmt->mapbase + 0x40;
887 		break;
888 	case SH_CMT_48BIT_GEN2:
889 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
890 		ch->ioctrl = ch->iostart + 0x10;
891 		break;
892 	}
893 
894 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
895 		ch->max_match_value = ~0;
896 	else
897 		ch->max_match_value = (1 << cmt->info->width) - 1;
898 
899 	ch->match_value = ch->max_match_value;
900 	raw_spin_lock_init(&ch->lock);
901 
902 	ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
903 
904 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
905 			      clockevent, clocksource);
906 	if (ret) {
907 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
908 			ch->index);
909 		return ret;
910 	}
911 	ch->cs_enabled = false;
912 
913 	return 0;
914 }
915 
916 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
917 {
918 	struct resource *mem;
919 
920 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
921 	if (!mem) {
922 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
923 		return -ENXIO;
924 	}
925 
926 	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
927 	if (cmt->mapbase == NULL) {
928 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
929 		return -ENXIO;
930 	}
931 
932 	return 0;
933 }
934 
935 static const struct platform_device_id sh_cmt_id_table[] = {
936 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
937 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
938 	{ }
939 };
940 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
941 
942 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
943 	{ .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
944 	{ .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
945 	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
946 	{ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
947 	{ }
948 };
949 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
950 
951 static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
952 {
953 	struct device_node *np = cmt->pdev->dev.of_node;
954 
955 	return of_property_read_u32(np, "renesas,channels-mask",
956 				    &cmt->hw_channels);
957 }
958 
959 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
960 {
961 	unsigned int mask;
962 	unsigned int i;
963 	int ret;
964 
965 	memset(cmt, 0, sizeof(*cmt));
966 	cmt->pdev = pdev;
967 	raw_spin_lock_init(&cmt->lock);
968 
969 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
970 		const struct of_device_id *id;
971 
972 		id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
973 		cmt->info = id->data;
974 
975 		ret = sh_cmt_parse_dt(cmt);
976 		if (ret < 0)
977 			return ret;
978 	} else if (pdev->dev.platform_data) {
979 		struct sh_timer_config *cfg = pdev->dev.platform_data;
980 		const struct platform_device_id *id = pdev->id_entry;
981 
982 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
983 		cmt->hw_channels = cfg->channels_mask;
984 	} else {
985 		dev_err(&cmt->pdev->dev, "missing platform data\n");
986 		return -ENXIO;
987 	}
988 
989 	/* Get hold of clock. */
990 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
991 	if (IS_ERR(cmt->clk)) {
992 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
993 		return PTR_ERR(cmt->clk);
994 	}
995 
996 	ret = clk_prepare(cmt->clk);
997 	if (ret < 0)
998 		goto err_clk_put;
999 
1000 	/* Map the memory resource(s). */
1001 	ret = sh_cmt_map_memory(cmt);
1002 	if (ret < 0)
1003 		goto err_clk_unprepare;
1004 
1005 	/* Allocate and setup the channels. */
1006 	cmt->num_channels = hweight8(cmt->hw_channels);
1007 	cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1008 				GFP_KERNEL);
1009 	if (cmt->channels == NULL) {
1010 		ret = -ENOMEM;
1011 		goto err_unmap;
1012 	}
1013 
1014 	/*
1015 	 * Use the first channel as a clock event device and the second channel
1016 	 * as a clock source. If only one channel is available use it for both.
1017 	 */
1018 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1019 		unsigned int hwidx = ffs(mask) - 1;
1020 		bool clocksource = i == 1 || cmt->num_channels == 1;
1021 		bool clockevent = i == 0;
1022 
1023 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1024 					   clockevent, clocksource, cmt);
1025 		if (ret < 0)
1026 			goto err_unmap;
1027 
1028 		mask &= ~(1 << hwidx);
1029 	}
1030 
1031 	platform_set_drvdata(pdev, cmt);
1032 
1033 	return 0;
1034 
1035 err_unmap:
1036 	kfree(cmt->channels);
1037 	iounmap(cmt->mapbase);
1038 err_clk_unprepare:
1039 	clk_unprepare(cmt->clk);
1040 err_clk_put:
1041 	clk_put(cmt->clk);
1042 	return ret;
1043 }
1044 
1045 static int sh_cmt_probe(struct platform_device *pdev)
1046 {
1047 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1048 	int ret;
1049 
1050 	if (!is_early_platform_device(pdev)) {
1051 		pm_runtime_set_active(&pdev->dev);
1052 		pm_runtime_enable(&pdev->dev);
1053 	}
1054 
1055 	if (cmt) {
1056 		dev_info(&pdev->dev, "kept as earlytimer\n");
1057 		goto out;
1058 	}
1059 
1060 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1061 	if (cmt == NULL)
1062 		return -ENOMEM;
1063 
1064 	ret = sh_cmt_setup(cmt, pdev);
1065 	if (ret) {
1066 		kfree(cmt);
1067 		pm_runtime_idle(&pdev->dev);
1068 		return ret;
1069 	}
1070 	if (is_early_platform_device(pdev))
1071 		return 0;
1072 
1073  out:
1074 	if (cmt->has_clockevent || cmt->has_clocksource)
1075 		pm_runtime_irq_safe(&pdev->dev);
1076 	else
1077 		pm_runtime_idle(&pdev->dev);
1078 
1079 	return 0;
1080 }
1081 
1082 static int sh_cmt_remove(struct platform_device *pdev)
1083 {
1084 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1085 }
1086 
1087 static struct platform_driver sh_cmt_device_driver = {
1088 	.probe		= sh_cmt_probe,
1089 	.remove		= sh_cmt_remove,
1090 	.driver		= {
1091 		.name	= "sh_cmt",
1092 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1093 	},
1094 	.id_table	= sh_cmt_id_table,
1095 };
1096 
1097 static int __init sh_cmt_init(void)
1098 {
1099 	return platform_driver_register(&sh_cmt_device_driver);
1100 }
1101 
1102 static void __exit sh_cmt_exit(void)
1103 {
1104 	platform_driver_unregister(&sh_cmt_device_driver);
1105 }
1106 
1107 early_platform_init("earlytimer", &sh_cmt_device_driver);
1108 subsys_initcall(sh_cmt_init);
1109 module_exit(sh_cmt_exit);
1110 
1111 MODULE_AUTHOR("Magnus Damm");
1112 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1113 MODULE_LICENSE("GPL v2");
1114