xref: /linux/drivers/clocksource/sh_cmt.c (revision bfd5bb6f90af092aa345b15cd78143956a13c2a8)
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_domain.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/spinlock.h>
35 
36 struct sh_cmt_device;
37 
38 /*
39  * The CMT comes in 5 different identified flavours, depending not only on the
40  * SoC but also on the particular instance. The following table lists the main
41  * characteristics of those flavours.
42  *
43  *			16B	32B	32B-F	48B	R-Car Gen2
44  * -----------------------------------------------------------------------------
45  * Channels		2	1/4	1	6	2/8
46  * Control Width	16	16	16	16	32
47  * Counter Width	16	32	32	32/48	32/48
48  * Shared Start/Stop	Y	Y	Y	Y	N
49  *
50  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
51  * located in the channel registers block. All other versions have a shared
52  * start/stop register located in the global space.
53  *
54  * Channels are indexed from 0 to N-1 in the documentation. The channel index
55  * infers the start/stop bit position in the control register and the channel
56  * registers block address. Some CMT instances have a subset of channels
57  * available, in which case the index in the documentation doesn't match the
58  * "real" index as implemented in hardware. This is for instance the case with
59  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
60  * in the documentation but using start/stop bit 5 and having its registers
61  * block at 0x60.
62  *
63  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
64  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
65  */
66 
67 enum sh_cmt_model {
68 	SH_CMT_16BIT,
69 	SH_CMT_32BIT,
70 	SH_CMT_48BIT,
71 	SH_CMT0_RCAR_GEN2,
72 	SH_CMT1_RCAR_GEN2,
73 };
74 
75 struct sh_cmt_info {
76 	enum sh_cmt_model model;
77 
78 	unsigned int channels_mask;
79 
80 	unsigned long width; /* 16 or 32 bit version of hardware block */
81 	unsigned long overflow_bit;
82 	unsigned long clear_bits;
83 
84 	/* callbacks for CMSTR and CMCSR access */
85 	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
86 	void (*write_control)(void __iomem *base, unsigned long offs,
87 			      unsigned long value);
88 
89 	/* callbacks for CMCNT and CMCOR access */
90 	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
91 	void (*write_count)(void __iomem *base, unsigned long offs,
92 			    unsigned long value);
93 };
94 
95 struct sh_cmt_channel {
96 	struct sh_cmt_device *cmt;
97 
98 	unsigned int index;	/* Index in the documentation */
99 	unsigned int hwidx;	/* Real hardware index */
100 
101 	void __iomem *iostart;
102 	void __iomem *ioctrl;
103 
104 	unsigned int timer_bit;
105 	unsigned long flags;
106 	unsigned long match_value;
107 	unsigned long next_match_value;
108 	unsigned long max_match_value;
109 	raw_spinlock_t lock;
110 	struct clock_event_device ced;
111 	struct clocksource cs;
112 	unsigned long total_cycles;
113 	bool cs_enabled;
114 };
115 
116 struct sh_cmt_device {
117 	struct platform_device *pdev;
118 
119 	const struct sh_cmt_info *info;
120 
121 	void __iomem *mapbase;
122 	struct clk *clk;
123 	unsigned long rate;
124 
125 	raw_spinlock_t lock; /* Protect the shared start/stop register */
126 
127 	struct sh_cmt_channel *channels;
128 	unsigned int num_channels;
129 	unsigned int hw_channels;
130 
131 	bool has_clockevent;
132 	bool has_clocksource;
133 };
134 
135 #define SH_CMT16_CMCSR_CMF		(1 << 7)
136 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
137 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
138 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
139 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
140 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
141 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
142 
143 #define SH_CMT32_CMCSR_CMF		(1 << 15)
144 #define SH_CMT32_CMCSR_OVF		(1 << 14)
145 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
146 #define SH_CMT32_CMCSR_STTF		(1 << 12)
147 #define SH_CMT32_CMCSR_STPF		(1 << 11)
148 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
149 #define SH_CMT32_CMCSR_CMS		(1 << 9)
150 #define SH_CMT32_CMCSR_CMM		(1 << 8)
151 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
152 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
153 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
154 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
155 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
156 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
157 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
158 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
159 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
160 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
161 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
162 
163 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
164 {
165 	return ioread16(base + (offs << 1));
166 }
167 
168 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
169 {
170 	return ioread32(base + (offs << 2));
171 }
172 
173 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
174 			   unsigned long value)
175 {
176 	iowrite16(value, base + (offs << 1));
177 }
178 
179 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
180 			   unsigned long value)
181 {
182 	iowrite32(value, base + (offs << 2));
183 }
184 
185 static const struct sh_cmt_info sh_cmt_info[] = {
186 	[SH_CMT_16BIT] = {
187 		.model = SH_CMT_16BIT,
188 		.width = 16,
189 		.overflow_bit = SH_CMT16_CMCSR_CMF,
190 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
191 		.read_control = sh_cmt_read16,
192 		.write_control = sh_cmt_write16,
193 		.read_count = sh_cmt_read16,
194 		.write_count = sh_cmt_write16,
195 	},
196 	[SH_CMT_32BIT] = {
197 		.model = SH_CMT_32BIT,
198 		.width = 32,
199 		.overflow_bit = SH_CMT32_CMCSR_CMF,
200 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
201 		.read_control = sh_cmt_read16,
202 		.write_control = sh_cmt_write16,
203 		.read_count = sh_cmt_read32,
204 		.write_count = sh_cmt_write32,
205 	},
206 	[SH_CMT_48BIT] = {
207 		.model = SH_CMT_48BIT,
208 		.channels_mask = 0x3f,
209 		.width = 32,
210 		.overflow_bit = SH_CMT32_CMCSR_CMF,
211 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
212 		.read_control = sh_cmt_read32,
213 		.write_control = sh_cmt_write32,
214 		.read_count = sh_cmt_read32,
215 		.write_count = sh_cmt_write32,
216 	},
217 	[SH_CMT0_RCAR_GEN2] = {
218 		.model = SH_CMT0_RCAR_GEN2,
219 		.channels_mask = 0x60,
220 		.width = 32,
221 		.overflow_bit = SH_CMT32_CMCSR_CMF,
222 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
223 		.read_control = sh_cmt_read32,
224 		.write_control = sh_cmt_write32,
225 		.read_count = sh_cmt_read32,
226 		.write_count = sh_cmt_write32,
227 	},
228 	[SH_CMT1_RCAR_GEN2] = {
229 		.model = SH_CMT1_RCAR_GEN2,
230 		.channels_mask = 0xff,
231 		.width = 32,
232 		.overflow_bit = SH_CMT32_CMCSR_CMF,
233 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
234 		.read_control = sh_cmt_read32,
235 		.write_control = sh_cmt_write32,
236 		.read_count = sh_cmt_read32,
237 		.write_count = sh_cmt_write32,
238 	},
239 };
240 
241 #define CMCSR 0 /* channel register */
242 #define CMCNT 1 /* channel register */
243 #define CMCOR 2 /* channel register */
244 
245 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
246 {
247 	if (ch->iostart)
248 		return ch->cmt->info->read_control(ch->iostart, 0);
249 	else
250 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
251 }
252 
253 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
254 				      unsigned long value)
255 {
256 	if (ch->iostart)
257 		ch->cmt->info->write_control(ch->iostart, 0, value);
258 	else
259 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
260 }
261 
262 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
263 {
264 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
265 }
266 
267 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
268 				      unsigned long value)
269 {
270 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
271 }
272 
273 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
274 {
275 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
276 }
277 
278 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
279 				      unsigned long value)
280 {
281 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
282 }
283 
284 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
285 				      unsigned long value)
286 {
287 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
288 }
289 
290 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
291 					int *has_wrapped)
292 {
293 	unsigned long v1, v2, v3;
294 	int o1, o2;
295 
296 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
297 
298 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
299 	do {
300 		o2 = o1;
301 		v1 = sh_cmt_read_cmcnt(ch);
302 		v2 = sh_cmt_read_cmcnt(ch);
303 		v3 = sh_cmt_read_cmcnt(ch);
304 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
305 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
306 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
307 
308 	*has_wrapped = o1;
309 	return v2;
310 }
311 
312 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
313 {
314 	unsigned long flags, value;
315 
316 	/* start stop register shared by multiple timer channels */
317 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
318 	value = sh_cmt_read_cmstr(ch);
319 
320 	if (start)
321 		value |= 1 << ch->timer_bit;
322 	else
323 		value &= ~(1 << ch->timer_bit);
324 
325 	sh_cmt_write_cmstr(ch, value);
326 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
327 }
328 
329 static int sh_cmt_enable(struct sh_cmt_channel *ch)
330 {
331 	int k, ret;
332 
333 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
334 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
335 
336 	/* enable clock */
337 	ret = clk_enable(ch->cmt->clk);
338 	if (ret) {
339 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
340 			ch->index);
341 		goto err0;
342 	}
343 
344 	/* make sure channel is disabled */
345 	sh_cmt_start_stop_ch(ch, 0);
346 
347 	/* configure channel, periodic mode and maximum timeout */
348 	if (ch->cmt->info->width == 16) {
349 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
350 				   SH_CMT16_CMCSR_CKS512);
351 	} else {
352 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
353 				   SH_CMT32_CMCSR_CMTOUT_IE |
354 				   SH_CMT32_CMCSR_CMR_IRQ |
355 				   SH_CMT32_CMCSR_CKS_RCLK8);
356 	}
357 
358 	sh_cmt_write_cmcor(ch, 0xffffffff);
359 	sh_cmt_write_cmcnt(ch, 0);
360 
361 	/*
362 	 * According to the sh73a0 user's manual, as CMCNT can be operated
363 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
364 	 * modifying CMCNT register; two RCLK cycles are necessary before
365 	 * this register is either read or any modification of the value
366 	 * it holds is reflected in the LSI's actual operation.
367 	 *
368 	 * While at it, we're supposed to clear out the CMCNT as of this
369 	 * moment, so make sure it's processed properly here.  This will
370 	 * take RCLKx2 at maximum.
371 	 */
372 	for (k = 0; k < 100; k++) {
373 		if (!sh_cmt_read_cmcnt(ch))
374 			break;
375 		udelay(1);
376 	}
377 
378 	if (sh_cmt_read_cmcnt(ch)) {
379 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
380 			ch->index);
381 		ret = -ETIMEDOUT;
382 		goto err1;
383 	}
384 
385 	/* enable channel */
386 	sh_cmt_start_stop_ch(ch, 1);
387 	return 0;
388  err1:
389 	/* stop clock */
390 	clk_disable(ch->cmt->clk);
391 
392  err0:
393 	return ret;
394 }
395 
396 static void sh_cmt_disable(struct sh_cmt_channel *ch)
397 {
398 	/* disable channel */
399 	sh_cmt_start_stop_ch(ch, 0);
400 
401 	/* disable interrupts in CMT block */
402 	sh_cmt_write_cmcsr(ch, 0);
403 
404 	/* stop clock */
405 	clk_disable(ch->cmt->clk);
406 
407 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
408 	pm_runtime_put(&ch->cmt->pdev->dev);
409 }
410 
411 /* private flags */
412 #define FLAG_CLOCKEVENT (1 << 0)
413 #define FLAG_CLOCKSOURCE (1 << 1)
414 #define FLAG_REPROGRAM (1 << 2)
415 #define FLAG_SKIPEVENT (1 << 3)
416 #define FLAG_IRQCONTEXT (1 << 4)
417 
418 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
419 					      int absolute)
420 {
421 	unsigned long new_match;
422 	unsigned long value = ch->next_match_value;
423 	unsigned long delay = 0;
424 	unsigned long now = 0;
425 	int has_wrapped;
426 
427 	now = sh_cmt_get_counter(ch, &has_wrapped);
428 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
429 
430 	if (has_wrapped) {
431 		/* we're competing with the interrupt handler.
432 		 *  -> let the interrupt handler reprogram the timer.
433 		 *  -> interrupt number two handles the event.
434 		 */
435 		ch->flags |= FLAG_SKIPEVENT;
436 		return;
437 	}
438 
439 	if (absolute)
440 		now = 0;
441 
442 	do {
443 		/* reprogram the timer hardware,
444 		 * but don't save the new match value yet.
445 		 */
446 		new_match = now + value + delay;
447 		if (new_match > ch->max_match_value)
448 			new_match = ch->max_match_value;
449 
450 		sh_cmt_write_cmcor(ch, new_match);
451 
452 		now = sh_cmt_get_counter(ch, &has_wrapped);
453 		if (has_wrapped && (new_match > ch->match_value)) {
454 			/* we are changing to a greater match value,
455 			 * so this wrap must be caused by the counter
456 			 * matching the old value.
457 			 * -> first interrupt reprograms the timer.
458 			 * -> interrupt number two handles the event.
459 			 */
460 			ch->flags |= FLAG_SKIPEVENT;
461 			break;
462 		}
463 
464 		if (has_wrapped) {
465 			/* we are changing to a smaller match value,
466 			 * so the wrap must be caused by the counter
467 			 * matching the new value.
468 			 * -> save programmed match value.
469 			 * -> let isr handle the event.
470 			 */
471 			ch->match_value = new_match;
472 			break;
473 		}
474 
475 		/* be safe: verify hardware settings */
476 		if (now < new_match) {
477 			/* timer value is below match value, all good.
478 			 * this makes sure we won't miss any match events.
479 			 * -> save programmed match value.
480 			 * -> let isr handle the event.
481 			 */
482 			ch->match_value = new_match;
483 			break;
484 		}
485 
486 		/* the counter has reached a value greater
487 		 * than our new match value. and since the
488 		 * has_wrapped flag isn't set we must have
489 		 * programmed a too close event.
490 		 * -> increase delay and retry.
491 		 */
492 		if (delay)
493 			delay <<= 1;
494 		else
495 			delay = 1;
496 
497 		if (!delay)
498 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
499 				 ch->index);
500 
501 	} while (delay);
502 }
503 
504 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
505 {
506 	if (delta > ch->max_match_value)
507 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
508 			 ch->index);
509 
510 	ch->next_match_value = delta;
511 	sh_cmt_clock_event_program_verify(ch, 0);
512 }
513 
514 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
515 {
516 	unsigned long flags;
517 
518 	raw_spin_lock_irqsave(&ch->lock, flags);
519 	__sh_cmt_set_next(ch, delta);
520 	raw_spin_unlock_irqrestore(&ch->lock, flags);
521 }
522 
523 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
524 {
525 	struct sh_cmt_channel *ch = dev_id;
526 
527 	/* clear flags */
528 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
529 			   ch->cmt->info->clear_bits);
530 
531 	/* update clock source counter to begin with if enabled
532 	 * the wrap flag should be cleared by the timer specific
533 	 * isr before we end up here.
534 	 */
535 	if (ch->flags & FLAG_CLOCKSOURCE)
536 		ch->total_cycles += ch->match_value + 1;
537 
538 	if (!(ch->flags & FLAG_REPROGRAM))
539 		ch->next_match_value = ch->max_match_value;
540 
541 	ch->flags |= FLAG_IRQCONTEXT;
542 
543 	if (ch->flags & FLAG_CLOCKEVENT) {
544 		if (!(ch->flags & FLAG_SKIPEVENT)) {
545 			if (clockevent_state_oneshot(&ch->ced)) {
546 				ch->next_match_value = ch->max_match_value;
547 				ch->flags |= FLAG_REPROGRAM;
548 			}
549 
550 			ch->ced.event_handler(&ch->ced);
551 		}
552 	}
553 
554 	ch->flags &= ~FLAG_SKIPEVENT;
555 
556 	if (ch->flags & FLAG_REPROGRAM) {
557 		ch->flags &= ~FLAG_REPROGRAM;
558 		sh_cmt_clock_event_program_verify(ch, 1);
559 
560 		if (ch->flags & FLAG_CLOCKEVENT)
561 			if ((clockevent_state_shutdown(&ch->ced))
562 			    || (ch->match_value == ch->next_match_value))
563 				ch->flags &= ~FLAG_REPROGRAM;
564 	}
565 
566 	ch->flags &= ~FLAG_IRQCONTEXT;
567 
568 	return IRQ_HANDLED;
569 }
570 
571 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
572 {
573 	int ret = 0;
574 	unsigned long flags;
575 
576 	raw_spin_lock_irqsave(&ch->lock, flags);
577 
578 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
579 		ret = sh_cmt_enable(ch);
580 
581 	if (ret)
582 		goto out;
583 	ch->flags |= flag;
584 
585 	/* setup timeout if no clockevent */
586 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
587 		__sh_cmt_set_next(ch, ch->max_match_value);
588  out:
589 	raw_spin_unlock_irqrestore(&ch->lock, flags);
590 
591 	return ret;
592 }
593 
594 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
595 {
596 	unsigned long flags;
597 	unsigned long f;
598 
599 	raw_spin_lock_irqsave(&ch->lock, flags);
600 
601 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
602 	ch->flags &= ~flag;
603 
604 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
605 		sh_cmt_disable(ch);
606 
607 	/* adjust the timeout to maximum if only clocksource left */
608 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
609 		__sh_cmt_set_next(ch, ch->max_match_value);
610 
611 	raw_spin_unlock_irqrestore(&ch->lock, flags);
612 }
613 
614 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
615 {
616 	return container_of(cs, struct sh_cmt_channel, cs);
617 }
618 
619 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
620 {
621 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
622 	unsigned long flags, raw;
623 	unsigned long value;
624 	int has_wrapped;
625 
626 	raw_spin_lock_irqsave(&ch->lock, flags);
627 	value = ch->total_cycles;
628 	raw = sh_cmt_get_counter(ch, &has_wrapped);
629 
630 	if (unlikely(has_wrapped))
631 		raw += ch->match_value + 1;
632 	raw_spin_unlock_irqrestore(&ch->lock, flags);
633 
634 	return value + raw;
635 }
636 
637 static int sh_cmt_clocksource_enable(struct clocksource *cs)
638 {
639 	int ret;
640 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
641 
642 	WARN_ON(ch->cs_enabled);
643 
644 	ch->total_cycles = 0;
645 
646 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
647 	if (!ret)
648 		ch->cs_enabled = true;
649 
650 	return ret;
651 }
652 
653 static void sh_cmt_clocksource_disable(struct clocksource *cs)
654 {
655 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
656 
657 	WARN_ON(!ch->cs_enabled);
658 
659 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
660 	ch->cs_enabled = false;
661 }
662 
663 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
664 {
665 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
666 
667 	if (!ch->cs_enabled)
668 		return;
669 
670 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
671 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
672 }
673 
674 static void sh_cmt_clocksource_resume(struct clocksource *cs)
675 {
676 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
677 
678 	if (!ch->cs_enabled)
679 		return;
680 
681 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
682 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
683 }
684 
685 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
686 				       const char *name)
687 {
688 	struct clocksource *cs = &ch->cs;
689 
690 	cs->name = name;
691 	cs->rating = 125;
692 	cs->read = sh_cmt_clocksource_read;
693 	cs->enable = sh_cmt_clocksource_enable;
694 	cs->disable = sh_cmt_clocksource_disable;
695 	cs->suspend = sh_cmt_clocksource_suspend;
696 	cs->resume = sh_cmt_clocksource_resume;
697 	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
698 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
699 
700 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
701 		 ch->index);
702 
703 	clocksource_register_hz(cs, ch->cmt->rate);
704 	return 0;
705 }
706 
707 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
708 {
709 	return container_of(ced, struct sh_cmt_channel, ced);
710 }
711 
712 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
713 {
714 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
715 
716 	if (periodic)
717 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
718 	else
719 		sh_cmt_set_next(ch, ch->max_match_value);
720 }
721 
722 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
723 {
724 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
725 
726 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
727 	return 0;
728 }
729 
730 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
731 					int periodic)
732 {
733 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
734 
735 	/* deal with old setting first */
736 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
737 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
738 
739 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
740 		 ch->index, periodic ? "periodic" : "oneshot");
741 	sh_cmt_clock_event_start(ch, periodic);
742 	return 0;
743 }
744 
745 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
746 {
747 	return sh_cmt_clock_event_set_state(ced, 0);
748 }
749 
750 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
751 {
752 	return sh_cmt_clock_event_set_state(ced, 1);
753 }
754 
755 static int sh_cmt_clock_event_next(unsigned long delta,
756 				   struct clock_event_device *ced)
757 {
758 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
759 
760 	BUG_ON(!clockevent_state_oneshot(ced));
761 	if (likely(ch->flags & FLAG_IRQCONTEXT))
762 		ch->next_match_value = delta - 1;
763 	else
764 		sh_cmt_set_next(ch, delta - 1);
765 
766 	return 0;
767 }
768 
769 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
770 {
771 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
772 
773 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
774 	clk_unprepare(ch->cmt->clk);
775 }
776 
777 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
778 {
779 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
780 
781 	clk_prepare(ch->cmt->clk);
782 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
783 }
784 
785 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
786 				      const char *name)
787 {
788 	struct clock_event_device *ced = &ch->ced;
789 	int irq;
790 	int ret;
791 
792 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
793 	if (irq < 0) {
794 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
795 			ch->index);
796 		return irq;
797 	}
798 
799 	ret = request_irq(irq, sh_cmt_interrupt,
800 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
801 			  dev_name(&ch->cmt->pdev->dev), ch);
802 	if (ret) {
803 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
804 			ch->index, irq);
805 		return ret;
806 	}
807 
808 	ced->name = name;
809 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
810 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
811 	ced->rating = 125;
812 	ced->cpumask = cpu_possible_mask;
813 	ced->set_next_event = sh_cmt_clock_event_next;
814 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
815 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
816 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
817 	ced->suspend = sh_cmt_clock_event_suspend;
818 	ced->resume = sh_cmt_clock_event_resume;
819 
820 	/* TODO: calculate good shift from rate and counter bit width */
821 	ced->shift = 32;
822 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
823 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
824 	ced->max_delta_ticks = ch->max_match_value;
825 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
826 	ced->min_delta_ticks = 0x1f;
827 
828 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
829 		 ch->index);
830 	clockevents_register_device(ced);
831 
832 	return 0;
833 }
834 
835 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
836 			   bool clockevent, bool clocksource)
837 {
838 	int ret;
839 
840 	if (clockevent) {
841 		ch->cmt->has_clockevent = true;
842 		ret = sh_cmt_register_clockevent(ch, name);
843 		if (ret < 0)
844 			return ret;
845 	}
846 
847 	if (clocksource) {
848 		ch->cmt->has_clocksource = true;
849 		sh_cmt_register_clocksource(ch, name);
850 	}
851 
852 	return 0;
853 }
854 
855 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
856 				unsigned int hwidx, bool clockevent,
857 				bool clocksource, struct sh_cmt_device *cmt)
858 {
859 	int ret;
860 
861 	/* Skip unused channels. */
862 	if (!clockevent && !clocksource)
863 		return 0;
864 
865 	ch->cmt = cmt;
866 	ch->index = index;
867 	ch->hwidx = hwidx;
868 	ch->timer_bit = hwidx;
869 
870 	/*
871 	 * Compute the address of the channel control register block. For the
872 	 * timers with a per-channel start/stop register, compute its address
873 	 * as well.
874 	 */
875 	switch (cmt->info->model) {
876 	case SH_CMT_16BIT:
877 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
878 		break;
879 	case SH_CMT_32BIT:
880 	case SH_CMT_48BIT:
881 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
882 		break;
883 	case SH_CMT0_RCAR_GEN2:
884 	case SH_CMT1_RCAR_GEN2:
885 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
886 		ch->ioctrl = ch->iostart + 0x10;
887 		ch->timer_bit = 0;
888 		break;
889 	}
890 
891 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
892 		ch->max_match_value = ~0;
893 	else
894 		ch->max_match_value = (1 << cmt->info->width) - 1;
895 
896 	ch->match_value = ch->max_match_value;
897 	raw_spin_lock_init(&ch->lock);
898 
899 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
900 			      clockevent, clocksource);
901 	if (ret) {
902 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
903 			ch->index);
904 		return ret;
905 	}
906 	ch->cs_enabled = false;
907 
908 	return 0;
909 }
910 
911 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
912 {
913 	struct resource *mem;
914 
915 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
916 	if (!mem) {
917 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
918 		return -ENXIO;
919 	}
920 
921 	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
922 	if (cmt->mapbase == NULL) {
923 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
924 		return -ENXIO;
925 	}
926 
927 	return 0;
928 }
929 
930 static const struct platform_device_id sh_cmt_id_table[] = {
931 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
932 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
933 	{ }
934 };
935 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
936 
937 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
938 	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
939 	{
940 		/* deprecated, preserved for backward compatibility */
941 		.compatible = "renesas,cmt-48-gen2",
942 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
943 	},
944 	{ .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] },
945 	{ .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] },
946 	{ }
947 };
948 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
949 
950 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
951 {
952 	unsigned int mask;
953 	unsigned int i;
954 	int ret;
955 
956 	cmt->pdev = pdev;
957 	raw_spin_lock_init(&cmt->lock);
958 
959 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
960 		cmt->info = of_device_get_match_data(&pdev->dev);
961 		cmt->hw_channels = cmt->info->channels_mask;
962 	} else if (pdev->dev.platform_data) {
963 		struct sh_timer_config *cfg = pdev->dev.platform_data;
964 		const struct platform_device_id *id = pdev->id_entry;
965 
966 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
967 		cmt->hw_channels = cfg->channels_mask;
968 	} else {
969 		dev_err(&cmt->pdev->dev, "missing platform data\n");
970 		return -ENXIO;
971 	}
972 
973 	/* Get hold of clock. */
974 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
975 	if (IS_ERR(cmt->clk)) {
976 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
977 		return PTR_ERR(cmt->clk);
978 	}
979 
980 	ret = clk_prepare(cmt->clk);
981 	if (ret < 0)
982 		goto err_clk_put;
983 
984 	/* Determine clock rate. */
985 	ret = clk_enable(cmt->clk);
986 	if (ret < 0)
987 		goto err_clk_unprepare;
988 
989 	if (cmt->info->width == 16)
990 		cmt->rate = clk_get_rate(cmt->clk) / 512;
991 	else
992 		cmt->rate = clk_get_rate(cmt->clk) / 8;
993 
994 	clk_disable(cmt->clk);
995 
996 	/* Map the memory resource(s). */
997 	ret = sh_cmt_map_memory(cmt);
998 	if (ret < 0)
999 		goto err_clk_unprepare;
1000 
1001 	/* Allocate and setup the channels. */
1002 	cmt->num_channels = hweight8(cmt->hw_channels);
1003 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1004 				GFP_KERNEL);
1005 	if (cmt->channels == NULL) {
1006 		ret = -ENOMEM;
1007 		goto err_unmap;
1008 	}
1009 
1010 	/*
1011 	 * Use the first channel as a clock event device and the second channel
1012 	 * as a clock source. If only one channel is available use it for both.
1013 	 */
1014 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1015 		unsigned int hwidx = ffs(mask) - 1;
1016 		bool clocksource = i == 1 || cmt->num_channels == 1;
1017 		bool clockevent = i == 0;
1018 
1019 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1020 					   clockevent, clocksource, cmt);
1021 		if (ret < 0)
1022 			goto err_unmap;
1023 
1024 		mask &= ~(1 << hwidx);
1025 	}
1026 
1027 	platform_set_drvdata(pdev, cmt);
1028 
1029 	return 0;
1030 
1031 err_unmap:
1032 	kfree(cmt->channels);
1033 	iounmap(cmt->mapbase);
1034 err_clk_unprepare:
1035 	clk_unprepare(cmt->clk);
1036 err_clk_put:
1037 	clk_put(cmt->clk);
1038 	return ret;
1039 }
1040 
1041 static int sh_cmt_probe(struct platform_device *pdev)
1042 {
1043 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1044 	int ret;
1045 
1046 	if (!is_early_platform_device(pdev)) {
1047 		pm_runtime_set_active(&pdev->dev);
1048 		pm_runtime_enable(&pdev->dev);
1049 	}
1050 
1051 	if (cmt) {
1052 		dev_info(&pdev->dev, "kept as earlytimer\n");
1053 		goto out;
1054 	}
1055 
1056 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1057 	if (cmt == NULL)
1058 		return -ENOMEM;
1059 
1060 	ret = sh_cmt_setup(cmt, pdev);
1061 	if (ret) {
1062 		kfree(cmt);
1063 		pm_runtime_idle(&pdev->dev);
1064 		return ret;
1065 	}
1066 	if (is_early_platform_device(pdev))
1067 		return 0;
1068 
1069  out:
1070 	if (cmt->has_clockevent || cmt->has_clocksource)
1071 		pm_runtime_irq_safe(&pdev->dev);
1072 	else
1073 		pm_runtime_idle(&pdev->dev);
1074 
1075 	return 0;
1076 }
1077 
1078 static int sh_cmt_remove(struct platform_device *pdev)
1079 {
1080 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1081 }
1082 
1083 static struct platform_driver sh_cmt_device_driver = {
1084 	.probe		= sh_cmt_probe,
1085 	.remove		= sh_cmt_remove,
1086 	.driver		= {
1087 		.name	= "sh_cmt",
1088 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1089 	},
1090 	.id_table	= sh_cmt_id_table,
1091 };
1092 
1093 static int __init sh_cmt_init(void)
1094 {
1095 	return platform_driver_register(&sh_cmt_device_driver);
1096 }
1097 
1098 static void __exit sh_cmt_exit(void)
1099 {
1100 	platform_driver_unregister(&sh_cmt_device_driver);
1101 }
1102 
1103 early_platform_init("earlytimer", &sh_cmt_device_driver);
1104 subsys_initcall(sh_cmt_init);
1105 module_exit(sh_cmt_exit);
1106 
1107 MODULE_AUTHOR("Magnus Damm");
1108 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1109 MODULE_LICENSE("GPL v2");
1110