xref: /linux/drivers/clocksource/sh_cmt.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31 
32 struct sh_cmt_device;
33 
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *			16B	32B	32B-F	48B	R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels		2	1/4	1	6	2/8
42  * Control Width	16	16	16	16	32
43  * Counter Width	16	32	32	32/48	32/48
44  * Shared Start/Stop	Y	Y	Y	Y	N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62 
63 enum sh_cmt_model {
64 	SH_CMT_16BIT,
65 	SH_CMT_32BIT,
66 	SH_CMT_48BIT,
67 	SH_CMT0_RCAR_GEN2,
68 	SH_CMT1_RCAR_GEN2,
69 };
70 
71 struct sh_cmt_info {
72 	enum sh_cmt_model model;
73 
74 	unsigned int channels_mask;
75 
76 	unsigned long width; /* 16 or 32 bit version of hardware block */
77 	u32 overflow_bit;
78 	u32 clear_bits;
79 
80 	/* callbacks for CMSTR and CMCSR access */
81 	u32 (*read_control)(void __iomem *base, unsigned long offs);
82 	void (*write_control)(void __iomem *base, unsigned long offs,
83 			      u32 value);
84 
85 	/* callbacks for CMCNT and CMCOR access */
86 	u32 (*read_count)(void __iomem *base, unsigned long offs);
87 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89 
90 struct sh_cmt_channel {
91 	struct sh_cmt_device *cmt;
92 
93 	unsigned int index;	/* Index in the documentation */
94 	unsigned int hwidx;	/* Real hardware index */
95 
96 	void __iomem *iostart;
97 	void __iomem *ioctrl;
98 
99 	unsigned int timer_bit;
100 	unsigned long flags;
101 	u32 match_value;
102 	u32 next_match_value;
103 	u32 max_match_value;
104 	raw_spinlock_t lock;
105 	struct clock_event_device ced;
106 	struct clocksource cs;
107 	u64 total_cycles;
108 	bool cs_enabled;
109 };
110 
111 struct sh_cmt_device {
112 	struct platform_device *pdev;
113 
114 	const struct sh_cmt_info *info;
115 
116 	void __iomem *mapbase;
117 	struct clk *clk;
118 	unsigned long rate;
119 	unsigned int reg_delay;
120 
121 	raw_spinlock_t lock; /* Protect the shared start/stop register */
122 
123 	struct sh_cmt_channel *channels;
124 	unsigned int num_channels;
125 	unsigned int hw_channels;
126 
127 	bool has_clockevent;
128 	bool has_clocksource;
129 };
130 
131 #define SH_CMT16_CMCSR_CMF		(1 << 7)
132 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
133 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
134 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
135 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
136 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
137 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
138 
139 #define SH_CMT32_CMCSR_CMF		(1 << 15)
140 #define SH_CMT32_CMCSR_OVF		(1 << 14)
141 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
142 #define SH_CMT32_CMCSR_STTF		(1 << 12)
143 #define SH_CMT32_CMCSR_STPF		(1 << 11)
144 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
145 #define SH_CMT32_CMCSR_CMS		(1 << 9)
146 #define SH_CMT32_CMCSR_CMM		(1 << 8)
147 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
148 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
149 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
150 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
151 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
152 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
153 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
157 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
158 
159 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160 {
161 	return ioread16(base + (offs << 1));
162 }
163 
164 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165 {
166 	return ioread32(base + (offs << 2));
167 }
168 
169 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170 {
171 	iowrite16(value, base + (offs << 1));
172 }
173 
174 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175 {
176 	iowrite32(value, base + (offs << 2));
177 }
178 
179 static const struct sh_cmt_info sh_cmt_info[] = {
180 	[SH_CMT_16BIT] = {
181 		.model = SH_CMT_16BIT,
182 		.width = 16,
183 		.overflow_bit = SH_CMT16_CMCSR_CMF,
184 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
185 		.read_control = sh_cmt_read16,
186 		.write_control = sh_cmt_write16,
187 		.read_count = sh_cmt_read16,
188 		.write_count = sh_cmt_write16,
189 	},
190 	[SH_CMT_32BIT] = {
191 		.model = SH_CMT_32BIT,
192 		.width = 32,
193 		.overflow_bit = SH_CMT32_CMCSR_CMF,
194 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195 		.read_control = sh_cmt_read16,
196 		.write_control = sh_cmt_write16,
197 		.read_count = sh_cmt_read32,
198 		.write_count = sh_cmt_write32,
199 	},
200 	[SH_CMT_48BIT] = {
201 		.model = SH_CMT_48BIT,
202 		.channels_mask = 0x3f,
203 		.width = 32,
204 		.overflow_bit = SH_CMT32_CMCSR_CMF,
205 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206 		.read_control = sh_cmt_read32,
207 		.write_control = sh_cmt_write32,
208 		.read_count = sh_cmt_read32,
209 		.write_count = sh_cmt_write32,
210 	},
211 	[SH_CMT0_RCAR_GEN2] = {
212 		.model = SH_CMT0_RCAR_GEN2,
213 		.channels_mask = 0x60,
214 		.width = 32,
215 		.overflow_bit = SH_CMT32_CMCSR_CMF,
216 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217 		.read_control = sh_cmt_read32,
218 		.write_control = sh_cmt_write32,
219 		.read_count = sh_cmt_read32,
220 		.write_count = sh_cmt_write32,
221 	},
222 	[SH_CMT1_RCAR_GEN2] = {
223 		.model = SH_CMT1_RCAR_GEN2,
224 		.channels_mask = 0xff,
225 		.width = 32,
226 		.overflow_bit = SH_CMT32_CMCSR_CMF,
227 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 		.read_control = sh_cmt_read32,
229 		.write_control = sh_cmt_write32,
230 		.read_count = sh_cmt_read32,
231 		.write_count = sh_cmt_write32,
232 	},
233 };
234 
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
238 
239 #define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
240 
241 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
242 {
243 	if (ch->iostart)
244 		return ch->cmt->info->read_control(ch->iostart, 0);
245 	else
246 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
247 }
248 
249 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
250 {
251 	u32 old_value = sh_cmt_read_cmstr(ch);
252 
253 	if (value != old_value) {
254 		if (ch->iostart) {
255 			ch->cmt->info->write_control(ch->iostart, 0, value);
256 			udelay(ch->cmt->reg_delay);
257 		} else {
258 			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259 			udelay(ch->cmt->reg_delay);
260 		}
261 	}
262 }
263 
264 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
265 {
266 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
267 }
268 
269 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
270 {
271 	u32 old_value = sh_cmt_read_cmcsr(ch);
272 
273 	if (value != old_value) {
274 		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275 		udelay(ch->cmt->reg_delay);
276 	}
277 }
278 
279 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
280 {
281 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
282 }
283 
284 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
285 {
286 	/* Tests showed that we need to wait 3 clocks here */
287 	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
288 	u32 reg;
289 
290 	if (ch->cmt->info->model > SH_CMT_16BIT) {
291 		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292 						   !(reg & SH_CMT32_CMCSR_WRFLG),
293 						   1, cmcnt_delay, false, ch);
294 		if (ret < 0)
295 			return ret;
296 	}
297 
298 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
299 	udelay(cmcnt_delay);
300 	return 0;
301 }
302 
303 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
304 {
305 	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
306 
307 	if (value != old_value) {
308 		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309 		udelay(ch->cmt->reg_delay);
310 	}
311 }
312 
313 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
314 {
315 	u32 v1, v2, v3;
316 	u32 o1, o2;
317 
318 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
319 
320 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
321 	do {
322 		o2 = o1;
323 		v1 = sh_cmt_read_cmcnt(ch);
324 		v2 = sh_cmt_read_cmcnt(ch);
325 		v3 = sh_cmt_read_cmcnt(ch);
326 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
329 
330 	*has_wrapped = o1;
331 	return v2;
332 }
333 
334 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
335 {
336 	unsigned long flags;
337 	u32 value;
338 
339 	/* start stop register shared by multiple timer channels */
340 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341 	value = sh_cmt_read_cmstr(ch);
342 
343 	if (start)
344 		value |= 1 << ch->timer_bit;
345 	else
346 		value &= ~(1 << ch->timer_bit);
347 
348 	sh_cmt_write_cmstr(ch, value);
349 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
350 }
351 
352 static int sh_cmt_enable(struct sh_cmt_channel *ch)
353 {
354 	int ret;
355 
356 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
357 
358 	/* make sure channel is disabled */
359 	sh_cmt_start_stop_ch(ch, 0);
360 
361 	/* configure channel, periodic mode and maximum timeout */
362 	if (ch->cmt->info->width == 16) {
363 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
364 				   SH_CMT16_CMCSR_CKS512);
365 	} else {
366 		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
367 			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
368 		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
369 				   SH_CMT32_CMCSR_CMR_IRQ |
370 				   SH_CMT32_CMCSR_CKS_RCLK8);
371 	}
372 
373 	sh_cmt_write_cmcor(ch, 0xffffffff);
374 	ret = sh_cmt_write_cmcnt(ch, 0);
375 
376 	if (ret || sh_cmt_read_cmcnt(ch)) {
377 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
378 			ch->index);
379 		return -ETIMEDOUT;
380 	}
381 
382 	/* enable channel */
383 	sh_cmt_start_stop_ch(ch, 1);
384 	return 0;
385 }
386 
387 static void sh_cmt_disable(struct sh_cmt_channel *ch)
388 {
389 	/* disable channel */
390 	sh_cmt_start_stop_ch(ch, 0);
391 
392 	/* disable interrupts in CMT block */
393 	sh_cmt_write_cmcsr(ch, 0);
394 
395 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
396 }
397 
398 /* private flags */
399 #define FLAG_CLOCKEVENT (1 << 0)
400 #define FLAG_CLOCKSOURCE (1 << 1)
401 #define FLAG_REPROGRAM (1 << 2)
402 #define FLAG_SKIPEVENT (1 << 3)
403 #define FLAG_IRQCONTEXT (1 << 4)
404 
405 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
406 					      int absolute)
407 {
408 	u32 value = ch->next_match_value;
409 	u32 new_match;
410 	u32 delay = 0;
411 	u32 now = 0;
412 	u32 has_wrapped;
413 
414 	now = sh_cmt_get_counter(ch, &has_wrapped);
415 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
416 
417 	if (has_wrapped) {
418 		/* we're competing with the interrupt handler.
419 		 *  -> let the interrupt handler reprogram the timer.
420 		 *  -> interrupt number two handles the event.
421 		 */
422 		ch->flags |= FLAG_SKIPEVENT;
423 		return;
424 	}
425 
426 	if (absolute)
427 		now = 0;
428 
429 	do {
430 		/* reprogram the timer hardware,
431 		 * but don't save the new match value yet.
432 		 */
433 		new_match = now + value + delay;
434 		if (new_match > ch->max_match_value)
435 			new_match = ch->max_match_value;
436 
437 		sh_cmt_write_cmcor(ch, new_match);
438 
439 		now = sh_cmt_get_counter(ch, &has_wrapped);
440 		if (has_wrapped && (new_match > ch->match_value)) {
441 			/* we are changing to a greater match value,
442 			 * so this wrap must be caused by the counter
443 			 * matching the old value.
444 			 * -> first interrupt reprograms the timer.
445 			 * -> interrupt number two handles the event.
446 			 */
447 			ch->flags |= FLAG_SKIPEVENT;
448 			break;
449 		}
450 
451 		if (has_wrapped) {
452 			/* we are changing to a smaller match value,
453 			 * so the wrap must be caused by the counter
454 			 * matching the new value.
455 			 * -> save programmed match value.
456 			 * -> let isr handle the event.
457 			 */
458 			ch->match_value = new_match;
459 			break;
460 		}
461 
462 		/* be safe: verify hardware settings */
463 		if (now < new_match) {
464 			/* timer value is below match value, all good.
465 			 * this makes sure we won't miss any match events.
466 			 * -> save programmed match value.
467 			 * -> let isr handle the event.
468 			 */
469 			ch->match_value = new_match;
470 			break;
471 		}
472 
473 		/* the counter has reached a value greater
474 		 * than our new match value. and since the
475 		 * has_wrapped flag isn't set we must have
476 		 * programmed a too close event.
477 		 * -> increase delay and retry.
478 		 */
479 		if (delay)
480 			delay <<= 1;
481 		else
482 			delay = 1;
483 
484 		if (!delay)
485 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
486 				 ch->index);
487 
488 	} while (delay);
489 }
490 
491 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
492 {
493 	if (delta > ch->max_match_value)
494 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
495 			 ch->index);
496 
497 	ch->next_match_value = delta;
498 	sh_cmt_clock_event_program_verify(ch, 0);
499 }
500 
501 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
502 {
503 	unsigned long flags;
504 
505 	raw_spin_lock_irqsave(&ch->lock, flags);
506 	__sh_cmt_set_next(ch, delta);
507 	raw_spin_unlock_irqrestore(&ch->lock, flags);
508 }
509 
510 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
511 {
512 	struct sh_cmt_channel *ch = dev_id;
513 	unsigned long flags;
514 
515 	/* clear flags */
516 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
517 			   ch->cmt->info->clear_bits);
518 
519 	/* update clock source counter to begin with if enabled
520 	 * the wrap flag should be cleared by the timer specific
521 	 * isr before we end up here.
522 	 */
523 	if (ch->flags & FLAG_CLOCKSOURCE)
524 		ch->total_cycles += ch->match_value + 1;
525 
526 	if (!(ch->flags & FLAG_REPROGRAM))
527 		ch->next_match_value = ch->max_match_value;
528 
529 	ch->flags |= FLAG_IRQCONTEXT;
530 
531 	if (ch->flags & FLAG_CLOCKEVENT) {
532 		if (!(ch->flags & FLAG_SKIPEVENT)) {
533 			if (clockevent_state_oneshot(&ch->ced)) {
534 				ch->next_match_value = ch->max_match_value;
535 				ch->flags |= FLAG_REPROGRAM;
536 			}
537 
538 			ch->ced.event_handler(&ch->ced);
539 		}
540 	}
541 
542 	ch->flags &= ~FLAG_SKIPEVENT;
543 
544 	raw_spin_lock_irqsave(&ch->lock, flags);
545 
546 	if (ch->flags & FLAG_REPROGRAM) {
547 		ch->flags &= ~FLAG_REPROGRAM;
548 		sh_cmt_clock_event_program_verify(ch, 1);
549 
550 		if (ch->flags & FLAG_CLOCKEVENT)
551 			if ((clockevent_state_shutdown(&ch->ced))
552 			    || (ch->match_value == ch->next_match_value))
553 				ch->flags &= ~FLAG_REPROGRAM;
554 	}
555 
556 	ch->flags &= ~FLAG_IRQCONTEXT;
557 
558 	raw_spin_unlock_irqrestore(&ch->lock, flags);
559 
560 	return IRQ_HANDLED;
561 }
562 
563 static int sh_cmt_start_clocksource(struct sh_cmt_channel *ch)
564 {
565 	int ret = 0;
566 	unsigned long flags;
567 
568 	raw_spin_lock_irqsave(&ch->lock, flags);
569 
570 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
571 		ret = sh_cmt_enable(ch);
572 
573 	if (ret)
574 		goto out;
575 
576 	ch->flags |= FLAG_CLOCKSOURCE;
577 
578 	/* setup timeout if no clockevent */
579 	if (ch->cmt->num_channels == 1 && !(ch->flags & FLAG_CLOCKEVENT))
580 		__sh_cmt_set_next(ch, ch->max_match_value);
581 out:
582 	raw_spin_unlock_irqrestore(&ch->lock, flags);
583 
584 	return ret;
585 }
586 
587 static void sh_cmt_stop_clocksource(struct sh_cmt_channel *ch)
588 {
589 	unsigned long flags;
590 	unsigned long f;
591 
592 	raw_spin_lock_irqsave(&ch->lock, flags);
593 
594 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
595 
596 	ch->flags &= ~FLAG_CLOCKSOURCE;
597 
598 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
599 		sh_cmt_disable(ch);
600 
601 	raw_spin_unlock_irqrestore(&ch->lock, flags);
602 }
603 
604 static int sh_cmt_start_clockevent(struct sh_cmt_channel *ch)
605 {
606 	int ret = 0;
607 	unsigned long flags;
608 
609 	raw_spin_lock_irqsave(&ch->lock, flags);
610 
611 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
612 		ret = sh_cmt_enable(ch);
613 
614 	if (ret)
615 		goto out;
616 
617 	ch->flags |= FLAG_CLOCKEVENT;
618  out:
619 	raw_spin_unlock_irqrestore(&ch->lock, flags);
620 
621 	return ret;
622 }
623 
624 static void sh_cmt_stop_clockevent(struct sh_cmt_channel *ch)
625 {
626 	unsigned long flags;
627 	unsigned long f;
628 
629 	raw_spin_lock_irqsave(&ch->lock, flags);
630 
631 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
632 
633 	ch->flags &= ~FLAG_CLOCKEVENT;
634 
635 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
636 		sh_cmt_disable(ch);
637 
638 	/* adjust the timeout to maximum if only clocksource left */
639 	if (ch->flags & FLAG_CLOCKSOURCE)
640 		__sh_cmt_set_next(ch, ch->max_match_value);
641 
642 	raw_spin_unlock_irqrestore(&ch->lock, flags);
643 }
644 
645 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
646 {
647 	return container_of(cs, struct sh_cmt_channel, cs);
648 }
649 
650 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
651 {
652 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
653 	u32 has_wrapped;
654 
655 	if (ch->cmt->num_channels == 1) {
656 		unsigned long flags;
657 		u64 value;
658 		u32 raw;
659 
660 		raw_spin_lock_irqsave(&ch->lock, flags);
661 		value = ch->total_cycles;
662 		raw = sh_cmt_get_counter(ch, &has_wrapped);
663 
664 		if (unlikely(has_wrapped))
665 			raw += ch->match_value + 1;
666 		raw_spin_unlock_irqrestore(&ch->lock, flags);
667 
668 		return value + raw;
669 	}
670 
671 	return sh_cmt_get_counter(ch, &has_wrapped);
672 }
673 
674 static int sh_cmt_clocksource_enable(struct clocksource *cs)
675 {
676 	int ret;
677 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
678 
679 	WARN_ON(ch->cs_enabled);
680 
681 	ch->total_cycles = 0;
682 
683 	ret = sh_cmt_start_clocksource(ch);
684 	if (!ret)
685 		ch->cs_enabled = true;
686 
687 	return ret;
688 }
689 
690 static void sh_cmt_clocksource_disable(struct clocksource *cs)
691 {
692 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
693 
694 	WARN_ON(!ch->cs_enabled);
695 
696 	sh_cmt_stop_clocksource(ch);
697 	ch->cs_enabled = false;
698 }
699 
700 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
701 {
702 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
703 
704 	if (!ch->cs_enabled)
705 		return;
706 
707 	sh_cmt_stop_clocksource(ch);
708 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
709 }
710 
711 static void sh_cmt_clocksource_resume(struct clocksource *cs)
712 {
713 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
714 
715 	if (!ch->cs_enabled)
716 		return;
717 
718 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
719 	sh_cmt_start_clocksource(ch);
720 }
721 
722 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
723 				       const char *name)
724 {
725 	struct clocksource *cs = &ch->cs;
726 
727 	cs->name = name;
728 	cs->rating = 125;
729 	cs->read = sh_cmt_clocksource_read;
730 	cs->enable = sh_cmt_clocksource_enable;
731 	cs->disable = sh_cmt_clocksource_disable;
732 	cs->suspend = sh_cmt_clocksource_suspend;
733 	cs->resume = sh_cmt_clocksource_resume;
734 	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
735 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
736 
737 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
738 		 ch->index);
739 
740 	clocksource_register_hz(cs, ch->cmt->rate);
741 	return 0;
742 }
743 
744 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
745 {
746 	return container_of(ced, struct sh_cmt_channel, ced);
747 }
748 
749 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
750 {
751 	sh_cmt_start_clockevent(ch);
752 
753 	if (periodic)
754 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
755 	else
756 		sh_cmt_set_next(ch, ch->max_match_value);
757 }
758 
759 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
760 {
761 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762 
763 	sh_cmt_stop_clockevent(ch);
764 	return 0;
765 }
766 
767 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
768 					int periodic)
769 {
770 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
771 
772 	/* deal with old setting first */
773 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
774 		sh_cmt_stop_clockevent(ch);
775 
776 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
777 		 ch->index, periodic ? "periodic" : "oneshot");
778 	sh_cmt_clock_event_start(ch, periodic);
779 	return 0;
780 }
781 
782 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
783 {
784 	return sh_cmt_clock_event_set_state(ced, 0);
785 }
786 
787 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
788 {
789 	return sh_cmt_clock_event_set_state(ced, 1);
790 }
791 
792 static int sh_cmt_clock_event_next(unsigned long delta,
793 				   struct clock_event_device *ced)
794 {
795 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
796 	unsigned long flags;
797 
798 	BUG_ON(!clockevent_state_oneshot(ced));
799 
800 	raw_spin_lock_irqsave(&ch->lock, flags);
801 
802 	if (likely(ch->flags & FLAG_IRQCONTEXT))
803 		ch->next_match_value = delta - 1;
804 	else
805 		__sh_cmt_set_next(ch, delta - 1);
806 
807 	raw_spin_unlock_irqrestore(&ch->lock, flags);
808 
809 	return 0;
810 }
811 
812 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
813 {
814 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
815 
816 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
817 	clk_unprepare(ch->cmt->clk);
818 }
819 
820 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
821 {
822 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
823 
824 	clk_prepare(ch->cmt->clk);
825 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
826 }
827 
828 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
829 				      const char *name)
830 {
831 	struct clock_event_device *ced = &ch->ced;
832 	int irq;
833 	int ret;
834 
835 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
836 	if (irq < 0)
837 		return irq;
838 
839 	ret = request_irq(irq, sh_cmt_interrupt,
840 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
841 			  dev_name(&ch->cmt->pdev->dev), ch);
842 	if (ret) {
843 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
844 			ch->index, irq);
845 		return ret;
846 	}
847 
848 	ced->name = name;
849 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
850 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
851 	ced->rating = 125;
852 	ced->cpumask = cpu_possible_mask;
853 	ced->set_next_event = sh_cmt_clock_event_next;
854 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
855 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
856 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
857 	ced->suspend = sh_cmt_clock_event_suspend;
858 	ced->resume = sh_cmt_clock_event_resume;
859 
860 	/* TODO: calculate good shift from rate and counter bit width */
861 	ced->shift = 32;
862 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
863 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
864 	ced->max_delta_ticks = ch->max_match_value;
865 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
866 	ced->min_delta_ticks = 0x1f;
867 
868 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
869 		 ch->index);
870 	clockevents_register_device(ced);
871 
872 	return 0;
873 }
874 
875 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
876 			   bool clockevent, bool clocksource)
877 {
878 	int ret;
879 
880 	if (clockevent) {
881 		ch->cmt->has_clockevent = true;
882 		ret = sh_cmt_register_clockevent(ch, name);
883 		if (ret < 0)
884 			return ret;
885 	}
886 
887 	if (clocksource) {
888 		ch->cmt->has_clocksource = true;
889 		sh_cmt_register_clocksource(ch, name);
890 	}
891 
892 	return 0;
893 }
894 
895 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
896 				unsigned int hwidx, bool clockevent,
897 				bool clocksource, struct sh_cmt_device *cmt)
898 {
899 	u32 value;
900 	int ret;
901 
902 	/* Skip unused channels. */
903 	if (!clockevent && !clocksource)
904 		return 0;
905 
906 	ch->cmt = cmt;
907 	ch->index = index;
908 	ch->hwidx = hwidx;
909 	ch->timer_bit = hwidx;
910 
911 	/*
912 	 * Compute the address of the channel control register block. For the
913 	 * timers with a per-channel start/stop register, compute its address
914 	 * as well.
915 	 */
916 	switch (cmt->info->model) {
917 	case SH_CMT_16BIT:
918 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
919 		break;
920 	case SH_CMT_32BIT:
921 	case SH_CMT_48BIT:
922 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
923 		break;
924 	case SH_CMT0_RCAR_GEN2:
925 	case SH_CMT1_RCAR_GEN2:
926 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
927 		ch->ioctrl = ch->iostart + 0x10;
928 		ch->timer_bit = 0;
929 
930 		/* Enable the clock supply to the channel */
931 		value = ioread32(cmt->mapbase + CMCLKE);
932 		value |= BIT(hwidx);
933 		iowrite32(value, cmt->mapbase + CMCLKE);
934 		break;
935 	}
936 
937 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
938 		ch->max_match_value = ~0;
939 	else
940 		ch->max_match_value = (1 << cmt->info->width) - 1;
941 
942 	ch->match_value = ch->max_match_value;
943 	raw_spin_lock_init(&ch->lock);
944 
945 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
946 			      clockevent, clocksource);
947 	if (ret) {
948 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
949 			ch->index);
950 		return ret;
951 	}
952 	ch->cs_enabled = false;
953 
954 	return 0;
955 }
956 
957 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
958 {
959 	struct resource *mem;
960 
961 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
962 	if (!mem) {
963 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
964 		return -ENXIO;
965 	}
966 
967 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
968 	if (cmt->mapbase == NULL) {
969 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
970 		return -ENXIO;
971 	}
972 
973 	return 0;
974 }
975 
976 static const struct platform_device_id sh_cmt_id_table[] = {
977 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
978 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
979 	{ }
980 };
981 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
982 
983 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
984 	{
985 		/* deprecated, preserved for backward compatibility */
986 		.compatible = "renesas,cmt-48",
987 		.data = &sh_cmt_info[SH_CMT_48BIT]
988 	},
989 	{
990 		/* deprecated, preserved for backward compatibility */
991 		.compatible = "renesas,cmt-48-gen2",
992 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
993 	},
994 	{
995 		.compatible = "renesas,r8a7740-cmt1",
996 		.data = &sh_cmt_info[SH_CMT_48BIT]
997 	},
998 	{
999 		.compatible = "renesas,sh73a0-cmt1",
1000 		.data = &sh_cmt_info[SH_CMT_48BIT]
1001 	},
1002 	{
1003 		.compatible = "renesas,rcar-gen2-cmt0",
1004 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1005 	},
1006 	{
1007 		.compatible = "renesas,rcar-gen2-cmt1",
1008 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1009 	},
1010 	{
1011 		.compatible = "renesas,rcar-gen3-cmt0",
1012 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1013 	},
1014 	{
1015 		.compatible = "renesas,rcar-gen3-cmt1",
1016 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1017 	},
1018 	{
1019 		.compatible = "renesas,rcar-gen4-cmt0",
1020 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1021 	},
1022 	{
1023 		.compatible = "renesas,rcar-gen4-cmt1",
1024 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1025 	},
1026 	{ }
1027 };
1028 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1029 
1030 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1031 {
1032 	unsigned int mask, i;
1033 	unsigned long rate;
1034 	int ret;
1035 
1036 	cmt->pdev = pdev;
1037 	raw_spin_lock_init(&cmt->lock);
1038 
1039 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1040 		cmt->info = of_device_get_match_data(&pdev->dev);
1041 		cmt->hw_channels = cmt->info->channels_mask;
1042 	} else if (pdev->dev.platform_data) {
1043 		struct sh_timer_config *cfg = pdev->dev.platform_data;
1044 		const struct platform_device_id *id = pdev->id_entry;
1045 
1046 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1047 		cmt->hw_channels = cfg->channels_mask;
1048 	} else {
1049 		dev_err(&cmt->pdev->dev, "missing platform data\n");
1050 		return -ENXIO;
1051 	}
1052 
1053 	/* Get hold of clock. */
1054 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1055 	if (IS_ERR(cmt->clk)) {
1056 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1057 		return PTR_ERR(cmt->clk);
1058 	}
1059 
1060 	ret = clk_prepare(cmt->clk);
1061 	if (ret < 0)
1062 		goto err_clk_put;
1063 
1064 	/* Determine clock rate. */
1065 	ret = clk_enable(cmt->clk);
1066 	if (ret < 0)
1067 		goto err_clk_unprepare;
1068 
1069 	rate = clk_get_rate(cmt->clk);
1070 	if (!rate) {
1071 		ret = -EINVAL;
1072 		goto err_clk_disable;
1073 	}
1074 
1075 	/* We shall wait 2 input clks after register writes */
1076 	if (cmt->info->model >= SH_CMT_48BIT)
1077 		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1078 	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1079 
1080 	/* Map the memory resource(s). */
1081 	ret = sh_cmt_map_memory(cmt);
1082 	if (ret < 0)
1083 		goto err_clk_disable;
1084 
1085 	/* Allocate and setup the channels. */
1086 	cmt->num_channels = hweight8(cmt->hw_channels);
1087 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1088 				GFP_KERNEL);
1089 	if (cmt->channels == NULL) {
1090 		ret = -ENOMEM;
1091 		goto err_unmap;
1092 	}
1093 
1094 	/*
1095 	 * Use the first channel as a clock event device and the second channel
1096 	 * as a clock source. If only one channel is available use it for both.
1097 	 */
1098 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1099 		unsigned int hwidx = ffs(mask) - 1;
1100 		bool clocksource = i == 1 || cmt->num_channels == 1;
1101 		bool clockevent = i == 0;
1102 
1103 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1104 					   clockevent, clocksource, cmt);
1105 		if (ret < 0)
1106 			goto err_unmap;
1107 
1108 		mask &= ~(1 << hwidx);
1109 	}
1110 
1111 	platform_set_drvdata(pdev, cmt);
1112 
1113 	return 0;
1114 
1115 err_unmap:
1116 	kfree(cmt->channels);
1117 	iounmap(cmt->mapbase);
1118 err_clk_disable:
1119 	clk_disable(cmt->clk);
1120 err_clk_unprepare:
1121 	clk_unprepare(cmt->clk);
1122 err_clk_put:
1123 	clk_put(cmt->clk);
1124 	return ret;
1125 }
1126 
1127 static int sh_cmt_probe(struct platform_device *pdev)
1128 {
1129 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1130 	int ret;
1131 
1132 	if (!is_sh_early_platform_device(pdev)) {
1133 		pm_runtime_set_active(&pdev->dev);
1134 		pm_runtime_enable(&pdev->dev);
1135 	}
1136 
1137 	if (cmt) {
1138 		dev_info(&pdev->dev, "kept as earlytimer\n");
1139 		goto out;
1140 	}
1141 
1142 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1143 	if (cmt == NULL)
1144 		return -ENOMEM;
1145 
1146 	ret = sh_cmt_setup(cmt, pdev);
1147 	if (ret) {
1148 		kfree(cmt);
1149 		pm_runtime_idle(&pdev->dev);
1150 		return ret;
1151 	}
1152 	if (is_sh_early_platform_device(pdev))
1153 		return 0;
1154 
1155  out:
1156 	if (cmt->has_clockevent || cmt->has_clocksource)
1157 		pm_runtime_irq_safe(&pdev->dev);
1158 
1159 	return 0;
1160 }
1161 
1162 static struct platform_driver sh_cmt_device_driver = {
1163 	.probe		= sh_cmt_probe,
1164 	.driver		= {
1165 		.name	= "sh_cmt",
1166 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1167 		.suppress_bind_attrs = true,
1168 	},
1169 	.id_table	= sh_cmt_id_table,
1170 };
1171 
1172 static int __init sh_cmt_init(void)
1173 {
1174 	return platform_driver_register(&sh_cmt_device_driver);
1175 }
1176 
1177 static void __exit sh_cmt_exit(void)
1178 {
1179 	platform_driver_unregister(&sh_cmt_device_driver);
1180 }
1181 
1182 #ifdef CONFIG_SUPERH
1183 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1184 #endif
1185 
1186 subsys_initcall(sh_cmt_init);
1187 module_exit(sh_cmt_exit);
1188 
1189 MODULE_AUTHOR("Magnus Damm");
1190 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1191