1 /* 2 * SuperH Timer Support - CMT 3 * 4 * Copyright (C) 2008 Magnus Damm 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 #include <linux/init.h> 21 #include <linux/platform_device.h> 22 #include <linux/spinlock.h> 23 #include <linux/interrupt.h> 24 #include <linux/ioport.h> 25 #include <linux/io.h> 26 #include <linux/clk.h> 27 #include <linux/irq.h> 28 #include <linux/err.h> 29 #include <linux/delay.h> 30 #include <linux/clocksource.h> 31 #include <linux/clockchips.h> 32 #include <linux/sh_timer.h> 33 #include <linux/slab.h> 34 #include <linux/module.h> 35 #include <linux/pm_domain.h> 36 37 struct sh_cmt_priv { 38 void __iomem *mapbase; 39 struct clk *clk; 40 unsigned long width; /* 16 or 32 bit version of hardware block */ 41 unsigned long overflow_bit; 42 unsigned long clear_bits; 43 struct irqaction irqaction; 44 struct platform_device *pdev; 45 46 unsigned long flags; 47 unsigned long match_value; 48 unsigned long next_match_value; 49 unsigned long max_match_value; 50 unsigned long rate; 51 raw_spinlock_t lock; 52 struct clock_event_device ced; 53 struct clocksource cs; 54 unsigned long total_cycles; 55 }; 56 57 static DEFINE_RAW_SPINLOCK(sh_cmt_lock); 58 59 #define CMSTR -1 /* shared register */ 60 #define CMCSR 0 /* channel register */ 61 #define CMCNT 1 /* channel register */ 62 #define CMCOR 2 /* channel register */ 63 64 static inline unsigned long sh_cmt_read(struct sh_cmt_priv *p, int reg_nr) 65 { 66 struct sh_timer_config *cfg = p->pdev->dev.platform_data; 67 void __iomem *base = p->mapbase; 68 unsigned long offs; 69 70 if (reg_nr == CMSTR) { 71 offs = 0; 72 base -= cfg->channel_offset; 73 } else 74 offs = reg_nr; 75 76 if (p->width == 16) 77 offs <<= 1; 78 else { 79 offs <<= 2; 80 if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) 81 return ioread32(base + offs); 82 } 83 84 return ioread16(base + offs); 85 } 86 87 static inline void sh_cmt_write(struct sh_cmt_priv *p, int reg_nr, 88 unsigned long value) 89 { 90 struct sh_timer_config *cfg = p->pdev->dev.platform_data; 91 void __iomem *base = p->mapbase; 92 unsigned long offs; 93 94 if (reg_nr == CMSTR) { 95 offs = 0; 96 base -= cfg->channel_offset; 97 } else 98 offs = reg_nr; 99 100 if (p->width == 16) 101 offs <<= 1; 102 else { 103 offs <<= 2; 104 if ((reg_nr == CMCNT) || (reg_nr == CMCOR)) { 105 iowrite32(value, base + offs); 106 return; 107 } 108 } 109 110 iowrite16(value, base + offs); 111 } 112 113 static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p, 114 int *has_wrapped) 115 { 116 unsigned long v1, v2, v3; 117 int o1, o2; 118 119 o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit; 120 121 /* Make sure the timer value is stable. Stolen from acpi_pm.c */ 122 do { 123 o2 = o1; 124 v1 = sh_cmt_read(p, CMCNT); 125 v2 = sh_cmt_read(p, CMCNT); 126 v3 = sh_cmt_read(p, CMCNT); 127 o1 = sh_cmt_read(p, CMCSR) & p->overflow_bit; 128 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3) 129 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2))); 130 131 *has_wrapped = o1; 132 return v2; 133 } 134 135 136 static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start) 137 { 138 struct sh_timer_config *cfg = p->pdev->dev.platform_data; 139 unsigned long flags, value; 140 141 /* start stop register shared by multiple timer channels */ 142 raw_spin_lock_irqsave(&sh_cmt_lock, flags); 143 value = sh_cmt_read(p, CMSTR); 144 145 if (start) 146 value |= 1 << cfg->timer_bit; 147 else 148 value &= ~(1 << cfg->timer_bit); 149 150 sh_cmt_write(p, CMSTR, value); 151 raw_spin_unlock_irqrestore(&sh_cmt_lock, flags); 152 } 153 154 static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate) 155 { 156 int k, ret; 157 158 /* enable clock */ 159 ret = clk_enable(p->clk); 160 if (ret) { 161 dev_err(&p->pdev->dev, "cannot enable clock\n"); 162 goto err0; 163 } 164 165 /* make sure channel is disabled */ 166 sh_cmt_start_stop_ch(p, 0); 167 168 /* configure channel, periodic mode and maximum timeout */ 169 if (p->width == 16) { 170 *rate = clk_get_rate(p->clk) / 512; 171 sh_cmt_write(p, CMCSR, 0x43); 172 } else { 173 *rate = clk_get_rate(p->clk) / 8; 174 sh_cmt_write(p, CMCSR, 0x01a4); 175 } 176 177 sh_cmt_write(p, CMCOR, 0xffffffff); 178 sh_cmt_write(p, CMCNT, 0); 179 180 /* 181 * According to the sh73a0 user's manual, as CMCNT can be operated 182 * only by the RCLK (Pseudo 32 KHz), there's one restriction on 183 * modifying CMCNT register; two RCLK cycles are necessary before 184 * this register is either read or any modification of the value 185 * it holds is reflected in the LSI's actual operation. 186 * 187 * While at it, we're supposed to clear out the CMCNT as of this 188 * moment, so make sure it's processed properly here. This will 189 * take RCLKx2 at maximum. 190 */ 191 for (k = 0; k < 100; k++) { 192 if (!sh_cmt_read(p, CMCNT)) 193 break; 194 udelay(1); 195 } 196 197 if (sh_cmt_read(p, CMCNT)) { 198 dev_err(&p->pdev->dev, "cannot clear CMCNT\n"); 199 ret = -ETIMEDOUT; 200 goto err1; 201 } 202 203 /* enable channel */ 204 sh_cmt_start_stop_ch(p, 1); 205 return 0; 206 err1: 207 /* stop clock */ 208 clk_disable(p->clk); 209 210 err0: 211 return ret; 212 } 213 214 static void sh_cmt_disable(struct sh_cmt_priv *p) 215 { 216 /* disable channel */ 217 sh_cmt_start_stop_ch(p, 0); 218 219 /* disable interrupts in CMT block */ 220 sh_cmt_write(p, CMCSR, 0); 221 222 /* stop clock */ 223 clk_disable(p->clk); 224 } 225 226 /* private flags */ 227 #define FLAG_CLOCKEVENT (1 << 0) 228 #define FLAG_CLOCKSOURCE (1 << 1) 229 #define FLAG_REPROGRAM (1 << 2) 230 #define FLAG_SKIPEVENT (1 << 3) 231 #define FLAG_IRQCONTEXT (1 << 4) 232 233 static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p, 234 int absolute) 235 { 236 unsigned long new_match; 237 unsigned long value = p->next_match_value; 238 unsigned long delay = 0; 239 unsigned long now = 0; 240 int has_wrapped; 241 242 now = sh_cmt_get_counter(p, &has_wrapped); 243 p->flags |= FLAG_REPROGRAM; /* force reprogram */ 244 245 if (has_wrapped) { 246 /* we're competing with the interrupt handler. 247 * -> let the interrupt handler reprogram the timer. 248 * -> interrupt number two handles the event. 249 */ 250 p->flags |= FLAG_SKIPEVENT; 251 return; 252 } 253 254 if (absolute) 255 now = 0; 256 257 do { 258 /* reprogram the timer hardware, 259 * but don't save the new match value yet. 260 */ 261 new_match = now + value + delay; 262 if (new_match > p->max_match_value) 263 new_match = p->max_match_value; 264 265 sh_cmt_write(p, CMCOR, new_match); 266 267 now = sh_cmt_get_counter(p, &has_wrapped); 268 if (has_wrapped && (new_match > p->match_value)) { 269 /* we are changing to a greater match value, 270 * so this wrap must be caused by the counter 271 * matching the old value. 272 * -> first interrupt reprograms the timer. 273 * -> interrupt number two handles the event. 274 */ 275 p->flags |= FLAG_SKIPEVENT; 276 break; 277 } 278 279 if (has_wrapped) { 280 /* we are changing to a smaller match value, 281 * so the wrap must be caused by the counter 282 * matching the new value. 283 * -> save programmed match value. 284 * -> let isr handle the event. 285 */ 286 p->match_value = new_match; 287 break; 288 } 289 290 /* be safe: verify hardware settings */ 291 if (now < new_match) { 292 /* timer value is below match value, all good. 293 * this makes sure we won't miss any match events. 294 * -> save programmed match value. 295 * -> let isr handle the event. 296 */ 297 p->match_value = new_match; 298 break; 299 } 300 301 /* the counter has reached a value greater 302 * than our new match value. and since the 303 * has_wrapped flag isn't set we must have 304 * programmed a too close event. 305 * -> increase delay and retry. 306 */ 307 if (delay) 308 delay <<= 1; 309 else 310 delay = 1; 311 312 if (!delay) 313 dev_warn(&p->pdev->dev, "too long delay\n"); 314 315 } while (delay); 316 } 317 318 static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta) 319 { 320 if (delta > p->max_match_value) 321 dev_warn(&p->pdev->dev, "delta out of range\n"); 322 323 p->next_match_value = delta; 324 sh_cmt_clock_event_program_verify(p, 0); 325 } 326 327 static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta) 328 { 329 unsigned long flags; 330 331 raw_spin_lock_irqsave(&p->lock, flags); 332 __sh_cmt_set_next(p, delta); 333 raw_spin_unlock_irqrestore(&p->lock, flags); 334 } 335 336 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id) 337 { 338 struct sh_cmt_priv *p = dev_id; 339 340 /* clear flags */ 341 sh_cmt_write(p, CMCSR, sh_cmt_read(p, CMCSR) & p->clear_bits); 342 343 /* update clock source counter to begin with if enabled 344 * the wrap flag should be cleared by the timer specific 345 * isr before we end up here. 346 */ 347 if (p->flags & FLAG_CLOCKSOURCE) 348 p->total_cycles += p->match_value + 1; 349 350 if (!(p->flags & FLAG_REPROGRAM)) 351 p->next_match_value = p->max_match_value; 352 353 p->flags |= FLAG_IRQCONTEXT; 354 355 if (p->flags & FLAG_CLOCKEVENT) { 356 if (!(p->flags & FLAG_SKIPEVENT)) { 357 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) { 358 p->next_match_value = p->max_match_value; 359 p->flags |= FLAG_REPROGRAM; 360 } 361 362 p->ced.event_handler(&p->ced); 363 } 364 } 365 366 p->flags &= ~FLAG_SKIPEVENT; 367 368 if (p->flags & FLAG_REPROGRAM) { 369 p->flags &= ~FLAG_REPROGRAM; 370 sh_cmt_clock_event_program_verify(p, 1); 371 372 if (p->flags & FLAG_CLOCKEVENT) 373 if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN) 374 || (p->match_value == p->next_match_value)) 375 p->flags &= ~FLAG_REPROGRAM; 376 } 377 378 p->flags &= ~FLAG_IRQCONTEXT; 379 380 return IRQ_HANDLED; 381 } 382 383 static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag) 384 { 385 int ret = 0; 386 unsigned long flags; 387 388 raw_spin_lock_irqsave(&p->lock, flags); 389 390 if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) 391 ret = sh_cmt_enable(p, &p->rate); 392 393 if (ret) 394 goto out; 395 p->flags |= flag; 396 397 /* setup timeout if no clockevent */ 398 if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT))) 399 __sh_cmt_set_next(p, p->max_match_value); 400 out: 401 raw_spin_unlock_irqrestore(&p->lock, flags); 402 403 return ret; 404 } 405 406 static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag) 407 { 408 unsigned long flags; 409 unsigned long f; 410 411 raw_spin_lock_irqsave(&p->lock, flags); 412 413 f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE); 414 p->flags &= ~flag; 415 416 if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) 417 sh_cmt_disable(p); 418 419 /* adjust the timeout to maximum if only clocksource left */ 420 if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE)) 421 __sh_cmt_set_next(p, p->max_match_value); 422 423 raw_spin_unlock_irqrestore(&p->lock, flags); 424 } 425 426 static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs) 427 { 428 return container_of(cs, struct sh_cmt_priv, cs); 429 } 430 431 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs) 432 { 433 struct sh_cmt_priv *p = cs_to_sh_cmt(cs); 434 unsigned long flags, raw; 435 unsigned long value; 436 int has_wrapped; 437 438 raw_spin_lock_irqsave(&p->lock, flags); 439 value = p->total_cycles; 440 raw = sh_cmt_get_counter(p, &has_wrapped); 441 442 if (unlikely(has_wrapped)) 443 raw += p->match_value + 1; 444 raw_spin_unlock_irqrestore(&p->lock, flags); 445 446 return value + raw; 447 } 448 449 static int sh_cmt_clocksource_enable(struct clocksource *cs) 450 { 451 int ret; 452 struct sh_cmt_priv *p = cs_to_sh_cmt(cs); 453 454 p->total_cycles = 0; 455 456 ret = sh_cmt_start(p, FLAG_CLOCKSOURCE); 457 if (!ret) 458 __clocksource_updatefreq_hz(cs, p->rate); 459 return ret; 460 } 461 462 static void sh_cmt_clocksource_disable(struct clocksource *cs) 463 { 464 sh_cmt_stop(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE); 465 } 466 467 static void sh_cmt_clocksource_resume(struct clocksource *cs) 468 { 469 sh_cmt_start(cs_to_sh_cmt(cs), FLAG_CLOCKSOURCE); 470 } 471 472 static int sh_cmt_register_clocksource(struct sh_cmt_priv *p, 473 char *name, unsigned long rating) 474 { 475 struct clocksource *cs = &p->cs; 476 477 cs->name = name; 478 cs->rating = rating; 479 cs->read = sh_cmt_clocksource_read; 480 cs->enable = sh_cmt_clocksource_enable; 481 cs->disable = sh_cmt_clocksource_disable; 482 cs->suspend = sh_cmt_clocksource_disable; 483 cs->resume = sh_cmt_clocksource_resume; 484 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8); 485 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; 486 487 dev_info(&p->pdev->dev, "used as clock source\n"); 488 489 /* Register with dummy 1 Hz value, gets updated in ->enable() */ 490 clocksource_register_hz(cs, 1); 491 return 0; 492 } 493 494 static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced) 495 { 496 return container_of(ced, struct sh_cmt_priv, ced); 497 } 498 499 static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic) 500 { 501 struct clock_event_device *ced = &p->ced; 502 503 sh_cmt_start(p, FLAG_CLOCKEVENT); 504 505 /* TODO: calculate good shift from rate and counter bit width */ 506 507 ced->shift = 32; 508 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift); 509 ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced); 510 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced); 511 512 if (periodic) 513 sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1); 514 else 515 sh_cmt_set_next(p, p->max_match_value); 516 } 517 518 static void sh_cmt_clock_event_mode(enum clock_event_mode mode, 519 struct clock_event_device *ced) 520 { 521 struct sh_cmt_priv *p = ced_to_sh_cmt(ced); 522 523 /* deal with old setting first */ 524 switch (ced->mode) { 525 case CLOCK_EVT_MODE_PERIODIC: 526 case CLOCK_EVT_MODE_ONESHOT: 527 sh_cmt_stop(p, FLAG_CLOCKEVENT); 528 break; 529 default: 530 break; 531 } 532 533 switch (mode) { 534 case CLOCK_EVT_MODE_PERIODIC: 535 dev_info(&p->pdev->dev, "used for periodic clock events\n"); 536 sh_cmt_clock_event_start(p, 1); 537 break; 538 case CLOCK_EVT_MODE_ONESHOT: 539 dev_info(&p->pdev->dev, "used for oneshot clock events\n"); 540 sh_cmt_clock_event_start(p, 0); 541 break; 542 case CLOCK_EVT_MODE_SHUTDOWN: 543 case CLOCK_EVT_MODE_UNUSED: 544 sh_cmt_stop(p, FLAG_CLOCKEVENT); 545 break; 546 default: 547 break; 548 } 549 } 550 551 static int sh_cmt_clock_event_next(unsigned long delta, 552 struct clock_event_device *ced) 553 { 554 struct sh_cmt_priv *p = ced_to_sh_cmt(ced); 555 556 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT); 557 if (likely(p->flags & FLAG_IRQCONTEXT)) 558 p->next_match_value = delta - 1; 559 else 560 sh_cmt_set_next(p, delta - 1); 561 562 return 0; 563 } 564 565 static void sh_cmt_register_clockevent(struct sh_cmt_priv *p, 566 char *name, unsigned long rating) 567 { 568 struct clock_event_device *ced = &p->ced; 569 570 memset(ced, 0, sizeof(*ced)); 571 572 ced->name = name; 573 ced->features = CLOCK_EVT_FEAT_PERIODIC; 574 ced->features |= CLOCK_EVT_FEAT_ONESHOT; 575 ced->rating = rating; 576 ced->cpumask = cpumask_of(0); 577 ced->set_next_event = sh_cmt_clock_event_next; 578 ced->set_mode = sh_cmt_clock_event_mode; 579 580 dev_info(&p->pdev->dev, "used for clock events\n"); 581 clockevents_register_device(ced); 582 } 583 584 static int sh_cmt_register(struct sh_cmt_priv *p, char *name, 585 unsigned long clockevent_rating, 586 unsigned long clocksource_rating) 587 { 588 if (p->width == (sizeof(p->max_match_value) * 8)) 589 p->max_match_value = ~0; 590 else 591 p->max_match_value = (1 << p->width) - 1; 592 593 p->match_value = p->max_match_value; 594 raw_spin_lock_init(&p->lock); 595 596 if (clockevent_rating) 597 sh_cmt_register_clockevent(p, name, clockevent_rating); 598 599 if (clocksource_rating) 600 sh_cmt_register_clocksource(p, name, clocksource_rating); 601 602 return 0; 603 } 604 605 static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev) 606 { 607 struct sh_timer_config *cfg = pdev->dev.platform_data; 608 struct resource *res; 609 int irq, ret; 610 ret = -ENXIO; 611 612 memset(p, 0, sizeof(*p)); 613 p->pdev = pdev; 614 615 if (!cfg) { 616 dev_err(&p->pdev->dev, "missing platform data\n"); 617 goto err0; 618 } 619 620 platform_set_drvdata(pdev, p); 621 622 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0); 623 if (!res) { 624 dev_err(&p->pdev->dev, "failed to get I/O memory\n"); 625 goto err0; 626 } 627 628 irq = platform_get_irq(p->pdev, 0); 629 if (irq < 0) { 630 dev_err(&p->pdev->dev, "failed to get irq\n"); 631 goto err0; 632 } 633 634 /* map memory, let mapbase point to our channel */ 635 p->mapbase = ioremap_nocache(res->start, resource_size(res)); 636 if (p->mapbase == NULL) { 637 dev_err(&p->pdev->dev, "failed to remap I/O memory\n"); 638 goto err0; 639 } 640 641 /* request irq using setup_irq() (too early for request_irq()) */ 642 p->irqaction.name = dev_name(&p->pdev->dev); 643 p->irqaction.handler = sh_cmt_interrupt; 644 p->irqaction.dev_id = p; 645 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \ 646 IRQF_IRQPOLL | IRQF_NOBALANCING; 647 648 /* get hold of clock */ 649 p->clk = clk_get(&p->pdev->dev, "cmt_fck"); 650 if (IS_ERR(p->clk)) { 651 dev_err(&p->pdev->dev, "cannot get clock\n"); 652 ret = PTR_ERR(p->clk); 653 goto err1; 654 } 655 656 if (resource_size(res) == 6) { 657 p->width = 16; 658 p->overflow_bit = 0x80; 659 p->clear_bits = ~0x80; 660 } else { 661 p->width = 32; 662 p->overflow_bit = 0x8000; 663 p->clear_bits = ~0xc000; 664 } 665 666 ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev), 667 cfg->clockevent_rating, 668 cfg->clocksource_rating); 669 if (ret) { 670 dev_err(&p->pdev->dev, "registration failed\n"); 671 goto err1; 672 } 673 674 ret = setup_irq(irq, &p->irqaction); 675 if (ret) { 676 dev_err(&p->pdev->dev, "failed to request irq %d\n", irq); 677 goto err1; 678 } 679 680 return 0; 681 682 err1: 683 iounmap(p->mapbase); 684 err0: 685 return ret; 686 } 687 688 static int __devinit sh_cmt_probe(struct platform_device *pdev) 689 { 690 struct sh_cmt_priv *p = platform_get_drvdata(pdev); 691 int ret; 692 693 if (!is_early_platform_device(pdev)) 694 pm_genpd_dev_always_on(&pdev->dev, true); 695 696 if (p) { 697 dev_info(&pdev->dev, "kept as earlytimer\n"); 698 return 0; 699 } 700 701 p = kmalloc(sizeof(*p), GFP_KERNEL); 702 if (p == NULL) { 703 dev_err(&pdev->dev, "failed to allocate driver data\n"); 704 return -ENOMEM; 705 } 706 707 ret = sh_cmt_setup(p, pdev); 708 if (ret) { 709 kfree(p); 710 platform_set_drvdata(pdev, NULL); 711 } 712 return ret; 713 } 714 715 static int __devexit sh_cmt_remove(struct platform_device *pdev) 716 { 717 return -EBUSY; /* cannot unregister clockevent and clocksource */ 718 } 719 720 static struct platform_driver sh_cmt_device_driver = { 721 .probe = sh_cmt_probe, 722 .remove = __devexit_p(sh_cmt_remove), 723 .driver = { 724 .name = "sh_cmt", 725 } 726 }; 727 728 static int __init sh_cmt_init(void) 729 { 730 return platform_driver_register(&sh_cmt_device_driver); 731 } 732 733 static void __exit sh_cmt_exit(void) 734 { 735 platform_driver_unregister(&sh_cmt_device_driver); 736 } 737 738 early_platform_init("earlytimer", &sh_cmt_device_driver); 739 module_init(sh_cmt_init); 740 module_exit(sh_cmt_exit); 741 742 MODULE_AUTHOR("Magnus Damm"); 743 MODULE_DESCRIPTION("SuperH CMT Timer Driver"); 744 MODULE_LICENSE("GPL v2"); 745