xref: /linux/drivers/clocksource/sh_cmt.c (revision 08b7174fb8d126e607e385e34b9e1da4f3be274f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31 
32 struct sh_cmt_device;
33 
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *			16B	32B	32B-F	48B	R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels		2	1/4	1	6	2/8
42  * Control Width	16	16	16	16	32
43  * Counter Width	16	32	32	32/48	32/48
44  * Shared Start/Stop	Y	Y	Y	Y	N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62 
63 enum sh_cmt_model {
64 	SH_CMT_16BIT,
65 	SH_CMT_32BIT,
66 	SH_CMT_48BIT,
67 	SH_CMT0_RCAR_GEN2,
68 	SH_CMT1_RCAR_GEN2,
69 };
70 
71 struct sh_cmt_info {
72 	enum sh_cmt_model model;
73 
74 	unsigned int channels_mask;
75 
76 	unsigned long width; /* 16 or 32 bit version of hardware block */
77 	u32 overflow_bit;
78 	u32 clear_bits;
79 
80 	/* callbacks for CMSTR and CMCSR access */
81 	u32 (*read_control)(void __iomem *base, unsigned long offs);
82 	void (*write_control)(void __iomem *base, unsigned long offs,
83 			      u32 value);
84 
85 	/* callbacks for CMCNT and CMCOR access */
86 	u32 (*read_count)(void __iomem *base, unsigned long offs);
87 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89 
90 struct sh_cmt_channel {
91 	struct sh_cmt_device *cmt;
92 
93 	unsigned int index;	/* Index in the documentation */
94 	unsigned int hwidx;	/* Real hardware index */
95 
96 	void __iomem *iostart;
97 	void __iomem *ioctrl;
98 
99 	unsigned int timer_bit;
100 	unsigned long flags;
101 	u32 match_value;
102 	u32 next_match_value;
103 	u32 max_match_value;
104 	raw_spinlock_t lock;
105 	struct clock_event_device ced;
106 	struct clocksource cs;
107 	u64 total_cycles;
108 	bool cs_enabled;
109 };
110 
111 struct sh_cmt_device {
112 	struct platform_device *pdev;
113 
114 	const struct sh_cmt_info *info;
115 
116 	void __iomem *mapbase;
117 	struct clk *clk;
118 	unsigned long rate;
119 	unsigned int reg_delay;
120 
121 	raw_spinlock_t lock; /* Protect the shared start/stop register */
122 
123 	struct sh_cmt_channel *channels;
124 	unsigned int num_channels;
125 	unsigned int hw_channels;
126 
127 	bool has_clockevent;
128 	bool has_clocksource;
129 };
130 
131 #define SH_CMT16_CMCSR_CMF		(1 << 7)
132 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
133 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
134 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
135 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
136 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
137 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
138 
139 #define SH_CMT32_CMCSR_CMF		(1 << 15)
140 #define SH_CMT32_CMCSR_OVF		(1 << 14)
141 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
142 #define SH_CMT32_CMCSR_STTF		(1 << 12)
143 #define SH_CMT32_CMCSR_STPF		(1 << 11)
144 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
145 #define SH_CMT32_CMCSR_CMS		(1 << 9)
146 #define SH_CMT32_CMCSR_CMM		(1 << 8)
147 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
148 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
149 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
150 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
151 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
152 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
153 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
157 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
158 
159 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160 {
161 	return ioread16(base + (offs << 1));
162 }
163 
164 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165 {
166 	return ioread32(base + (offs << 2));
167 }
168 
169 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170 {
171 	iowrite16(value, base + (offs << 1));
172 }
173 
174 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175 {
176 	iowrite32(value, base + (offs << 2));
177 }
178 
179 static const struct sh_cmt_info sh_cmt_info[] = {
180 	[SH_CMT_16BIT] = {
181 		.model = SH_CMT_16BIT,
182 		.width = 16,
183 		.overflow_bit = SH_CMT16_CMCSR_CMF,
184 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
185 		.read_control = sh_cmt_read16,
186 		.write_control = sh_cmt_write16,
187 		.read_count = sh_cmt_read16,
188 		.write_count = sh_cmt_write16,
189 	},
190 	[SH_CMT_32BIT] = {
191 		.model = SH_CMT_32BIT,
192 		.width = 32,
193 		.overflow_bit = SH_CMT32_CMCSR_CMF,
194 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195 		.read_control = sh_cmt_read16,
196 		.write_control = sh_cmt_write16,
197 		.read_count = sh_cmt_read32,
198 		.write_count = sh_cmt_write32,
199 	},
200 	[SH_CMT_48BIT] = {
201 		.model = SH_CMT_48BIT,
202 		.channels_mask = 0x3f,
203 		.width = 32,
204 		.overflow_bit = SH_CMT32_CMCSR_CMF,
205 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206 		.read_control = sh_cmt_read32,
207 		.write_control = sh_cmt_write32,
208 		.read_count = sh_cmt_read32,
209 		.write_count = sh_cmt_write32,
210 	},
211 	[SH_CMT0_RCAR_GEN2] = {
212 		.model = SH_CMT0_RCAR_GEN2,
213 		.channels_mask = 0x60,
214 		.width = 32,
215 		.overflow_bit = SH_CMT32_CMCSR_CMF,
216 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217 		.read_control = sh_cmt_read32,
218 		.write_control = sh_cmt_write32,
219 		.read_count = sh_cmt_read32,
220 		.write_count = sh_cmt_write32,
221 	},
222 	[SH_CMT1_RCAR_GEN2] = {
223 		.model = SH_CMT1_RCAR_GEN2,
224 		.channels_mask = 0xff,
225 		.width = 32,
226 		.overflow_bit = SH_CMT32_CMCSR_CMF,
227 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 		.read_control = sh_cmt_read32,
229 		.write_control = sh_cmt_write32,
230 		.read_count = sh_cmt_read32,
231 		.write_count = sh_cmt_write32,
232 	},
233 };
234 
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
238 
239 #define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
240 
241 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
242 {
243 	if (ch->iostart)
244 		return ch->cmt->info->read_control(ch->iostart, 0);
245 	else
246 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
247 }
248 
249 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
250 {
251 	u32 old_value = sh_cmt_read_cmstr(ch);
252 
253 	if (value != old_value) {
254 		if (ch->iostart) {
255 			ch->cmt->info->write_control(ch->iostart, 0, value);
256 			udelay(ch->cmt->reg_delay);
257 		} else {
258 			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259 			udelay(ch->cmt->reg_delay);
260 		}
261 	}
262 }
263 
264 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
265 {
266 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
267 }
268 
269 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
270 {
271 	u32 old_value = sh_cmt_read_cmcsr(ch);
272 
273 	if (value != old_value) {
274 		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275 		udelay(ch->cmt->reg_delay);
276 	}
277 }
278 
279 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
280 {
281 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
282 }
283 
284 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
285 {
286 	/* Tests showed that we need to wait 3 clocks here */
287 	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
288 	u32 reg;
289 
290 	if (ch->cmt->info->model > SH_CMT_16BIT) {
291 		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292 						   !(reg & SH_CMT32_CMCSR_WRFLG),
293 						   1, cmcnt_delay, false, ch);
294 		if (ret < 0)
295 			return ret;
296 	}
297 
298 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
299 	udelay(cmcnt_delay);
300 	return 0;
301 }
302 
303 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
304 {
305 	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
306 
307 	if (value != old_value) {
308 		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309 		udelay(ch->cmt->reg_delay);
310 	}
311 }
312 
313 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
314 {
315 	u32 v1, v2, v3;
316 	u32 o1, o2;
317 
318 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
319 
320 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
321 	do {
322 		o2 = o1;
323 		v1 = sh_cmt_read_cmcnt(ch);
324 		v2 = sh_cmt_read_cmcnt(ch);
325 		v3 = sh_cmt_read_cmcnt(ch);
326 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
329 
330 	*has_wrapped = o1;
331 	return v2;
332 }
333 
334 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
335 {
336 	unsigned long flags;
337 	u32 value;
338 
339 	/* start stop register shared by multiple timer channels */
340 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341 	value = sh_cmt_read_cmstr(ch);
342 
343 	if (start)
344 		value |= 1 << ch->timer_bit;
345 	else
346 		value &= ~(1 << ch->timer_bit);
347 
348 	sh_cmt_write_cmstr(ch, value);
349 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
350 }
351 
352 static int sh_cmt_enable(struct sh_cmt_channel *ch)
353 {
354 	int ret;
355 
356 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
357 
358 	/* enable clock */
359 	ret = clk_enable(ch->cmt->clk);
360 	if (ret) {
361 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
362 			ch->index);
363 		goto err0;
364 	}
365 
366 	/* make sure channel is disabled */
367 	sh_cmt_start_stop_ch(ch, 0);
368 
369 	/* configure channel, periodic mode and maximum timeout */
370 	if (ch->cmt->info->width == 16) {
371 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
372 				   SH_CMT16_CMCSR_CKS512);
373 	} else {
374 		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
375 			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
376 		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
377 				   SH_CMT32_CMCSR_CMR_IRQ |
378 				   SH_CMT32_CMCSR_CKS_RCLK8);
379 	}
380 
381 	sh_cmt_write_cmcor(ch, 0xffffffff);
382 	ret = sh_cmt_write_cmcnt(ch, 0);
383 
384 	if (ret || sh_cmt_read_cmcnt(ch)) {
385 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
386 			ch->index);
387 		ret = -ETIMEDOUT;
388 		goto err1;
389 	}
390 
391 	/* enable channel */
392 	sh_cmt_start_stop_ch(ch, 1);
393 	return 0;
394  err1:
395 	/* stop clock */
396 	clk_disable(ch->cmt->clk);
397 
398  err0:
399 	return ret;
400 }
401 
402 static void sh_cmt_disable(struct sh_cmt_channel *ch)
403 {
404 	/* disable channel */
405 	sh_cmt_start_stop_ch(ch, 0);
406 
407 	/* disable interrupts in CMT block */
408 	sh_cmt_write_cmcsr(ch, 0);
409 
410 	/* stop clock */
411 	clk_disable(ch->cmt->clk);
412 
413 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
414 }
415 
416 /* private flags */
417 #define FLAG_CLOCKEVENT (1 << 0)
418 #define FLAG_CLOCKSOURCE (1 << 1)
419 #define FLAG_REPROGRAM (1 << 2)
420 #define FLAG_SKIPEVENT (1 << 3)
421 #define FLAG_IRQCONTEXT (1 << 4)
422 
423 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
424 					      int absolute)
425 {
426 	u32 value = ch->next_match_value;
427 	u32 new_match;
428 	u32 delay = 0;
429 	u32 now = 0;
430 	u32 has_wrapped;
431 
432 	now = sh_cmt_get_counter(ch, &has_wrapped);
433 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
434 
435 	if (has_wrapped) {
436 		/* we're competing with the interrupt handler.
437 		 *  -> let the interrupt handler reprogram the timer.
438 		 *  -> interrupt number two handles the event.
439 		 */
440 		ch->flags |= FLAG_SKIPEVENT;
441 		return;
442 	}
443 
444 	if (absolute)
445 		now = 0;
446 
447 	do {
448 		/* reprogram the timer hardware,
449 		 * but don't save the new match value yet.
450 		 */
451 		new_match = now + value + delay;
452 		if (new_match > ch->max_match_value)
453 			new_match = ch->max_match_value;
454 
455 		sh_cmt_write_cmcor(ch, new_match);
456 
457 		now = sh_cmt_get_counter(ch, &has_wrapped);
458 		if (has_wrapped && (new_match > ch->match_value)) {
459 			/* we are changing to a greater match value,
460 			 * so this wrap must be caused by the counter
461 			 * matching the old value.
462 			 * -> first interrupt reprograms the timer.
463 			 * -> interrupt number two handles the event.
464 			 */
465 			ch->flags |= FLAG_SKIPEVENT;
466 			break;
467 		}
468 
469 		if (has_wrapped) {
470 			/* we are changing to a smaller match value,
471 			 * so the wrap must be caused by the counter
472 			 * matching the new value.
473 			 * -> save programmed match value.
474 			 * -> let isr handle the event.
475 			 */
476 			ch->match_value = new_match;
477 			break;
478 		}
479 
480 		/* be safe: verify hardware settings */
481 		if (now < new_match) {
482 			/* timer value is below match value, all good.
483 			 * this makes sure we won't miss any match events.
484 			 * -> save programmed match value.
485 			 * -> let isr handle the event.
486 			 */
487 			ch->match_value = new_match;
488 			break;
489 		}
490 
491 		/* the counter has reached a value greater
492 		 * than our new match value. and since the
493 		 * has_wrapped flag isn't set we must have
494 		 * programmed a too close event.
495 		 * -> increase delay and retry.
496 		 */
497 		if (delay)
498 			delay <<= 1;
499 		else
500 			delay = 1;
501 
502 		if (!delay)
503 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
504 				 ch->index);
505 
506 	} while (delay);
507 }
508 
509 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
510 {
511 	if (delta > ch->max_match_value)
512 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
513 			 ch->index);
514 
515 	ch->next_match_value = delta;
516 	sh_cmt_clock_event_program_verify(ch, 0);
517 }
518 
519 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
520 {
521 	unsigned long flags;
522 
523 	raw_spin_lock_irqsave(&ch->lock, flags);
524 	__sh_cmt_set_next(ch, delta);
525 	raw_spin_unlock_irqrestore(&ch->lock, flags);
526 }
527 
528 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
529 {
530 	struct sh_cmt_channel *ch = dev_id;
531 
532 	/* clear flags */
533 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
534 			   ch->cmt->info->clear_bits);
535 
536 	/* update clock source counter to begin with if enabled
537 	 * the wrap flag should be cleared by the timer specific
538 	 * isr before we end up here.
539 	 */
540 	if (ch->flags & FLAG_CLOCKSOURCE)
541 		ch->total_cycles += ch->match_value + 1;
542 
543 	if (!(ch->flags & FLAG_REPROGRAM))
544 		ch->next_match_value = ch->max_match_value;
545 
546 	ch->flags |= FLAG_IRQCONTEXT;
547 
548 	if (ch->flags & FLAG_CLOCKEVENT) {
549 		if (!(ch->flags & FLAG_SKIPEVENT)) {
550 			if (clockevent_state_oneshot(&ch->ced)) {
551 				ch->next_match_value = ch->max_match_value;
552 				ch->flags |= FLAG_REPROGRAM;
553 			}
554 
555 			ch->ced.event_handler(&ch->ced);
556 		}
557 	}
558 
559 	ch->flags &= ~FLAG_SKIPEVENT;
560 
561 	if (ch->flags & FLAG_REPROGRAM) {
562 		ch->flags &= ~FLAG_REPROGRAM;
563 		sh_cmt_clock_event_program_verify(ch, 1);
564 
565 		if (ch->flags & FLAG_CLOCKEVENT)
566 			if ((clockevent_state_shutdown(&ch->ced))
567 			    || (ch->match_value == ch->next_match_value))
568 				ch->flags &= ~FLAG_REPROGRAM;
569 	}
570 
571 	ch->flags &= ~FLAG_IRQCONTEXT;
572 
573 	return IRQ_HANDLED;
574 }
575 
576 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
577 {
578 	int ret = 0;
579 	unsigned long flags;
580 
581 	if (flag & FLAG_CLOCKSOURCE)
582 		pm_runtime_get_sync(&ch->cmt->pdev->dev);
583 
584 	raw_spin_lock_irqsave(&ch->lock, flags);
585 
586 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
587 		if (flag & FLAG_CLOCKEVENT)
588 			pm_runtime_get_sync(&ch->cmt->pdev->dev);
589 		ret = sh_cmt_enable(ch);
590 	}
591 
592 	if (ret)
593 		goto out;
594 	ch->flags |= flag;
595 
596 	/* setup timeout if no clockevent */
597 	if (ch->cmt->num_channels == 1 &&
598 	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
599 		__sh_cmt_set_next(ch, ch->max_match_value);
600  out:
601 	raw_spin_unlock_irqrestore(&ch->lock, flags);
602 
603 	return ret;
604 }
605 
606 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
607 {
608 	unsigned long flags;
609 	unsigned long f;
610 
611 	raw_spin_lock_irqsave(&ch->lock, flags);
612 
613 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
614 	ch->flags &= ~flag;
615 
616 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
617 		sh_cmt_disable(ch);
618 		if (flag & FLAG_CLOCKEVENT)
619 			pm_runtime_put(&ch->cmt->pdev->dev);
620 	}
621 
622 	/* adjust the timeout to maximum if only clocksource left */
623 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
624 		__sh_cmt_set_next(ch, ch->max_match_value);
625 
626 	raw_spin_unlock_irqrestore(&ch->lock, flags);
627 
628 	if (flag & FLAG_CLOCKSOURCE)
629 		pm_runtime_put(&ch->cmt->pdev->dev);
630 }
631 
632 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
633 {
634 	return container_of(cs, struct sh_cmt_channel, cs);
635 }
636 
637 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
638 {
639 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
640 	u32 has_wrapped;
641 
642 	if (ch->cmt->num_channels == 1) {
643 		unsigned long flags;
644 		u64 value;
645 		u32 raw;
646 
647 		raw_spin_lock_irqsave(&ch->lock, flags);
648 		value = ch->total_cycles;
649 		raw = sh_cmt_get_counter(ch, &has_wrapped);
650 
651 		if (unlikely(has_wrapped))
652 			raw += ch->match_value + 1;
653 		raw_spin_unlock_irqrestore(&ch->lock, flags);
654 
655 		return value + raw;
656 	}
657 
658 	return sh_cmt_get_counter(ch, &has_wrapped);
659 }
660 
661 static int sh_cmt_clocksource_enable(struct clocksource *cs)
662 {
663 	int ret;
664 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
665 
666 	WARN_ON(ch->cs_enabled);
667 
668 	ch->total_cycles = 0;
669 
670 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
671 	if (!ret)
672 		ch->cs_enabled = true;
673 
674 	return ret;
675 }
676 
677 static void sh_cmt_clocksource_disable(struct clocksource *cs)
678 {
679 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
680 
681 	WARN_ON(!ch->cs_enabled);
682 
683 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
684 	ch->cs_enabled = false;
685 }
686 
687 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
688 {
689 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
690 
691 	if (!ch->cs_enabled)
692 		return;
693 
694 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
695 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
696 }
697 
698 static void sh_cmt_clocksource_resume(struct clocksource *cs)
699 {
700 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
701 
702 	if (!ch->cs_enabled)
703 		return;
704 
705 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
706 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
707 }
708 
709 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
710 				       const char *name)
711 {
712 	struct clocksource *cs = &ch->cs;
713 
714 	cs->name = name;
715 	cs->rating = 125;
716 	cs->read = sh_cmt_clocksource_read;
717 	cs->enable = sh_cmt_clocksource_enable;
718 	cs->disable = sh_cmt_clocksource_disable;
719 	cs->suspend = sh_cmt_clocksource_suspend;
720 	cs->resume = sh_cmt_clocksource_resume;
721 	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
722 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
723 
724 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
725 		 ch->index);
726 
727 	clocksource_register_hz(cs, ch->cmt->rate);
728 	return 0;
729 }
730 
731 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
732 {
733 	return container_of(ced, struct sh_cmt_channel, ced);
734 }
735 
736 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
737 {
738 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
739 
740 	if (periodic)
741 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
742 	else
743 		sh_cmt_set_next(ch, ch->max_match_value);
744 }
745 
746 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
747 {
748 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
749 
750 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
751 	return 0;
752 }
753 
754 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
755 					int periodic)
756 {
757 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
758 
759 	/* deal with old setting first */
760 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
761 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
762 
763 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
764 		 ch->index, periodic ? "periodic" : "oneshot");
765 	sh_cmt_clock_event_start(ch, periodic);
766 	return 0;
767 }
768 
769 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
770 {
771 	return sh_cmt_clock_event_set_state(ced, 0);
772 }
773 
774 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
775 {
776 	return sh_cmt_clock_event_set_state(ced, 1);
777 }
778 
779 static int sh_cmt_clock_event_next(unsigned long delta,
780 				   struct clock_event_device *ced)
781 {
782 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
783 
784 	BUG_ON(!clockevent_state_oneshot(ced));
785 	if (likely(ch->flags & FLAG_IRQCONTEXT))
786 		ch->next_match_value = delta - 1;
787 	else
788 		sh_cmt_set_next(ch, delta - 1);
789 
790 	return 0;
791 }
792 
793 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
794 {
795 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
796 
797 	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
798 	clk_unprepare(ch->cmt->clk);
799 }
800 
801 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
802 {
803 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
804 
805 	clk_prepare(ch->cmt->clk);
806 	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
807 }
808 
809 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
810 				      const char *name)
811 {
812 	struct clock_event_device *ced = &ch->ced;
813 	int irq;
814 	int ret;
815 
816 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
817 	if (irq < 0)
818 		return irq;
819 
820 	ret = request_irq(irq, sh_cmt_interrupt,
821 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
822 			  dev_name(&ch->cmt->pdev->dev), ch);
823 	if (ret) {
824 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
825 			ch->index, irq);
826 		return ret;
827 	}
828 
829 	ced->name = name;
830 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
831 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
832 	ced->rating = 125;
833 	ced->cpumask = cpu_possible_mask;
834 	ced->set_next_event = sh_cmt_clock_event_next;
835 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
836 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
837 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
838 	ced->suspend = sh_cmt_clock_event_suspend;
839 	ced->resume = sh_cmt_clock_event_resume;
840 
841 	/* TODO: calculate good shift from rate and counter bit width */
842 	ced->shift = 32;
843 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
844 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
845 	ced->max_delta_ticks = ch->max_match_value;
846 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
847 	ced->min_delta_ticks = 0x1f;
848 
849 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
850 		 ch->index);
851 	clockevents_register_device(ced);
852 
853 	return 0;
854 }
855 
856 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
857 			   bool clockevent, bool clocksource)
858 {
859 	int ret;
860 
861 	if (clockevent) {
862 		ch->cmt->has_clockevent = true;
863 		ret = sh_cmt_register_clockevent(ch, name);
864 		if (ret < 0)
865 			return ret;
866 	}
867 
868 	if (clocksource) {
869 		ch->cmt->has_clocksource = true;
870 		sh_cmt_register_clocksource(ch, name);
871 	}
872 
873 	return 0;
874 }
875 
876 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
877 				unsigned int hwidx, bool clockevent,
878 				bool clocksource, struct sh_cmt_device *cmt)
879 {
880 	u32 value;
881 	int ret;
882 
883 	/* Skip unused channels. */
884 	if (!clockevent && !clocksource)
885 		return 0;
886 
887 	ch->cmt = cmt;
888 	ch->index = index;
889 	ch->hwidx = hwidx;
890 	ch->timer_bit = hwidx;
891 
892 	/*
893 	 * Compute the address of the channel control register block. For the
894 	 * timers with a per-channel start/stop register, compute its address
895 	 * as well.
896 	 */
897 	switch (cmt->info->model) {
898 	case SH_CMT_16BIT:
899 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
900 		break;
901 	case SH_CMT_32BIT:
902 	case SH_CMT_48BIT:
903 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
904 		break;
905 	case SH_CMT0_RCAR_GEN2:
906 	case SH_CMT1_RCAR_GEN2:
907 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
908 		ch->ioctrl = ch->iostart + 0x10;
909 		ch->timer_bit = 0;
910 
911 		/* Enable the clock supply to the channel */
912 		value = ioread32(cmt->mapbase + CMCLKE);
913 		value |= BIT(hwidx);
914 		iowrite32(value, cmt->mapbase + CMCLKE);
915 		break;
916 	}
917 
918 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
919 		ch->max_match_value = ~0;
920 	else
921 		ch->max_match_value = (1 << cmt->info->width) - 1;
922 
923 	ch->match_value = ch->max_match_value;
924 	raw_spin_lock_init(&ch->lock);
925 
926 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
927 			      clockevent, clocksource);
928 	if (ret) {
929 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
930 			ch->index);
931 		return ret;
932 	}
933 	ch->cs_enabled = false;
934 
935 	return 0;
936 }
937 
938 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
939 {
940 	struct resource *mem;
941 
942 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
943 	if (!mem) {
944 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
945 		return -ENXIO;
946 	}
947 
948 	cmt->mapbase = ioremap(mem->start, resource_size(mem));
949 	if (cmt->mapbase == NULL) {
950 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
951 		return -ENXIO;
952 	}
953 
954 	return 0;
955 }
956 
957 static const struct platform_device_id sh_cmt_id_table[] = {
958 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
959 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
960 	{ }
961 };
962 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
963 
964 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
965 	{
966 		/* deprecated, preserved for backward compatibility */
967 		.compatible = "renesas,cmt-48",
968 		.data = &sh_cmt_info[SH_CMT_48BIT]
969 	},
970 	{
971 		/* deprecated, preserved for backward compatibility */
972 		.compatible = "renesas,cmt-48-gen2",
973 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
974 	},
975 	{
976 		.compatible = "renesas,r8a7740-cmt1",
977 		.data = &sh_cmt_info[SH_CMT_48BIT]
978 	},
979 	{
980 		.compatible = "renesas,sh73a0-cmt1",
981 		.data = &sh_cmt_info[SH_CMT_48BIT]
982 	},
983 	{
984 		.compatible = "renesas,rcar-gen2-cmt0",
985 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
986 	},
987 	{
988 		.compatible = "renesas,rcar-gen2-cmt1",
989 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
990 	},
991 	{
992 		.compatible = "renesas,rcar-gen3-cmt0",
993 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
994 	},
995 	{
996 		.compatible = "renesas,rcar-gen3-cmt1",
997 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
998 	},
999 	{
1000 		.compatible = "renesas,rcar-gen4-cmt0",
1001 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1002 	},
1003 	{
1004 		.compatible = "renesas,rcar-gen4-cmt1",
1005 		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1006 	},
1007 	{ }
1008 };
1009 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1010 
1011 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1012 {
1013 	unsigned int mask, i;
1014 	unsigned long rate;
1015 	int ret;
1016 
1017 	cmt->pdev = pdev;
1018 	raw_spin_lock_init(&cmt->lock);
1019 
1020 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1021 		cmt->info = of_device_get_match_data(&pdev->dev);
1022 		cmt->hw_channels = cmt->info->channels_mask;
1023 	} else if (pdev->dev.platform_data) {
1024 		struct sh_timer_config *cfg = pdev->dev.platform_data;
1025 		const struct platform_device_id *id = pdev->id_entry;
1026 
1027 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1028 		cmt->hw_channels = cfg->channels_mask;
1029 	} else {
1030 		dev_err(&cmt->pdev->dev, "missing platform data\n");
1031 		return -ENXIO;
1032 	}
1033 
1034 	/* Get hold of clock. */
1035 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1036 	if (IS_ERR(cmt->clk)) {
1037 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1038 		return PTR_ERR(cmt->clk);
1039 	}
1040 
1041 	ret = clk_prepare(cmt->clk);
1042 	if (ret < 0)
1043 		goto err_clk_put;
1044 
1045 	/* Determine clock rate. */
1046 	ret = clk_enable(cmt->clk);
1047 	if (ret < 0)
1048 		goto err_clk_unprepare;
1049 
1050 	rate = clk_get_rate(cmt->clk);
1051 	if (!rate) {
1052 		ret = -EINVAL;
1053 		goto err_clk_disable;
1054 	}
1055 
1056 	/* We shall wait 2 input clks after register writes */
1057 	if (cmt->info->model >= SH_CMT_48BIT)
1058 		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1059 	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1060 
1061 	/* Map the memory resource(s). */
1062 	ret = sh_cmt_map_memory(cmt);
1063 	if (ret < 0)
1064 		goto err_clk_disable;
1065 
1066 	/* Allocate and setup the channels. */
1067 	cmt->num_channels = hweight8(cmt->hw_channels);
1068 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1069 				GFP_KERNEL);
1070 	if (cmt->channels == NULL) {
1071 		ret = -ENOMEM;
1072 		goto err_unmap;
1073 	}
1074 
1075 	/*
1076 	 * Use the first channel as a clock event device and the second channel
1077 	 * as a clock source. If only one channel is available use it for both.
1078 	 */
1079 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1080 		unsigned int hwidx = ffs(mask) - 1;
1081 		bool clocksource = i == 1 || cmt->num_channels == 1;
1082 		bool clockevent = i == 0;
1083 
1084 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1085 					   clockevent, clocksource, cmt);
1086 		if (ret < 0)
1087 			goto err_unmap;
1088 
1089 		mask &= ~(1 << hwidx);
1090 	}
1091 
1092 	clk_disable(cmt->clk);
1093 
1094 	platform_set_drvdata(pdev, cmt);
1095 
1096 	return 0;
1097 
1098 err_unmap:
1099 	kfree(cmt->channels);
1100 	iounmap(cmt->mapbase);
1101 err_clk_disable:
1102 	clk_disable(cmt->clk);
1103 err_clk_unprepare:
1104 	clk_unprepare(cmt->clk);
1105 err_clk_put:
1106 	clk_put(cmt->clk);
1107 	return ret;
1108 }
1109 
1110 static int sh_cmt_probe(struct platform_device *pdev)
1111 {
1112 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1113 	int ret;
1114 
1115 	if (!is_sh_early_platform_device(pdev)) {
1116 		pm_runtime_set_active(&pdev->dev);
1117 		pm_runtime_enable(&pdev->dev);
1118 	}
1119 
1120 	if (cmt) {
1121 		dev_info(&pdev->dev, "kept as earlytimer\n");
1122 		goto out;
1123 	}
1124 
1125 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1126 	if (cmt == NULL)
1127 		return -ENOMEM;
1128 
1129 	ret = sh_cmt_setup(cmt, pdev);
1130 	if (ret) {
1131 		kfree(cmt);
1132 		pm_runtime_idle(&pdev->dev);
1133 		return ret;
1134 	}
1135 	if (is_sh_early_platform_device(pdev))
1136 		return 0;
1137 
1138  out:
1139 	if (cmt->has_clockevent || cmt->has_clocksource)
1140 		pm_runtime_irq_safe(&pdev->dev);
1141 	else
1142 		pm_runtime_idle(&pdev->dev);
1143 
1144 	return 0;
1145 }
1146 
1147 static struct platform_driver sh_cmt_device_driver = {
1148 	.probe		= sh_cmt_probe,
1149 	.driver		= {
1150 		.name	= "sh_cmt",
1151 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1152 		.suppress_bind_attrs = true,
1153 	},
1154 	.id_table	= sh_cmt_id_table,
1155 };
1156 
1157 static int __init sh_cmt_init(void)
1158 {
1159 	return platform_driver_register(&sh_cmt_device_driver);
1160 }
1161 
1162 static void __exit sh_cmt_exit(void)
1163 {
1164 	platform_driver_unregister(&sh_cmt_device_driver);
1165 }
1166 
1167 #ifdef CONFIG_SUPERH
1168 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1169 #endif
1170 
1171 subsys_initcall(sh_cmt_init);
1172 module_exit(sh_cmt_exit);
1173 
1174 MODULE_AUTHOR("Magnus Damm");
1175 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1176