1 /* 2 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com/ 4 * 5 * samsung - Common hr-timer support (s3c and s5p) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/interrupt.h> 13 #include <linux/irq.h> 14 #include <linux/err.h> 15 #include <linux/clk.h> 16 #include <linux/clockchips.h> 17 #include <linux/list.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/of_address.h> 21 #include <linux/of_irq.h> 22 #include <linux/platform_device.h> 23 #include <linux/slab.h> 24 #include <linux/sched_clock.h> 25 26 #include <clocksource/samsung_pwm.h> 27 28 29 /* 30 * Clocksource driver 31 */ 32 33 #define REG_TCFG0 0x00 34 #define REG_TCFG1 0x04 35 #define REG_TCON 0x08 36 #define REG_TINT_CSTAT 0x44 37 38 #define REG_TCNTB(chan) (0x0c + 12 * (chan)) 39 #define REG_TCMPB(chan) (0x10 + 12 * (chan)) 40 41 #define TCFG0_PRESCALER_MASK 0xff 42 #define TCFG0_PRESCALER1_SHIFT 8 43 44 #define TCFG1_SHIFT(x) ((x) * 4) 45 #define TCFG1_MUX_MASK 0xf 46 47 /* 48 * Each channel occupies 4 bits in TCON register, but there is a gap of 4 49 * bits (one channel) after channel 0, so channels have different numbering 50 * when accessing TCON register. 51 * 52 * In addition, the location of autoreload bit for channel 4 (TCON channel 5) 53 * in its set of bits is 2 as opposed to 3 for other channels. 54 */ 55 #define TCON_START(chan) (1 << (4 * (chan) + 0)) 56 #define TCON_MANUALUPDATE(chan) (1 << (4 * (chan) + 1)) 57 #define TCON_INVERT(chan) (1 << (4 * (chan) + 2)) 58 #define _TCON_AUTORELOAD(chan) (1 << (4 * (chan) + 3)) 59 #define _TCON_AUTORELOAD4(chan) (1 << (4 * (chan) + 2)) 60 #define TCON_AUTORELOAD(chan) \ 61 ((chan < 5) ? _TCON_AUTORELOAD(chan) : _TCON_AUTORELOAD4(chan)) 62 63 DEFINE_SPINLOCK(samsung_pwm_lock); 64 EXPORT_SYMBOL(samsung_pwm_lock); 65 66 struct samsung_pwm_clocksource { 67 void __iomem *base; 68 void __iomem *source_reg; 69 unsigned int irq[SAMSUNG_PWM_NUM]; 70 struct samsung_pwm_variant variant; 71 72 struct clk *timerclk; 73 74 unsigned int event_id; 75 unsigned int source_id; 76 unsigned int tcnt_max; 77 unsigned int tscaler_div; 78 unsigned int tdiv; 79 80 unsigned long clock_count_per_tick; 81 }; 82 83 static struct samsung_pwm_clocksource pwm; 84 85 static void samsung_timer_set_prescale(unsigned int channel, u16 prescale) 86 { 87 unsigned long flags; 88 u8 shift = 0; 89 u32 reg; 90 91 if (channel >= 2) 92 shift = TCFG0_PRESCALER1_SHIFT; 93 94 spin_lock_irqsave(&samsung_pwm_lock, flags); 95 96 reg = readl(pwm.base + REG_TCFG0); 97 reg &= ~(TCFG0_PRESCALER_MASK << shift); 98 reg |= (prescale - 1) << shift; 99 writel(reg, pwm.base + REG_TCFG0); 100 101 spin_unlock_irqrestore(&samsung_pwm_lock, flags); 102 } 103 104 static void samsung_timer_set_divisor(unsigned int channel, u8 divisor) 105 { 106 u8 shift = TCFG1_SHIFT(channel); 107 unsigned long flags; 108 u32 reg; 109 u8 bits; 110 111 bits = (fls(divisor) - 1) - pwm.variant.div_base; 112 113 spin_lock_irqsave(&samsung_pwm_lock, flags); 114 115 reg = readl(pwm.base + REG_TCFG1); 116 reg &= ~(TCFG1_MUX_MASK << shift); 117 reg |= bits << shift; 118 writel(reg, pwm.base + REG_TCFG1); 119 120 spin_unlock_irqrestore(&samsung_pwm_lock, flags); 121 } 122 123 static void samsung_time_stop(unsigned int channel) 124 { 125 unsigned long tcon; 126 unsigned long flags; 127 128 if (channel > 0) 129 ++channel; 130 131 spin_lock_irqsave(&samsung_pwm_lock, flags); 132 133 tcon = __raw_readl(pwm.base + REG_TCON); 134 tcon &= ~TCON_START(channel); 135 __raw_writel(tcon, pwm.base + REG_TCON); 136 137 spin_unlock_irqrestore(&samsung_pwm_lock, flags); 138 } 139 140 static void samsung_time_setup(unsigned int channel, unsigned long tcnt) 141 { 142 unsigned long tcon; 143 unsigned long flags; 144 unsigned int tcon_chan = channel; 145 146 if (tcon_chan > 0) 147 ++tcon_chan; 148 149 spin_lock_irqsave(&samsung_pwm_lock, flags); 150 151 tcon = __raw_readl(pwm.base + REG_TCON); 152 153 tcon &= ~(TCON_START(tcon_chan) | TCON_AUTORELOAD(tcon_chan)); 154 tcon |= TCON_MANUALUPDATE(tcon_chan); 155 156 __raw_writel(tcnt, pwm.base + REG_TCNTB(channel)); 157 __raw_writel(tcnt, pwm.base + REG_TCMPB(channel)); 158 __raw_writel(tcon, pwm.base + REG_TCON); 159 160 spin_unlock_irqrestore(&samsung_pwm_lock, flags); 161 } 162 163 static void samsung_time_start(unsigned int channel, bool periodic) 164 { 165 unsigned long tcon; 166 unsigned long flags; 167 168 if (channel > 0) 169 ++channel; 170 171 spin_lock_irqsave(&samsung_pwm_lock, flags); 172 173 tcon = __raw_readl(pwm.base + REG_TCON); 174 175 tcon &= ~TCON_MANUALUPDATE(channel); 176 tcon |= TCON_START(channel); 177 178 if (periodic) 179 tcon |= TCON_AUTORELOAD(channel); 180 else 181 tcon &= ~TCON_AUTORELOAD(channel); 182 183 __raw_writel(tcon, pwm.base + REG_TCON); 184 185 spin_unlock_irqrestore(&samsung_pwm_lock, flags); 186 } 187 188 static int samsung_set_next_event(unsigned long cycles, 189 struct clock_event_device *evt) 190 { 191 /* 192 * This check is needed to account for internal rounding 193 * errors inside clockevents core, which might result in 194 * passing cycles = 0, which in turn would not generate any 195 * timer interrupt and hang the system. 196 * 197 * Another solution would be to set up the clockevent device 198 * with min_delta = 2, but this would unnecessarily increase 199 * the minimum sleep period. 200 */ 201 if (!cycles) 202 cycles = 1; 203 204 samsung_time_setup(pwm.event_id, cycles); 205 samsung_time_start(pwm.event_id, false); 206 207 return 0; 208 } 209 210 static int samsung_shutdown(struct clock_event_device *evt) 211 { 212 samsung_time_stop(pwm.event_id); 213 return 0; 214 } 215 216 static int samsung_set_periodic(struct clock_event_device *evt) 217 { 218 samsung_time_stop(pwm.event_id); 219 samsung_time_setup(pwm.event_id, pwm.clock_count_per_tick - 1); 220 samsung_time_start(pwm.event_id, true); 221 return 0; 222 } 223 224 static void samsung_clockevent_resume(struct clock_event_device *cev) 225 { 226 samsung_timer_set_prescale(pwm.event_id, pwm.tscaler_div); 227 samsung_timer_set_divisor(pwm.event_id, pwm.tdiv); 228 229 if (pwm.variant.has_tint_cstat) { 230 u32 mask = (1 << pwm.event_id); 231 writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT); 232 } 233 } 234 235 static struct clock_event_device time_event_device = { 236 .name = "samsung_event_timer", 237 .features = CLOCK_EVT_FEAT_PERIODIC | 238 CLOCK_EVT_FEAT_ONESHOT, 239 .rating = 200, 240 .set_next_event = samsung_set_next_event, 241 .set_state_shutdown = samsung_shutdown, 242 .set_state_periodic = samsung_set_periodic, 243 .set_state_oneshot = samsung_shutdown, 244 .tick_resume = samsung_shutdown, 245 .resume = samsung_clockevent_resume, 246 }; 247 248 static irqreturn_t samsung_clock_event_isr(int irq, void *dev_id) 249 { 250 struct clock_event_device *evt = dev_id; 251 252 if (pwm.variant.has_tint_cstat) { 253 u32 mask = (1 << pwm.event_id); 254 writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT); 255 } 256 257 evt->event_handler(evt); 258 259 return IRQ_HANDLED; 260 } 261 262 static struct irqaction samsung_clock_event_irq = { 263 .name = "samsung_time_irq", 264 .flags = IRQF_TIMER | IRQF_IRQPOLL, 265 .handler = samsung_clock_event_isr, 266 .dev_id = &time_event_device, 267 }; 268 269 static void __init samsung_clockevent_init(void) 270 { 271 unsigned long pclk; 272 unsigned long clock_rate; 273 unsigned int irq_number; 274 275 pclk = clk_get_rate(pwm.timerclk); 276 277 samsung_timer_set_prescale(pwm.event_id, pwm.tscaler_div); 278 samsung_timer_set_divisor(pwm.event_id, pwm.tdiv); 279 280 clock_rate = pclk / (pwm.tscaler_div * pwm.tdiv); 281 pwm.clock_count_per_tick = clock_rate / HZ; 282 283 time_event_device.cpumask = cpumask_of(0); 284 clockevents_config_and_register(&time_event_device, 285 clock_rate, 1, pwm.tcnt_max); 286 287 irq_number = pwm.irq[pwm.event_id]; 288 setup_irq(irq_number, &samsung_clock_event_irq); 289 290 if (pwm.variant.has_tint_cstat) { 291 u32 mask = (1 << pwm.event_id); 292 writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT); 293 } 294 } 295 296 static void samsung_clocksource_suspend(struct clocksource *cs) 297 { 298 samsung_time_stop(pwm.source_id); 299 } 300 301 static void samsung_clocksource_resume(struct clocksource *cs) 302 { 303 samsung_timer_set_prescale(pwm.source_id, pwm.tscaler_div); 304 samsung_timer_set_divisor(pwm.source_id, pwm.tdiv); 305 306 samsung_time_setup(pwm.source_id, pwm.tcnt_max); 307 samsung_time_start(pwm.source_id, true); 308 } 309 310 static cycle_t notrace samsung_clocksource_read(struct clocksource *c) 311 { 312 return ~readl_relaxed(pwm.source_reg); 313 } 314 315 static struct clocksource samsung_clocksource = { 316 .name = "samsung_clocksource_timer", 317 .rating = 250, 318 .read = samsung_clocksource_read, 319 .suspend = samsung_clocksource_suspend, 320 .resume = samsung_clocksource_resume, 321 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 322 }; 323 324 /* 325 * Override the global weak sched_clock symbol with this 326 * local implementation which uses the clocksource to get some 327 * better resolution when scheduling the kernel. We accept that 328 * this wraps around for now, since it is just a relative time 329 * stamp. (Inspired by U300 implementation.) 330 */ 331 static u64 notrace samsung_read_sched_clock(void) 332 { 333 return samsung_clocksource_read(NULL); 334 } 335 336 static void __init samsung_clocksource_init(void) 337 { 338 unsigned long pclk; 339 unsigned long clock_rate; 340 int ret; 341 342 pclk = clk_get_rate(pwm.timerclk); 343 344 samsung_timer_set_prescale(pwm.source_id, pwm.tscaler_div); 345 samsung_timer_set_divisor(pwm.source_id, pwm.tdiv); 346 347 clock_rate = pclk / (pwm.tscaler_div * pwm.tdiv); 348 349 samsung_time_setup(pwm.source_id, pwm.tcnt_max); 350 samsung_time_start(pwm.source_id, true); 351 352 if (pwm.source_id == 4) 353 pwm.source_reg = pwm.base + 0x40; 354 else 355 pwm.source_reg = pwm.base + pwm.source_id * 0x0c + 0x14; 356 357 sched_clock_register(samsung_read_sched_clock, 358 pwm.variant.bits, clock_rate); 359 360 samsung_clocksource.mask = CLOCKSOURCE_MASK(pwm.variant.bits); 361 ret = clocksource_register_hz(&samsung_clocksource, clock_rate); 362 if (ret) 363 panic("samsung_clocksource_timer: can't register clocksource\n"); 364 } 365 366 static void __init samsung_timer_resources(void) 367 { 368 clk_prepare_enable(pwm.timerclk); 369 370 pwm.tcnt_max = (1UL << pwm.variant.bits) - 1; 371 if (pwm.variant.bits == 16) { 372 pwm.tscaler_div = 25; 373 pwm.tdiv = 2; 374 } else { 375 pwm.tscaler_div = 2; 376 pwm.tdiv = 1; 377 } 378 } 379 380 /* 381 * PWM master driver 382 */ 383 static void __init _samsung_pwm_clocksource_init(void) 384 { 385 u8 mask; 386 int channel; 387 388 mask = ~pwm.variant.output_mask & ((1 << SAMSUNG_PWM_NUM) - 1); 389 channel = fls(mask) - 1; 390 if (channel < 0) 391 panic("failed to find PWM channel for clocksource"); 392 pwm.source_id = channel; 393 394 mask &= ~(1 << channel); 395 channel = fls(mask) - 1; 396 if (channel < 0) 397 panic("failed to find PWM channel for clock event"); 398 pwm.event_id = channel; 399 400 samsung_timer_resources(); 401 samsung_clockevent_init(); 402 samsung_clocksource_init(); 403 } 404 405 void __init samsung_pwm_clocksource_init(void __iomem *base, 406 unsigned int *irqs, struct samsung_pwm_variant *variant) 407 { 408 pwm.base = base; 409 memcpy(&pwm.variant, variant, sizeof(pwm.variant)); 410 memcpy(pwm.irq, irqs, SAMSUNG_PWM_NUM * sizeof(*irqs)); 411 412 pwm.timerclk = clk_get(NULL, "timers"); 413 if (IS_ERR(pwm.timerclk)) 414 panic("failed to get timers clock for timer"); 415 416 _samsung_pwm_clocksource_init(); 417 } 418 419 #ifdef CONFIG_CLKSRC_OF 420 static void __init samsung_pwm_alloc(struct device_node *np, 421 const struct samsung_pwm_variant *variant) 422 { 423 struct property *prop; 424 const __be32 *cur; 425 u32 val; 426 int i; 427 428 memcpy(&pwm.variant, variant, sizeof(pwm.variant)); 429 for (i = 0; i < SAMSUNG_PWM_NUM; ++i) 430 pwm.irq[i] = irq_of_parse_and_map(np, i); 431 432 of_property_for_each_u32(np, "samsung,pwm-outputs", prop, cur, val) { 433 if (val >= SAMSUNG_PWM_NUM) { 434 pr_warning("%s: invalid channel index in samsung,pwm-outputs property\n", 435 __func__); 436 continue; 437 } 438 pwm.variant.output_mask |= 1 << val; 439 } 440 441 pwm.base = of_iomap(np, 0); 442 if (!pwm.base) { 443 pr_err("%s: failed to map PWM registers\n", __func__); 444 return; 445 } 446 447 pwm.timerclk = of_clk_get_by_name(np, "timers"); 448 if (IS_ERR(pwm.timerclk)) 449 panic("failed to get timers clock for timer"); 450 451 _samsung_pwm_clocksource_init(); 452 } 453 454 static const struct samsung_pwm_variant s3c24xx_variant = { 455 .bits = 16, 456 .div_base = 1, 457 .has_tint_cstat = false, 458 .tclk_mask = (1 << 4), 459 }; 460 461 static void __init s3c2410_pwm_clocksource_init(struct device_node *np) 462 { 463 samsung_pwm_alloc(np, &s3c24xx_variant); 464 } 465 CLOCKSOURCE_OF_DECLARE(s3c2410_pwm, "samsung,s3c2410-pwm", s3c2410_pwm_clocksource_init); 466 467 static const struct samsung_pwm_variant s3c64xx_variant = { 468 .bits = 32, 469 .div_base = 0, 470 .has_tint_cstat = true, 471 .tclk_mask = (1 << 7) | (1 << 6) | (1 << 5), 472 }; 473 474 static void __init s3c64xx_pwm_clocksource_init(struct device_node *np) 475 { 476 samsung_pwm_alloc(np, &s3c64xx_variant); 477 } 478 CLOCKSOURCE_OF_DECLARE(s3c6400_pwm, "samsung,s3c6400-pwm", s3c64xx_pwm_clocksource_init); 479 480 static const struct samsung_pwm_variant s5p64x0_variant = { 481 .bits = 32, 482 .div_base = 0, 483 .has_tint_cstat = true, 484 .tclk_mask = 0, 485 }; 486 487 static void __init s5p64x0_pwm_clocksource_init(struct device_node *np) 488 { 489 samsung_pwm_alloc(np, &s5p64x0_variant); 490 } 491 CLOCKSOURCE_OF_DECLARE(s5p6440_pwm, "samsung,s5p6440-pwm", s5p64x0_pwm_clocksource_init); 492 493 static const struct samsung_pwm_variant s5p_variant = { 494 .bits = 32, 495 .div_base = 0, 496 .has_tint_cstat = true, 497 .tclk_mask = (1 << 5), 498 }; 499 500 static void __init s5p_pwm_clocksource_init(struct device_node *np) 501 { 502 samsung_pwm_alloc(np, &s5p_variant); 503 } 504 CLOCKSOURCE_OF_DECLARE(s5pc100_pwm, "samsung,s5pc100-pwm", s5p_pwm_clocksource_init); 505 #endif 506