xref: /linux/drivers/clocksource/i8253.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * i8253 PIT clocksource
4  */
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/io.h>
8 #include <linux/spinlock.h>
9 #include <linux/timex.h>
10 #include <linux/module.h>
11 #include <linux/i8253.h>
12 #include <linux/smp.h>
13 
14 /*
15  * Protects access to I/O ports
16  *
17  * 0040-0043 : timer0, i8253 / i8254
18  * 0061-0061 : NMI Control Register which contains two speaker control bits.
19  */
20 DEFINE_RAW_SPINLOCK(i8253_lock);
21 EXPORT_SYMBOL(i8253_lock);
22 
23 #ifdef CONFIG_CLKSRC_I8253
24 /*
25  * Since the PIT overflows every tick, its not very useful
26  * to just read by itself. So use jiffies to emulate a free
27  * running counter:
28  */
29 static u64 i8253_read(struct clocksource *cs)
30 {
31 	static int old_count;
32 	static u32 old_jifs;
33 	unsigned long flags;
34 	int count;
35 	u32 jifs;
36 
37 	raw_spin_lock_irqsave(&i8253_lock, flags);
38 	/*
39 	 * Although our caller may have the read side of jiffies_lock,
40 	 * this is now a seqlock, and we are cheating in this routine
41 	 * by having side effects on state that we cannot undo if
42 	 * there is a collision on the seqlock and our caller has to
43 	 * retry.  (Namely, old_jifs and old_count.)  So we must treat
44 	 * jiffies as volatile despite the lock.  We read jiffies
45 	 * before latching the timer count to guarantee that although
46 	 * the jiffies value might be older than the count (that is,
47 	 * the counter may underflow between the last point where
48 	 * jiffies was incremented and the point where we latch the
49 	 * count), it cannot be newer.
50 	 */
51 	jifs = jiffies;
52 	outb_p(0x00, PIT_MODE);	/* latch the count ASAP */
53 	count = inb_p(PIT_CH0);	/* read the latched count */
54 	count |= inb_p(PIT_CH0) << 8;
55 
56 	/* VIA686a test code... reset the latch if count > max + 1 */
57 	if (count > PIT_LATCH) {
58 		outb_p(0x34, PIT_MODE);
59 		outb_p(PIT_LATCH & 0xff, PIT_CH0);
60 		outb_p(PIT_LATCH >> 8, PIT_CH0);
61 		count = PIT_LATCH - 1;
62 	}
63 
64 	/*
65 	 * It's possible for count to appear to go the wrong way for a
66 	 * couple of reasons:
67 	 *
68 	 *  1. The timer counter underflows, but we haven't handled the
69 	 *     resulting interrupt and incremented jiffies yet.
70 	 *  2. Hardware problem with the timer, not giving us continuous time,
71 	 *     the counter does small "jumps" upwards on some Pentium systems,
72 	 *     (see c't 95/10 page 335 for Neptun bug.)
73 	 *
74 	 * Previous attempts to handle these cases intelligently were
75 	 * buggy, so we just do the simple thing now.
76 	 */
77 	if (count > old_count && jifs == old_jifs)
78 		count = old_count;
79 
80 	old_count = count;
81 	old_jifs = jifs;
82 
83 	raw_spin_unlock_irqrestore(&i8253_lock, flags);
84 
85 	count = (PIT_LATCH - 1) - count;
86 
87 	return (u64)(jifs * PIT_LATCH) + count;
88 }
89 
90 static struct clocksource i8253_cs = {
91 	.name		= "pit",
92 	.rating		= 110,
93 	.read		= i8253_read,
94 	.mask		= CLOCKSOURCE_MASK(32),
95 };
96 
97 int __init clocksource_i8253_init(void)
98 {
99 	return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE);
100 }
101 #endif
102 
103 #ifdef CONFIG_CLKEVT_I8253
104 void clockevent_i8253_disable(void)
105 {
106 	raw_spin_lock(&i8253_lock);
107 
108 	/*
109 	 * Writing the MODE register should stop the counter, according to
110 	 * the datasheet. This appears to work on real hardware (well, on
111 	 * modern Intel and AMD boxes; I didn't dig the Pegasos out of the
112 	 * shed).
113 	 *
114 	 * However, some virtual implementations differ, and the MODE change
115 	 * doesn't have any effect until either the counter is written (KVM
116 	 * in-kernel PIT) or the next interrupt (QEMU). And in those cases,
117 	 * it may not stop the *count*, only the interrupts. Although in
118 	 * the virt case, that probably doesn't matter, as the value of the
119 	 * counter will only be calculated on demand if the guest reads it;
120 	 * it's the interrupts which cause steal time.
121 	 *
122 	 * Hyper-V apparently has a bug where even in mode 0, the IRQ keeps
123 	 * firing repeatedly if the counter is running. But it *does* do the
124 	 * right thing when the MODE register is written.
125 	 *
126 	 * So: write the MODE and then load the counter, which ensures that
127 	 * the IRQ is stopped on those buggy virt implementations. And then
128 	 * write the MODE again, which is the right way to stop it.
129 	 */
130 	outb_p(0x30, PIT_MODE);
131 	outb_p(0, PIT_CH0);
132 	outb_p(0, PIT_CH0);
133 
134 	outb_p(0x30, PIT_MODE);
135 
136 	raw_spin_unlock(&i8253_lock);
137 }
138 
139 static int pit_shutdown(struct clock_event_device *evt)
140 {
141 	if (!clockevent_state_oneshot(evt) && !clockevent_state_periodic(evt))
142 		return 0;
143 
144 	clockevent_i8253_disable();
145 	return 0;
146 }
147 
148 static int pit_set_oneshot(struct clock_event_device *evt)
149 {
150 	raw_spin_lock(&i8253_lock);
151 	outb_p(0x38, PIT_MODE);
152 	raw_spin_unlock(&i8253_lock);
153 	return 0;
154 }
155 
156 static int pit_set_periodic(struct clock_event_device *evt)
157 {
158 	raw_spin_lock(&i8253_lock);
159 
160 	/* binary, mode 2, LSB/MSB, ch 0 */
161 	outb_p(0x34, PIT_MODE);
162 	outb_p(PIT_LATCH & 0xff, PIT_CH0);	/* LSB */
163 	outb_p(PIT_LATCH >> 8, PIT_CH0);	/* MSB */
164 
165 	raw_spin_unlock(&i8253_lock);
166 	return 0;
167 }
168 
169 /*
170  * Program the next event in oneshot mode
171  *
172  * Delta is given in PIT ticks
173  */
174 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
175 {
176 	raw_spin_lock(&i8253_lock);
177 	outb_p(delta & 0xff , PIT_CH0);	/* LSB */
178 	outb_p(delta >> 8 , PIT_CH0);		/* MSB */
179 	raw_spin_unlock(&i8253_lock);
180 
181 	return 0;
182 }
183 
184 /*
185  * On UP the PIT can serve all of the possible timer functions. On SMP systems
186  * it can be solely used for the global tick.
187  */
188 struct clock_event_device i8253_clockevent = {
189 	.name			= "pit",
190 	.features		= CLOCK_EVT_FEAT_PERIODIC,
191 	.set_state_shutdown	= pit_shutdown,
192 	.set_state_periodic	= pit_set_periodic,
193 	.set_next_event		= pit_next_event,
194 };
195 
196 /*
197  * Initialize the conversion factor and the min/max deltas of the clock event
198  * structure and register the clock event source with the framework.
199  */
200 void __init clockevent_i8253_init(bool oneshot)
201 {
202 	if (oneshot) {
203 		i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT;
204 		i8253_clockevent.set_state_oneshot = pit_set_oneshot;
205 	}
206 	/*
207 	 * Start pit with the boot cpu mask. x86 might make it global
208 	 * when it is used as broadcast device later.
209 	 */
210 	i8253_clockevent.cpumask = cpumask_of(smp_processor_id());
211 
212 	clockevents_config_and_register(&i8253_clockevent, PIT_TICK_RATE,
213 					0xF, 0x7FFF);
214 }
215 #endif
216