xref: /linux/drivers/clocksource/hyperv_timer.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Clocksource driver for the synthetic counter and timers
5  * provided by the Hyper-V hypervisor to guest VMs, as described
6  * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7  * is instruction set architecture independent.
8  *
9  * Copyright (C) 2019, Microsoft, Inc.
10  *
11  * Author:  Michael Kelley <mikelley@microsoft.com>
12  */
13 
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <clocksource/hyperv_timer.h>
21 #include <asm/hyperv-tlfs.h>
22 #include <asm/mshyperv.h>
23 
24 static struct clock_event_device __percpu *hv_clock_event;
25 static u64 hv_sched_clock_offset __ro_after_init;
26 
27 /*
28  * If false, we're using the old mechanism for stimer0 interrupts
29  * where it sends a VMbus message when it expires. The old
30  * mechanism is used when running on older versions of Hyper-V
31  * that don't support Direct Mode. While Hyper-V provides
32  * four stimer's per CPU, Linux uses only stimer0.
33  */
34 static bool direct_mode_enabled;
35 
36 static int stimer0_irq;
37 static int stimer0_vector;
38 static int stimer0_message_sint;
39 
40 /*
41  * ISR for when stimer0 is operating in Direct Mode.  Direct Mode
42  * does not use VMbus or any VMbus messages, so process here and not
43  * in the VMbus driver code.
44  */
45 void hv_stimer0_isr(void)
46 {
47 	struct clock_event_device *ce;
48 
49 	ce = this_cpu_ptr(hv_clock_event);
50 	ce->event_handler(ce);
51 }
52 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
53 
54 static int hv_ce_set_next_event(unsigned long delta,
55 				struct clock_event_device *evt)
56 {
57 	u64 current_tick;
58 
59 	current_tick = hyperv_cs->read(NULL);
60 	current_tick += delta;
61 	hv_init_timer(0, current_tick);
62 	return 0;
63 }
64 
65 static int hv_ce_shutdown(struct clock_event_device *evt)
66 {
67 	hv_init_timer(0, 0);
68 	hv_init_timer_config(0, 0);
69 	if (direct_mode_enabled)
70 		hv_disable_stimer0_percpu_irq(stimer0_irq);
71 
72 	return 0;
73 }
74 
75 static int hv_ce_set_oneshot(struct clock_event_device *evt)
76 {
77 	union hv_stimer_config timer_cfg;
78 
79 	timer_cfg.as_uint64 = 0;
80 	timer_cfg.enable = 1;
81 	timer_cfg.auto_enable = 1;
82 	if (direct_mode_enabled) {
83 		/*
84 		 * When it expires, the timer will directly interrupt
85 		 * on the specified hardware vector/IRQ.
86 		 */
87 		timer_cfg.direct_mode = 1;
88 		timer_cfg.apic_vector = stimer0_vector;
89 		hv_enable_stimer0_percpu_irq(stimer0_irq);
90 	} else {
91 		/*
92 		 * When it expires, the timer will generate a VMbus message,
93 		 * to be handled by the normal VMbus interrupt handler.
94 		 */
95 		timer_cfg.direct_mode = 0;
96 		timer_cfg.sintx = stimer0_message_sint;
97 	}
98 	hv_init_timer_config(0, timer_cfg.as_uint64);
99 	return 0;
100 }
101 
102 /*
103  * hv_stimer_init - Per-cpu initialization of the clockevent
104  */
105 void hv_stimer_init(unsigned int cpu)
106 {
107 	struct clock_event_device *ce;
108 
109 	/*
110 	 * Synthetic timers are always available except on old versions of
111 	 * Hyper-V on x86.  In that case, just return as Linux will use a
112 	 * clocksource based on emulated PIT or LAPIC timer hardware.
113 	 */
114 	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
115 		return;
116 
117 	ce = per_cpu_ptr(hv_clock_event, cpu);
118 	ce->name = "Hyper-V clockevent";
119 	ce->features = CLOCK_EVT_FEAT_ONESHOT;
120 	ce->cpumask = cpumask_of(cpu);
121 	ce->rating = 1000;
122 	ce->set_state_shutdown = hv_ce_shutdown;
123 	ce->set_state_oneshot = hv_ce_set_oneshot;
124 	ce->set_next_event = hv_ce_set_next_event;
125 
126 	clockevents_config_and_register(ce,
127 					HV_CLOCK_HZ,
128 					HV_MIN_DELTA_TICKS,
129 					HV_MAX_MAX_DELTA_TICKS);
130 }
131 EXPORT_SYMBOL_GPL(hv_stimer_init);
132 
133 /*
134  * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
135  */
136 void hv_stimer_cleanup(unsigned int cpu)
137 {
138 	struct clock_event_device *ce;
139 
140 	/* Turn off clockevent device */
141 	if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) {
142 		ce = per_cpu_ptr(hv_clock_event, cpu);
143 		hv_ce_shutdown(ce);
144 	}
145 }
146 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
147 
148 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
149 int hv_stimer_alloc(int sint)
150 {
151 	int ret;
152 
153 	hv_clock_event = alloc_percpu(struct clock_event_device);
154 	if (!hv_clock_event)
155 		return -ENOMEM;
156 
157 	direct_mode_enabled = ms_hyperv.misc_features &
158 			HV_STIMER_DIRECT_MODE_AVAILABLE;
159 	if (direct_mode_enabled) {
160 		ret = hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector,
161 				hv_stimer0_isr);
162 		if (ret) {
163 			free_percpu(hv_clock_event);
164 			hv_clock_event = NULL;
165 			return ret;
166 		}
167 	}
168 
169 	stimer0_message_sint = sint;
170 	return 0;
171 }
172 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
173 
174 /* hv_stimer_free - Free global resources allocated by hv_stimer_alloc() */
175 void hv_stimer_free(void)
176 {
177 	if (direct_mode_enabled && (stimer0_irq != 0)) {
178 		hv_remove_stimer0_irq(stimer0_irq);
179 		stimer0_irq = 0;
180 	}
181 	free_percpu(hv_clock_event);
182 	hv_clock_event = NULL;
183 }
184 EXPORT_SYMBOL_GPL(hv_stimer_free);
185 
186 /*
187  * Do a global cleanup of clockevents for the cases of kexec and
188  * vmbus exit
189  */
190 void hv_stimer_global_cleanup(void)
191 {
192 	int	cpu;
193 	struct clock_event_device *ce;
194 
195 	if (ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE) {
196 		for_each_present_cpu(cpu) {
197 			ce = per_cpu_ptr(hv_clock_event, cpu);
198 			clockevents_unbind_device(ce, cpu);
199 		}
200 	}
201 	hv_stimer_free();
202 }
203 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
204 
205 /*
206  * Code and definitions for the Hyper-V clocksources.  Two
207  * clocksources are defined: one that reads the Hyper-V defined MSR, and
208  * the other that uses the TSC reference page feature as defined in the
209  * TLFS.  The MSR version is for compatibility with old versions of
210  * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
211  */
212 
213 struct clocksource *hyperv_cs;
214 EXPORT_SYMBOL_GPL(hyperv_cs);
215 
216 static struct ms_hyperv_tsc_page tsc_pg __aligned(PAGE_SIZE);
217 
218 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
219 {
220 	return &tsc_pg;
221 }
222 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
223 
224 static u64 notrace read_hv_clock_tsc(struct clocksource *arg)
225 {
226 	u64 current_tick = hv_read_tsc_page(&tsc_pg);
227 
228 	if (current_tick == U64_MAX)
229 		hv_get_time_ref_count(current_tick);
230 
231 	return current_tick;
232 }
233 
234 static u64 read_hv_sched_clock_tsc(void)
235 {
236 	return read_hv_clock_tsc(NULL) - hv_sched_clock_offset;
237 }
238 
239 static struct clocksource hyperv_cs_tsc = {
240 	.name	= "hyperv_clocksource_tsc_page",
241 	.rating	= 400,
242 	.read	= read_hv_clock_tsc,
243 	.mask	= CLOCKSOURCE_MASK(64),
244 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
245 };
246 
247 static u64 notrace read_hv_clock_msr(struct clocksource *arg)
248 {
249 	u64 current_tick;
250 	/*
251 	 * Read the partition counter to get the current tick count. This count
252 	 * is set to 0 when the partition is created and is incremented in
253 	 * 100 nanosecond units.
254 	 */
255 	hv_get_time_ref_count(current_tick);
256 	return current_tick;
257 }
258 
259 static u64 read_hv_sched_clock_msr(void)
260 {
261 	return read_hv_clock_msr(NULL) - hv_sched_clock_offset;
262 }
263 
264 static struct clocksource hyperv_cs_msr = {
265 	.name	= "hyperv_clocksource_msr",
266 	.rating	= 400,
267 	.read	= read_hv_clock_msr,
268 	.mask	= CLOCKSOURCE_MASK(64),
269 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
270 };
271 
272 static bool __init hv_init_tsc_clocksource(void)
273 {
274 	u64		tsc_msr;
275 	phys_addr_t	phys_addr;
276 
277 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
278 		return false;
279 
280 	hyperv_cs = &hyperv_cs_tsc;
281 	phys_addr = virt_to_phys(&tsc_pg);
282 
283 	/*
284 	 * The Hyper-V TLFS specifies to preserve the value of reserved
285 	 * bits in registers. So read the existing value, preserve the
286 	 * low order 12 bits, and add in the guest physical address
287 	 * (which already has at least the low 12 bits set to zero since
288 	 * it is page aligned). Also set the "enable" bit, which is bit 0.
289 	 */
290 	hv_get_reference_tsc(tsc_msr);
291 	tsc_msr &= GENMASK_ULL(11, 0);
292 	tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
293 	hv_set_reference_tsc(tsc_msr);
294 
295 	hv_set_clocksource_vdso(hyperv_cs_tsc);
296 	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
297 
298 	hv_sched_clock_offset = hyperv_cs->read(hyperv_cs);
299 	hv_setup_sched_clock(read_hv_sched_clock_tsc);
300 
301 	return true;
302 }
303 
304 void __init hv_init_clocksource(void)
305 {
306 	/*
307 	 * Try to set up the TSC page clocksource. If it succeeds, we're
308 	 * done. Otherwise, set up the MSR clocksoruce.  At least one of
309 	 * these will always be available except on very old versions of
310 	 * Hyper-V on x86.  In that case we won't have a Hyper-V
311 	 * clocksource, but Linux will still run with a clocksource based
312 	 * on the emulated PIT or LAPIC timer.
313 	 */
314 	if (hv_init_tsc_clocksource())
315 		return;
316 
317 	if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
318 		return;
319 
320 	hyperv_cs = &hyperv_cs_msr;
321 	clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
322 
323 	hv_sched_clock_offset = hyperv_cs->read(hyperv_cs);
324 	hv_setup_sched_clock(read_hv_sched_clock_msr);
325 }
326 EXPORT_SYMBOL_GPL(hv_init_clocksource);
327