xref: /linux/drivers/clocksource/hyperv_timer.c (revision 1d39d02a1535658962f9370312be7b2d634946a5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Clocksource driver for the synthetic counter and timers
5  * provided by the Hyper-V hypervisor to guest VMs, as described
6  * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7  * is instruction set architecture independent.
8  *
9  * Copyright (C) 2019, Microsoft, Inc.
10  *
11  * Author:  Michael Kelley <mikelley@microsoft.com>
12  */
13 
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
19 #include <linux/mm.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <linux/hyperv.h>
25 #include <clocksource/hyperv_timer.h>
26 #include <asm/hyperv-tlfs.h>
27 #include <asm/mshyperv.h>
28 
29 static struct clock_event_device __percpu *hv_clock_event;
30 static u64 hv_sched_clock_offset __ro_after_init;
31 
32 /*
33  * If false, we're using the old mechanism for stimer0 interrupts
34  * where it sends a VMbus message when it expires. The old
35  * mechanism is used when running on older versions of Hyper-V
36  * that don't support Direct Mode. While Hyper-V provides
37  * four stimer's per CPU, Linux uses only stimer0.
38  *
39  * Because Direct Mode does not require processing a VMbus
40  * message, stimer interrupts can be enabled earlier in the
41  * process of booting a CPU, and consistent with when timer
42  * interrupts are enabled for other clocksource drivers.
43  * However, for legacy versions of Hyper-V when Direct Mode
44  * is not enabled, setting up stimer interrupts must be
45  * delayed until VMbus is initialized and can process the
46  * interrupt message.
47  */
48 static bool direct_mode_enabled;
49 
50 static int stimer0_irq = -1;
51 static int stimer0_message_sint;
52 static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt);
53 
54 /*
55  * Common code for stimer0 interrupts coming via Direct Mode or
56  * as a VMbus message.
57  */
58 void hv_stimer0_isr(void)
59 {
60 	struct clock_event_device *ce;
61 
62 	ce = this_cpu_ptr(hv_clock_event);
63 	ce->event_handler(ce);
64 }
65 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
66 
67 /*
68  * stimer0 interrupt handler for architectures that support
69  * per-cpu interrupts, which also implies Direct Mode.
70  */
71 static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id)
72 {
73 	hv_stimer0_isr();
74 	return IRQ_HANDLED;
75 }
76 
77 static int hv_ce_set_next_event(unsigned long delta,
78 				struct clock_event_device *evt)
79 {
80 	u64 current_tick;
81 
82 	current_tick = hv_read_reference_counter();
83 	current_tick += delta;
84 	hv_set_msr(HV_MSR_STIMER0_COUNT, current_tick);
85 	return 0;
86 }
87 
88 static int hv_ce_shutdown(struct clock_event_device *evt)
89 {
90 	hv_set_msr(HV_MSR_STIMER0_COUNT, 0);
91 	hv_set_msr(HV_MSR_STIMER0_CONFIG, 0);
92 	if (direct_mode_enabled && stimer0_irq >= 0)
93 		disable_percpu_irq(stimer0_irq);
94 
95 	return 0;
96 }
97 
98 static int hv_ce_set_oneshot(struct clock_event_device *evt)
99 {
100 	union hv_stimer_config timer_cfg;
101 
102 	timer_cfg.as_uint64 = 0;
103 	timer_cfg.enable = 1;
104 	timer_cfg.auto_enable = 1;
105 	if (direct_mode_enabled) {
106 		/*
107 		 * When it expires, the timer will directly interrupt
108 		 * on the specified hardware vector/IRQ.
109 		 */
110 		timer_cfg.direct_mode = 1;
111 		timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
112 		if (stimer0_irq >= 0)
113 			enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
114 	} else {
115 		/*
116 		 * When it expires, the timer will generate a VMbus message,
117 		 * to be handled by the normal VMbus interrupt handler.
118 		 */
119 		timer_cfg.direct_mode = 0;
120 		timer_cfg.sintx = stimer0_message_sint;
121 	}
122 	hv_set_msr(HV_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
123 	return 0;
124 }
125 
126 /*
127  * hv_stimer_init - Per-cpu initialization of the clockevent
128  */
129 static int hv_stimer_init(unsigned int cpu)
130 {
131 	struct clock_event_device *ce;
132 
133 	if (!hv_clock_event)
134 		return 0;
135 
136 	ce = per_cpu_ptr(hv_clock_event, cpu);
137 	ce->name = "Hyper-V clockevent";
138 	ce->features = CLOCK_EVT_FEAT_ONESHOT;
139 	ce->cpumask = cpumask_of(cpu);
140 
141 	/*
142 	 * Lower the rating of the Hyper-V timer in a TDX VM without paravisor,
143 	 * so the local APIC timer (lapic_clockevent) is the default timer in
144 	 * such a VM. The Hyper-V timer is not preferred in such a VM because
145 	 * it depends on the slow VM Reference Counter MSR (the Hyper-V TSC
146 	 * page is not enbled in such a VM because the VM uses Invariant TSC
147 	 * as a better clocksource and it's challenging to mark the Hyper-V
148 	 * TSC page shared in very early boot).
149 	 */
150 	if (!ms_hyperv.paravisor_present && hv_isolation_type_tdx())
151 		ce->rating = 90;
152 	else
153 		ce->rating = 1000;
154 
155 	ce->set_state_shutdown = hv_ce_shutdown;
156 	ce->set_state_oneshot = hv_ce_set_oneshot;
157 	ce->set_next_event = hv_ce_set_next_event;
158 
159 	clockevents_config_and_register(ce,
160 					HV_CLOCK_HZ,
161 					HV_MIN_DELTA_TICKS,
162 					HV_MAX_MAX_DELTA_TICKS);
163 	return 0;
164 }
165 
166 /*
167  * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
168  */
169 int hv_stimer_cleanup(unsigned int cpu)
170 {
171 	struct clock_event_device *ce;
172 
173 	if (!hv_clock_event)
174 		return 0;
175 
176 	/*
177 	 * In the legacy case where Direct Mode is not enabled
178 	 * (which can only be on x86/64), stimer cleanup happens
179 	 * relatively early in the CPU offlining process. We
180 	 * must unbind the stimer-based clockevent device so
181 	 * that the LAPIC timer can take over until clockevents
182 	 * are no longer needed in the offlining process. Note
183 	 * that clockevents_unbind_device() eventually calls
184 	 * hv_ce_shutdown().
185 	 *
186 	 * The unbind should not be done when Direct Mode is
187 	 * enabled because we may be on an architecture where
188 	 * there are no other clockevent devices to fallback to.
189 	 */
190 	ce = per_cpu_ptr(hv_clock_event, cpu);
191 	if (direct_mode_enabled)
192 		hv_ce_shutdown(ce);
193 	else
194 		clockevents_unbind_device(ce, cpu);
195 
196 	return 0;
197 }
198 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
199 
200 /*
201  * These placeholders are overridden by arch specific code on
202  * architectures that need special setup of the stimer0 IRQ because
203  * they don't support per-cpu IRQs (such as x86/x64).
204  */
205 void __weak hv_setup_stimer0_handler(void (*handler)(void))
206 {
207 };
208 
209 void __weak hv_remove_stimer0_handler(void)
210 {
211 };
212 
213 #ifdef CONFIG_ACPI
214 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
215 static int hv_setup_stimer0_irq(void)
216 {
217 	int ret;
218 
219 	ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
220 			ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
221 	if (ret < 0) {
222 		pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
223 		return ret;
224 	}
225 	stimer0_irq = ret;
226 
227 	ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
228 		"Hyper-V stimer0", &stimer0_evt);
229 	if (ret) {
230 		pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
231 			stimer0_irq, ret);
232 		acpi_unregister_gsi(stimer0_irq);
233 		stimer0_irq = -1;
234 	}
235 	return ret;
236 }
237 
238 static void hv_remove_stimer0_irq(void)
239 {
240 	if (stimer0_irq == -1) {
241 		hv_remove_stimer0_handler();
242 	} else {
243 		free_percpu_irq(stimer0_irq, &stimer0_evt);
244 		acpi_unregister_gsi(stimer0_irq);
245 		stimer0_irq = -1;
246 	}
247 }
248 #else
249 static int hv_setup_stimer0_irq(void)
250 {
251 	return 0;
252 }
253 
254 static void hv_remove_stimer0_irq(void)
255 {
256 }
257 #endif
258 
259 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
260 int hv_stimer_alloc(bool have_percpu_irqs)
261 {
262 	int ret;
263 
264 	/*
265 	 * Synthetic timers are always available except on old versions of
266 	 * Hyper-V on x86.  In that case, return as error as Linux will use a
267 	 * clockevent based on emulated LAPIC timer hardware.
268 	 */
269 	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
270 		return -EINVAL;
271 
272 	hv_clock_event = alloc_percpu(struct clock_event_device);
273 	if (!hv_clock_event)
274 		return -ENOMEM;
275 
276 	direct_mode_enabled = ms_hyperv.misc_features &
277 			HV_STIMER_DIRECT_MODE_AVAILABLE;
278 
279 	/*
280 	 * If Direct Mode isn't enabled, the remainder of the initialization
281 	 * is done later by hv_stimer_legacy_init()
282 	 */
283 	if (!direct_mode_enabled)
284 		return 0;
285 
286 	if (have_percpu_irqs) {
287 		ret = hv_setup_stimer0_irq();
288 		if (ret)
289 			goto free_clock_event;
290 	} else {
291 		hv_setup_stimer0_handler(hv_stimer0_isr);
292 	}
293 
294 	/*
295 	 * Since we are in Direct Mode, stimer initialization
296 	 * can be done now with a CPUHP value in the same range
297 	 * as other clockevent devices.
298 	 */
299 	ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
300 			"clockevents/hyperv/stimer:starting",
301 			hv_stimer_init, hv_stimer_cleanup);
302 	if (ret < 0) {
303 		hv_remove_stimer0_irq();
304 		goto free_clock_event;
305 	}
306 	return ret;
307 
308 free_clock_event:
309 	free_percpu(hv_clock_event);
310 	hv_clock_event = NULL;
311 	return ret;
312 }
313 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
314 
315 /*
316  * hv_stimer_legacy_init -- Called from the VMbus driver to handle
317  * the case when Direct Mode is not enabled, and the stimer
318  * must be initialized late in the CPU onlining process.
319  *
320  */
321 void hv_stimer_legacy_init(unsigned int cpu, int sint)
322 {
323 	if (direct_mode_enabled)
324 		return;
325 
326 	/*
327 	 * This function gets called by each vCPU, so setting the
328 	 * global stimer_message_sint value each time is conceptually
329 	 * not ideal, but the value passed in is always the same and
330 	 * it avoids introducing yet another interface into this
331 	 * clocksource driver just to set the sint in the legacy case.
332 	 */
333 	stimer0_message_sint = sint;
334 	(void)hv_stimer_init(cpu);
335 }
336 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
337 
338 /*
339  * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
340  * handle the case when Direct Mode is not enabled, and the
341  * stimer must be cleaned up early in the CPU offlining
342  * process.
343  */
344 void hv_stimer_legacy_cleanup(unsigned int cpu)
345 {
346 	if (direct_mode_enabled)
347 		return;
348 	(void)hv_stimer_cleanup(cpu);
349 }
350 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
351 
352 /*
353  * Do a global cleanup of clockevents for the cases of kexec and
354  * vmbus exit
355  */
356 void hv_stimer_global_cleanup(void)
357 {
358 	int	cpu;
359 
360 	/*
361 	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
362 	 * Mode is not enabled, and fallback to the LAPIC timer.
363 	 */
364 	for_each_present_cpu(cpu) {
365 		hv_stimer_legacy_cleanup(cpu);
366 	}
367 
368 	if (!hv_clock_event)
369 		return;
370 
371 	if (direct_mode_enabled) {
372 		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
373 		hv_remove_stimer0_irq();
374 		stimer0_irq = -1;
375 	}
376 	free_percpu(hv_clock_event);
377 	hv_clock_event = NULL;
378 
379 }
380 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
381 
382 static __always_inline u64 read_hv_clock_msr(void)
383 {
384 	/*
385 	 * Read the partition counter to get the current tick count. This count
386 	 * is set to 0 when the partition is created and is incremented in 100
387 	 * nanosecond units.
388 	 *
389 	 * Use hv_raw_get_msr() because this function is used from
390 	 * noinstr. Notable; while HV_MSR_TIME_REF_COUNT is a synthetic
391 	 * register it doesn't need the GHCB path.
392 	 */
393 	return hv_raw_get_msr(HV_MSR_TIME_REF_COUNT);
394 }
395 
396 /*
397  * Code and definitions for the Hyper-V clocksources.  Two
398  * clocksources are defined: one that reads the Hyper-V defined MSR, and
399  * the other that uses the TSC reference page feature as defined in the
400  * TLFS.  The MSR version is for compatibility with old versions of
401  * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
402  */
403 
404 static union {
405 	struct ms_hyperv_tsc_page page;
406 	u8 reserved[PAGE_SIZE];
407 } tsc_pg __bss_decrypted __aligned(PAGE_SIZE);
408 
409 static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page;
410 static unsigned long tsc_pfn;
411 
412 unsigned long hv_get_tsc_pfn(void)
413 {
414 	return tsc_pfn;
415 }
416 EXPORT_SYMBOL_GPL(hv_get_tsc_pfn);
417 
418 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
419 {
420 	return tsc_page;
421 }
422 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
423 
424 static __always_inline u64 read_hv_clock_tsc(void)
425 {
426 	u64 cur_tsc, time;
427 
428 	/*
429 	 * The Hyper-V Top-Level Function Spec (TLFS), section Timers,
430 	 * subsection Refererence Counter, guarantees that the TSC and MSR
431 	 * times are in sync and monotonic. Therefore we can fall back
432 	 * to the MSR in case the TSC page indicates unavailability.
433 	 */
434 	if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time))
435 		time = read_hv_clock_msr();
436 
437 	return time;
438 }
439 
440 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
441 {
442 	return read_hv_clock_tsc();
443 }
444 
445 static u64 noinstr read_hv_sched_clock_tsc(void)
446 {
447 	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
448 		(NSEC_PER_SEC / HV_CLOCK_HZ);
449 }
450 
451 static void suspend_hv_clock_tsc(struct clocksource *arg)
452 {
453 	union hv_reference_tsc_msr tsc_msr;
454 
455 	/* Disable the TSC page */
456 	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
457 	tsc_msr.enable = 0;
458 	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
459 }
460 
461 
462 static void resume_hv_clock_tsc(struct clocksource *arg)
463 {
464 	union hv_reference_tsc_msr tsc_msr;
465 
466 	/* Re-enable the TSC page */
467 	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
468 	tsc_msr.enable = 1;
469 	tsc_msr.pfn = tsc_pfn;
470 	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
471 }
472 
473 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
474 static int hv_cs_enable(struct clocksource *cs)
475 {
476 	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
477 	return 0;
478 }
479 #endif
480 
481 static struct clocksource hyperv_cs_tsc = {
482 	.name	= "hyperv_clocksource_tsc_page",
483 	.rating	= 500,
484 	.read	= read_hv_clock_tsc_cs,
485 	.mask	= CLOCKSOURCE_MASK(64),
486 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
487 	.suspend= suspend_hv_clock_tsc,
488 	.resume	= resume_hv_clock_tsc,
489 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
490 	.enable = hv_cs_enable,
491 	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
492 #else
493 	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
494 #endif
495 };
496 
497 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
498 {
499 	return read_hv_clock_msr();
500 }
501 
502 static struct clocksource hyperv_cs_msr = {
503 	.name	= "hyperv_clocksource_msr",
504 	.rating	= 495,
505 	.read	= read_hv_clock_msr_cs,
506 	.mask	= CLOCKSOURCE_MASK(64),
507 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
508 };
509 
510 /*
511  * Reference to pv_ops must be inline so objtool
512  * detection of noinstr violations can work correctly.
513  */
514 #ifdef CONFIG_GENERIC_SCHED_CLOCK
515 static __always_inline void hv_setup_sched_clock(void *sched_clock)
516 {
517 	/*
518 	 * We're on an architecture with generic sched clock (not x86/x64).
519 	 * The Hyper-V sched clock read function returns nanoseconds, not
520 	 * the normal 100ns units of the Hyper-V synthetic clock.
521 	 */
522 	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
523 }
524 #elif defined CONFIG_PARAVIRT
525 static __always_inline void hv_setup_sched_clock(void *sched_clock)
526 {
527 	/* We're on x86/x64 *and* using PV ops */
528 	paravirt_set_sched_clock(sched_clock);
529 }
530 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
531 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
532 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
533 
534 static void __init hv_init_tsc_clocksource(void)
535 {
536 	union hv_reference_tsc_msr tsc_msr;
537 
538 	/*
539 	 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
540 	 * handles frequency and offset changes due to live migration,
541 	 * pause/resume, and other VM management operations.  So lower the
542 	 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
543 	 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
544 	 * TSC will be preferred over the virtualized ARM64 arch counter.
545 	 */
546 	if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
547 		hyperv_cs_tsc.rating = 250;
548 		hyperv_cs_msr.rating = 245;
549 	}
550 
551 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
552 		return;
553 
554 	hv_read_reference_counter = read_hv_clock_tsc;
555 
556 	/*
557 	 * TSC page mapping works differently in root compared to guest.
558 	 * - In guest partition the guest PFN has to be passed to the
559 	 *   hypervisor.
560 	 * - In root partition it's other way around: it has to map the PFN
561 	 *   provided by the hypervisor.
562 	 *   But it can't be mapped right here as it's too early and MMU isn't
563 	 *   ready yet. So, we only set the enable bit here and will remap the
564 	 *   page later in hv_remap_tsc_clocksource().
565 	 *
566 	 * It worth mentioning, that TSC clocksource read function
567 	 * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when
568 	 * TSC page is zeroed (which is the case until the PFN is remapped) and
569 	 * thus TSC clocksource will work even without the real TSC page
570 	 * mapped.
571 	 */
572 	tsc_msr.as_uint64 = hv_get_msr(HV_MSR_REFERENCE_TSC);
573 	if (hv_root_partition)
574 		tsc_pfn = tsc_msr.pfn;
575 	else
576 		tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page));
577 	tsc_msr.enable = 1;
578 	tsc_msr.pfn = tsc_pfn;
579 	hv_set_msr(HV_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
580 
581 	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
582 
583 	/*
584 	 * If TSC is invariant, then let it stay as the sched clock since it
585 	 * will be faster than reading the TSC page. But if not invariant, use
586 	 * the TSC page so that live migrations across hosts with different
587 	 * frequencies is handled correctly.
588 	 */
589 	if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) {
590 		hv_sched_clock_offset = hv_read_reference_counter();
591 		hv_setup_sched_clock(read_hv_sched_clock_tsc);
592 	}
593 }
594 
595 void __init hv_init_clocksource(void)
596 {
597 	/*
598 	 * Try to set up the TSC page clocksource, then the MSR clocksource.
599 	 * At least one of these will always be available except on very old
600 	 * versions of Hyper-V on x86.  In that case we won't have a Hyper-V
601 	 * clocksource, but Linux will still run with a clocksource based
602 	 * on the emulated PIT or LAPIC timer.
603 	 *
604 	 * Never use the MSR clocksource as sched clock.  It's too slow.
605 	 * Better to use the native sched clock as the fallback.
606 	 */
607 	hv_init_tsc_clocksource();
608 
609 	if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
610 		clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
611 }
612 
613 void __init hv_remap_tsc_clocksource(void)
614 {
615 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
616 		return;
617 
618 	if (!hv_root_partition) {
619 		WARN(1, "%s: attempt to remap TSC page in guest partition\n",
620 		     __func__);
621 		return;
622 	}
623 
624 	tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg),
625 			    MEMREMAP_WB);
626 	if (!tsc_page)
627 		pr_err("Failed to remap Hyper-V TSC page.\n");
628 }
629