xref: /linux/drivers/clocksource/exynos_mct.c (revision c39b9fd728d8173ecda993524089fbc38211a17f)
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22 #include <linux/of.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/clocksource.h>
26 
27 #include <asm/arch_timer.h>
28 #include <asm/localtimer.h>
29 
30 #include <plat/cpu.h>
31 
32 #include <mach/map.h>
33 #include <mach/irqs.h>
34 #include <asm/mach/time.h>
35 
36 #define EXYNOS4_MCTREG(x)		(x)
37 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
38 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
39 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
40 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
41 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
42 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
43 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
44 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
45 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
46 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
47 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
48 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
49 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
50 
51 #define MCT_L_TCNTB_OFFSET		(0x00)
52 #define MCT_L_ICNTB_OFFSET		(0x08)
53 #define MCT_L_TCON_OFFSET		(0x20)
54 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
55 #define MCT_L_INT_ENB_OFFSET		(0x34)
56 #define MCT_L_WSTAT_OFFSET		(0x40)
57 #define MCT_G_TCON_START		(1 << 8)
58 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
59 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
60 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
61 #define MCT_L_TCON_INT_START		(1 << 1)
62 #define MCT_L_TCON_TIMER_START		(1 << 0)
63 
64 #define TICK_BASE_CNT	1
65 
66 enum {
67 	MCT_INT_SPI,
68 	MCT_INT_PPI
69 };
70 
71 enum {
72 	MCT_G0_IRQ,
73 	MCT_G1_IRQ,
74 	MCT_G2_IRQ,
75 	MCT_G3_IRQ,
76 	MCT_L0_IRQ,
77 	MCT_L1_IRQ,
78 	MCT_L2_IRQ,
79 	MCT_L3_IRQ,
80 	MCT_NR_IRQS,
81 };
82 
83 static void __iomem *reg_base;
84 static unsigned long clk_rate;
85 static unsigned int mct_int_type;
86 static int mct_irqs[MCT_NR_IRQS];
87 
88 struct mct_clock_event_device {
89 	struct clock_event_device *evt;
90 	unsigned long base;
91 	char name[10];
92 };
93 
94 static void exynos4_mct_write(unsigned int value, unsigned long offset)
95 {
96 	unsigned long stat_addr;
97 	u32 mask;
98 	u32 i;
99 
100 	__raw_writel(value, reg_base + offset);
101 
102 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
103 		stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
104 		switch (offset & EXYNOS4_MCT_L_MASK) {
105 		case MCT_L_TCON_OFFSET:
106 			mask = 1 << 3;		/* L_TCON write status */
107 			break;
108 		case MCT_L_ICNTB_OFFSET:
109 			mask = 1 << 1;		/* L_ICNTB write status */
110 			break;
111 		case MCT_L_TCNTB_OFFSET:
112 			mask = 1 << 0;		/* L_TCNTB write status */
113 			break;
114 		default:
115 			return;
116 		}
117 	} else {
118 		switch (offset) {
119 		case EXYNOS4_MCT_G_TCON:
120 			stat_addr = EXYNOS4_MCT_G_WSTAT;
121 			mask = 1 << 16;		/* G_TCON write status */
122 			break;
123 		case EXYNOS4_MCT_G_COMP0_L:
124 			stat_addr = EXYNOS4_MCT_G_WSTAT;
125 			mask = 1 << 0;		/* G_COMP0_L write status */
126 			break;
127 		case EXYNOS4_MCT_G_COMP0_U:
128 			stat_addr = EXYNOS4_MCT_G_WSTAT;
129 			mask = 1 << 1;		/* G_COMP0_U write status */
130 			break;
131 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
132 			stat_addr = EXYNOS4_MCT_G_WSTAT;
133 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
134 			break;
135 		case EXYNOS4_MCT_G_CNT_L:
136 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
137 			mask = 1 << 0;		/* G_CNT_L write status */
138 			break;
139 		case EXYNOS4_MCT_G_CNT_U:
140 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
141 			mask = 1 << 1;		/* G_CNT_U write status */
142 			break;
143 		default:
144 			return;
145 		}
146 	}
147 
148 	/* Wait maximum 1 ms until written values are applied */
149 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
150 		if (__raw_readl(reg_base + stat_addr) & mask) {
151 			__raw_writel(mask, reg_base + stat_addr);
152 			return;
153 		}
154 
155 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
156 }
157 
158 /* Clocksource handling */
159 static void exynos4_mct_frc_start(u32 hi, u32 lo)
160 {
161 	u32 reg;
162 
163 	exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
164 	exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
165 
166 	reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
167 	reg |= MCT_G_TCON_START;
168 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
169 }
170 
171 static cycle_t exynos4_frc_read(struct clocksource *cs)
172 {
173 	unsigned int lo, hi;
174 	u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
175 
176 	do {
177 		hi = hi2;
178 		lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
179 		hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
180 	} while (hi != hi2);
181 
182 	return ((cycle_t)hi << 32) | lo;
183 }
184 
185 static void exynos4_frc_resume(struct clocksource *cs)
186 {
187 	exynos4_mct_frc_start(0, 0);
188 }
189 
190 struct clocksource mct_frc = {
191 	.name		= "mct-frc",
192 	.rating		= 400,
193 	.read		= exynos4_frc_read,
194 	.mask		= CLOCKSOURCE_MASK(64),
195 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
196 	.resume		= exynos4_frc_resume,
197 };
198 
199 static void __init exynos4_clocksource_init(void)
200 {
201 	exynos4_mct_frc_start(0, 0);
202 
203 	if (clocksource_register_hz(&mct_frc, clk_rate))
204 		panic("%s: can't register clocksource\n", mct_frc.name);
205 }
206 
207 static void exynos4_mct_comp0_stop(void)
208 {
209 	unsigned int tcon;
210 
211 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
212 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
213 
214 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
215 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
216 }
217 
218 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
219 				    unsigned long cycles)
220 {
221 	unsigned int tcon;
222 	cycle_t comp_cycle;
223 
224 	tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
225 
226 	if (mode == CLOCK_EVT_MODE_PERIODIC) {
227 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
228 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
229 	}
230 
231 	comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
232 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
233 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
234 
235 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
236 
237 	tcon |= MCT_G_TCON_COMP0_ENABLE;
238 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
239 }
240 
241 static int exynos4_comp_set_next_event(unsigned long cycles,
242 				       struct clock_event_device *evt)
243 {
244 	exynos4_mct_comp0_start(evt->mode, cycles);
245 
246 	return 0;
247 }
248 
249 static void exynos4_comp_set_mode(enum clock_event_mode mode,
250 				  struct clock_event_device *evt)
251 {
252 	unsigned long cycles_per_jiffy;
253 	exynos4_mct_comp0_stop();
254 
255 	switch (mode) {
256 	case CLOCK_EVT_MODE_PERIODIC:
257 		cycles_per_jiffy =
258 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
259 		exynos4_mct_comp0_start(mode, cycles_per_jiffy);
260 		break;
261 
262 	case CLOCK_EVT_MODE_ONESHOT:
263 	case CLOCK_EVT_MODE_UNUSED:
264 	case CLOCK_EVT_MODE_SHUTDOWN:
265 	case CLOCK_EVT_MODE_RESUME:
266 		break;
267 	}
268 }
269 
270 static struct clock_event_device mct_comp_device = {
271 	.name		= "mct-comp",
272 	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
273 	.rating		= 250,
274 	.set_next_event	= exynos4_comp_set_next_event,
275 	.set_mode	= exynos4_comp_set_mode,
276 };
277 
278 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
279 {
280 	struct clock_event_device *evt = dev_id;
281 
282 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
283 
284 	evt->event_handler(evt);
285 
286 	return IRQ_HANDLED;
287 }
288 
289 static struct irqaction mct_comp_event_irq = {
290 	.name		= "mct_comp_irq",
291 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
292 	.handler	= exynos4_mct_comp_isr,
293 	.dev_id		= &mct_comp_device,
294 };
295 
296 static void exynos4_clockevent_init(void)
297 {
298 	mct_comp_device.cpumask = cpumask_of(0);
299 	clockevents_config_and_register(&mct_comp_device, clk_rate,
300 					0xf, 0xffffffff);
301 	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
302 }
303 
304 #ifdef CONFIG_LOCAL_TIMERS
305 
306 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
307 
308 /* Clock event handling */
309 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
310 {
311 	unsigned long tmp;
312 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
313 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
314 
315 	tmp = __raw_readl(reg_base + offset);
316 	if (tmp & mask) {
317 		tmp &= ~mask;
318 		exynos4_mct_write(tmp, offset);
319 	}
320 }
321 
322 static void exynos4_mct_tick_start(unsigned long cycles,
323 				   struct mct_clock_event_device *mevt)
324 {
325 	unsigned long tmp;
326 
327 	exynos4_mct_tick_stop(mevt);
328 
329 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
330 
331 	/* update interrupt count buffer */
332 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
333 
334 	/* enable MCT tick interrupt */
335 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
336 
337 	tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
338 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
339 	       MCT_L_TCON_INTERVAL_MODE;
340 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
341 }
342 
343 static int exynos4_tick_set_next_event(unsigned long cycles,
344 				       struct clock_event_device *evt)
345 {
346 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
347 
348 	exynos4_mct_tick_start(cycles, mevt);
349 
350 	return 0;
351 }
352 
353 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
354 					 struct clock_event_device *evt)
355 {
356 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
357 	unsigned long cycles_per_jiffy;
358 
359 	exynos4_mct_tick_stop(mevt);
360 
361 	switch (mode) {
362 	case CLOCK_EVT_MODE_PERIODIC:
363 		cycles_per_jiffy =
364 			(((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
365 		exynos4_mct_tick_start(cycles_per_jiffy, mevt);
366 		break;
367 
368 	case CLOCK_EVT_MODE_ONESHOT:
369 	case CLOCK_EVT_MODE_UNUSED:
370 	case CLOCK_EVT_MODE_SHUTDOWN:
371 	case CLOCK_EVT_MODE_RESUME:
372 		break;
373 	}
374 }
375 
376 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
377 {
378 	struct clock_event_device *evt = mevt->evt;
379 
380 	/*
381 	 * This is for supporting oneshot mode.
382 	 * Mct would generate interrupt periodically
383 	 * without explicit stopping.
384 	 */
385 	if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
386 		exynos4_mct_tick_stop(mevt);
387 
388 	/* Clear the MCT tick interrupt */
389 	if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
390 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
391 		return 1;
392 	} else {
393 		return 0;
394 	}
395 }
396 
397 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
398 {
399 	struct mct_clock_event_device *mevt = dev_id;
400 	struct clock_event_device *evt = mevt->evt;
401 
402 	exynos4_mct_tick_clear(mevt);
403 
404 	evt->event_handler(evt);
405 
406 	return IRQ_HANDLED;
407 }
408 
409 static struct irqaction mct_tick0_event_irq = {
410 	.name		= "mct_tick0_irq",
411 	.flags		= IRQF_TIMER | IRQF_NOBALANCING,
412 	.handler	= exynos4_mct_tick_isr,
413 };
414 
415 static struct irqaction mct_tick1_event_irq = {
416 	.name		= "mct_tick1_irq",
417 	.flags		= IRQF_TIMER | IRQF_NOBALANCING,
418 	.handler	= exynos4_mct_tick_isr,
419 };
420 
421 static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
422 {
423 	struct mct_clock_event_device *mevt;
424 	unsigned int cpu = smp_processor_id();
425 
426 	mevt = this_cpu_ptr(&percpu_mct_tick);
427 	mevt->evt = evt;
428 
429 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
430 	sprintf(mevt->name, "mct_tick%d", cpu);
431 
432 	evt->name = mevt->name;
433 	evt->cpumask = cpumask_of(cpu);
434 	evt->set_next_event = exynos4_tick_set_next_event;
435 	evt->set_mode = exynos4_tick_set_mode;
436 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
437 	evt->rating = 450;
438 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
439 					0xf, 0x7fffffff);
440 
441 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
442 
443 	if (mct_int_type == MCT_INT_SPI) {
444 		if (cpu == 0) {
445 			mct_tick0_event_irq.dev_id = mevt;
446 			evt->irq = mct_irqs[MCT_L0_IRQ];
447 			setup_irq(evt->irq, &mct_tick0_event_irq);
448 		} else {
449 			mct_tick1_event_irq.dev_id = mevt;
450 			evt->irq = mct_irqs[MCT_L1_IRQ];
451 			setup_irq(evt->irq, &mct_tick1_event_irq);
452 			irq_set_affinity(evt->irq, cpumask_of(1));
453 		}
454 	} else {
455 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
456 	}
457 
458 	return 0;
459 }
460 
461 static void exynos4_local_timer_stop(struct clock_event_device *evt)
462 {
463 	unsigned int cpu = smp_processor_id();
464 	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
465 	if (mct_int_type == MCT_INT_SPI)
466 		if (cpu == 0)
467 			remove_irq(evt->irq, &mct_tick0_event_irq);
468 		else
469 			remove_irq(evt->irq, &mct_tick1_event_irq);
470 	else
471 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
472 }
473 
474 static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
475 	.setup	= exynos4_local_timer_setup,
476 	.stop	= exynos4_local_timer_stop,
477 };
478 #endif /* CONFIG_LOCAL_TIMERS */
479 
480 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
481 {
482 	struct clk *mct_clk, *tick_clk;
483 
484 	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
485 				clk_get(NULL, "fin_pll");
486 	if (IS_ERR(tick_clk))
487 		panic("%s: unable to determine tick clock rate\n", __func__);
488 	clk_rate = clk_get_rate(tick_clk);
489 
490 	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
491 	if (IS_ERR(mct_clk))
492 		panic("%s: unable to retrieve mct clock instance\n", __func__);
493 	clk_prepare_enable(mct_clk);
494 
495 	reg_base = base;
496 	if (!reg_base)
497 		panic("%s: unable to ioremap mct address space\n", __func__);
498 
499 #ifdef CONFIG_LOCAL_TIMERS
500 	if (mct_int_type == MCT_INT_PPI) {
501 		int err;
502 
503 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
504 					 exynos4_mct_tick_isr, "MCT",
505 					 &percpu_mct_tick);
506 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
507 		     mct_irqs[MCT_L0_IRQ], err);
508 	}
509 
510 	local_timer_register(&exynos4_mct_tick_ops);
511 #endif /* CONFIG_LOCAL_TIMERS */
512 }
513 
514 void __init mct_init(void)
515 {
516 	if (soc_is_exynos4210()) {
517 		mct_irqs[MCT_G0_IRQ] = EXYNOS4_IRQ_MCT_G0;
518 		mct_irqs[MCT_L0_IRQ] = EXYNOS4_IRQ_MCT_L0;
519 		mct_irqs[MCT_L1_IRQ] = EXYNOS4_IRQ_MCT_L1;
520 		mct_int_type = MCT_INT_SPI;
521 	} else {
522 		panic("unable to determine mct controller type\n");
523 	}
524 
525 	exynos4_timer_resources(NULL, S5P_VA_SYSTIMER);
526 	exynos4_clocksource_init();
527 	exynos4_clockevent_init();
528 }
529 
530 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
531 {
532 	u32 nr_irqs, i;
533 
534 	mct_int_type = int_type;
535 
536 	/* This driver uses only one global timer interrupt */
537 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
538 
539 	/*
540 	 * Find out the number of local irqs specified. The local
541 	 * timer irqs are specified after the four global timer
542 	 * irqs are specified.
543 	 */
544 #ifdef CONFIG_OF
545 	nr_irqs = of_irq_count(np);
546 #else
547 	nr_irqs = 0;
548 #endif
549 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
550 		mct_irqs[i] = irq_of_parse_and_map(np, i);
551 
552 	exynos4_timer_resources(np, of_iomap(np, 0));
553 	exynos4_clocksource_init();
554 	exynos4_clockevent_init();
555 }
556 
557 
558 static void __init mct_init_spi(struct device_node *np)
559 {
560 	return mct_init_dt(np, MCT_INT_SPI);
561 }
562 
563 static void __init mct_init_ppi(struct device_node *np)
564 {
565 	return mct_init_dt(np, MCT_INT_PPI);
566 }
567 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
568 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
569