xref: /linux/drivers/clocksource/exynos_mct.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28 
29 #define EXYNOS4_MCTREG(x)		(x)
30 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
43 
44 #define MCT_L_TCNTB_OFFSET		(0x00)
45 #define MCT_L_ICNTB_OFFSET		(0x08)
46 #define MCT_L_TCON_OFFSET		(0x20)
47 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
48 #define MCT_L_INT_ENB_OFFSET		(0x34)
49 #define MCT_L_WSTAT_OFFSET		(0x40)
50 #define MCT_G_TCON_START		(1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
54 #define MCT_L_TCON_INT_START		(1 << 1)
55 #define MCT_L_TCON_TIMER_START		(1 << 0)
56 
57 #define TICK_BASE_CNT	1
58 
59 enum {
60 	MCT_INT_SPI,
61 	MCT_INT_PPI
62 };
63 
64 enum {
65 	MCT_G0_IRQ,
66 	MCT_G1_IRQ,
67 	MCT_G2_IRQ,
68 	MCT_G3_IRQ,
69 	MCT_L0_IRQ,
70 	MCT_L1_IRQ,
71 	MCT_L2_IRQ,
72 	MCT_L3_IRQ,
73 	MCT_L4_IRQ,
74 	MCT_L5_IRQ,
75 	MCT_L6_IRQ,
76 	MCT_L7_IRQ,
77 	MCT_NR_IRQS,
78 };
79 
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84 
85 struct mct_clock_event_device {
86 	struct clock_event_device evt;
87 	unsigned long base;
88 	char name[10];
89 };
90 
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93 	unsigned long stat_addr;
94 	u32 mask;
95 	u32 i;
96 
97 	writel_relaxed(value, reg_base + offset);
98 
99 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100 		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101 		switch (offset & ~EXYNOS4_MCT_L_MASK) {
102 		case MCT_L_TCON_OFFSET:
103 			mask = 1 << 3;		/* L_TCON write status */
104 			break;
105 		case MCT_L_ICNTB_OFFSET:
106 			mask = 1 << 1;		/* L_ICNTB write status */
107 			break;
108 		case MCT_L_TCNTB_OFFSET:
109 			mask = 1 << 0;		/* L_TCNTB write status */
110 			break;
111 		default:
112 			return;
113 		}
114 	} else {
115 		switch (offset) {
116 		case EXYNOS4_MCT_G_TCON:
117 			stat_addr = EXYNOS4_MCT_G_WSTAT;
118 			mask = 1 << 16;		/* G_TCON write status */
119 			break;
120 		case EXYNOS4_MCT_G_COMP0_L:
121 			stat_addr = EXYNOS4_MCT_G_WSTAT;
122 			mask = 1 << 0;		/* G_COMP0_L write status */
123 			break;
124 		case EXYNOS4_MCT_G_COMP0_U:
125 			stat_addr = EXYNOS4_MCT_G_WSTAT;
126 			mask = 1 << 1;		/* G_COMP0_U write status */
127 			break;
128 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129 			stat_addr = EXYNOS4_MCT_G_WSTAT;
130 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
131 			break;
132 		case EXYNOS4_MCT_G_CNT_L:
133 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134 			mask = 1 << 0;		/* G_CNT_L write status */
135 			break;
136 		case EXYNOS4_MCT_G_CNT_U:
137 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 			mask = 1 << 1;		/* G_CNT_U write status */
139 			break;
140 		default:
141 			return;
142 		}
143 	}
144 
145 	/* Wait maximum 1 ms until written values are applied */
146 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147 		if (readl_relaxed(reg_base + stat_addr) & mask) {
148 			writel_relaxed(mask, reg_base + stat_addr);
149 			return;
150 		}
151 
152 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154 
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
157 {
158 	u32 reg;
159 
160 	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161 	reg |= MCT_G_TCON_START;
162 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164 
165 /**
166  * exynos4_read_count_64 - Read all 64-bits of the global counter
167  *
168  * This will read all 64-bits of the global counter taking care to make sure
169  * that the upper and lower half match.  Note that reading the MCT can be quite
170  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171  * only) version when possible.
172  *
173  * Returns the number of cycles in the global counter.
174  */
175 static u64 exynos4_read_count_64(void)
176 {
177 	unsigned int lo, hi;
178 	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179 
180 	do {
181 		hi = hi2;
182 		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183 		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
184 	} while (hi != hi2);
185 
186 	return ((cycle_t)hi << 32) | lo;
187 }
188 
189 /**
190  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191  *
192  * This will read just the lower 32-bits of the global counter.  This is marked
193  * as notrace so it can be used by the scheduler clock.
194  *
195  * Returns the number of cycles in the global counter (lower 32 bits).
196  */
197 static u32 notrace exynos4_read_count_32(void)
198 {
199 	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200 }
201 
202 static cycle_t exynos4_frc_read(struct clocksource *cs)
203 {
204 	return exynos4_read_count_32();
205 }
206 
207 static void exynos4_frc_resume(struct clocksource *cs)
208 {
209 	exynos4_mct_frc_start();
210 }
211 
212 static struct clocksource mct_frc = {
213 	.name		= "mct-frc",
214 	.rating		= 400,
215 	.read		= exynos4_frc_read,
216 	.mask		= CLOCKSOURCE_MASK(32),
217 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
218 	.resume		= exynos4_frc_resume,
219 };
220 
221 static u64 notrace exynos4_read_sched_clock(void)
222 {
223 	return exynos4_read_count_32();
224 }
225 
226 static struct delay_timer exynos4_delay_timer;
227 
228 static cycles_t exynos4_read_current_timer(void)
229 {
230 	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231 			 "cycles_t needs to move to 32-bit for ARM64 usage");
232 	return exynos4_read_count_32();
233 }
234 
235 static void __init exynos4_clocksource_init(void)
236 {
237 	exynos4_mct_frc_start();
238 
239 	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
240 	exynos4_delay_timer.freq = clk_rate;
241 	register_current_timer_delay(&exynos4_delay_timer);
242 
243 	if (clocksource_register_hz(&mct_frc, clk_rate))
244 		panic("%s: can't register clocksource\n", mct_frc.name);
245 
246 	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
247 }
248 
249 static void exynos4_mct_comp0_stop(void)
250 {
251 	unsigned int tcon;
252 
253 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
254 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
255 
256 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
257 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
258 }
259 
260 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
261 {
262 	unsigned int tcon;
263 	cycle_t comp_cycle;
264 
265 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
266 
267 	if (periodic) {
268 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
269 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
270 	}
271 
272 	comp_cycle = exynos4_read_count_64() + cycles;
273 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
274 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
275 
276 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
277 
278 	tcon |= MCT_G_TCON_COMP0_ENABLE;
279 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
280 }
281 
282 static int exynos4_comp_set_next_event(unsigned long cycles,
283 				       struct clock_event_device *evt)
284 {
285 	exynos4_mct_comp0_start(false, cycles);
286 
287 	return 0;
288 }
289 
290 static int mct_set_state_shutdown(struct clock_event_device *evt)
291 {
292 	exynos4_mct_comp0_stop();
293 	return 0;
294 }
295 
296 static int mct_set_state_periodic(struct clock_event_device *evt)
297 {
298 	unsigned long cycles_per_jiffy;
299 
300 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
301 			    >> evt->shift);
302 	exynos4_mct_comp0_stop();
303 	exynos4_mct_comp0_start(true, cycles_per_jiffy);
304 	return 0;
305 }
306 
307 static struct clock_event_device mct_comp_device = {
308 	.name			= "mct-comp",
309 	.features		= CLOCK_EVT_FEAT_PERIODIC |
310 				  CLOCK_EVT_FEAT_ONESHOT,
311 	.rating			= 250,
312 	.set_next_event		= exynos4_comp_set_next_event,
313 	.set_state_periodic	= mct_set_state_periodic,
314 	.set_state_shutdown	= mct_set_state_shutdown,
315 	.set_state_oneshot	= mct_set_state_shutdown,
316 	.tick_resume		= mct_set_state_shutdown,
317 };
318 
319 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
320 {
321 	struct clock_event_device *evt = dev_id;
322 
323 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
324 
325 	evt->event_handler(evt);
326 
327 	return IRQ_HANDLED;
328 }
329 
330 static struct irqaction mct_comp_event_irq = {
331 	.name		= "mct_comp_irq",
332 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
333 	.handler	= exynos4_mct_comp_isr,
334 	.dev_id		= &mct_comp_device,
335 };
336 
337 static void exynos4_clockevent_init(void)
338 {
339 	mct_comp_device.cpumask = cpumask_of(0);
340 	clockevents_config_and_register(&mct_comp_device, clk_rate,
341 					0xf, 0xffffffff);
342 	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
343 }
344 
345 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
346 
347 /* Clock event handling */
348 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
349 {
350 	unsigned long tmp;
351 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
352 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
353 
354 	tmp = readl_relaxed(reg_base + offset);
355 	if (tmp & mask) {
356 		tmp &= ~mask;
357 		exynos4_mct_write(tmp, offset);
358 	}
359 }
360 
361 static void exynos4_mct_tick_start(unsigned long cycles,
362 				   struct mct_clock_event_device *mevt)
363 {
364 	unsigned long tmp;
365 
366 	exynos4_mct_tick_stop(mevt);
367 
368 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
369 
370 	/* update interrupt count buffer */
371 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
372 
373 	/* enable MCT tick interrupt */
374 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
375 
376 	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
377 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
378 	       MCT_L_TCON_INTERVAL_MODE;
379 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
380 }
381 
382 static int exynos4_tick_set_next_event(unsigned long cycles,
383 				       struct clock_event_device *evt)
384 {
385 	struct mct_clock_event_device *mevt;
386 
387 	mevt = container_of(evt, struct mct_clock_event_device, evt);
388 	exynos4_mct_tick_start(cycles, mevt);
389 	return 0;
390 }
391 
392 static int set_state_shutdown(struct clock_event_device *evt)
393 {
394 	struct mct_clock_event_device *mevt;
395 
396 	mevt = container_of(evt, struct mct_clock_event_device, evt);
397 	exynos4_mct_tick_stop(mevt);
398 	return 0;
399 }
400 
401 static int set_state_periodic(struct clock_event_device *evt)
402 {
403 	struct mct_clock_event_device *mevt;
404 	unsigned long cycles_per_jiffy;
405 
406 	mevt = container_of(evt, struct mct_clock_event_device, evt);
407 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
408 			    >> evt->shift);
409 	exynos4_mct_tick_stop(mevt);
410 	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
411 	return 0;
412 }
413 
414 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
415 {
416 	/*
417 	 * This is for supporting oneshot mode.
418 	 * Mct would generate interrupt periodically
419 	 * without explicit stopping.
420 	 */
421 	if (!clockevent_state_periodic(&mevt->evt))
422 		exynos4_mct_tick_stop(mevt);
423 
424 	/* Clear the MCT tick interrupt */
425 	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
426 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
427 }
428 
429 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
430 {
431 	struct mct_clock_event_device *mevt = dev_id;
432 	struct clock_event_device *evt = &mevt->evt;
433 
434 	exynos4_mct_tick_clear(mevt);
435 
436 	evt->event_handler(evt);
437 
438 	return IRQ_HANDLED;
439 }
440 
441 static int exynos4_local_timer_setup(struct mct_clock_event_device *mevt)
442 {
443 	struct clock_event_device *evt = &mevt->evt;
444 	unsigned int cpu = smp_processor_id();
445 
446 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
447 	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
448 
449 	evt->name = mevt->name;
450 	evt->cpumask = cpumask_of(cpu);
451 	evt->set_next_event = exynos4_tick_set_next_event;
452 	evt->set_state_periodic = set_state_periodic;
453 	evt->set_state_shutdown = set_state_shutdown;
454 	evt->set_state_oneshot = set_state_shutdown;
455 	evt->tick_resume = set_state_shutdown;
456 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
457 	evt->rating = 450;
458 
459 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
460 
461 	if (mct_int_type == MCT_INT_SPI) {
462 
463 		if (evt->irq == -1)
464 			return -EIO;
465 
466 		irq_force_affinity(evt->irq, cpumask_of(cpu));
467 		enable_irq(evt->irq);
468 	} else {
469 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
470 	}
471 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
472 					0xf, 0x7fffffff);
473 
474 	return 0;
475 }
476 
477 static void exynos4_local_timer_stop(struct mct_clock_event_device *mevt)
478 {
479 	struct clock_event_device *evt = &mevt->evt;
480 
481 	evt->set_state_shutdown(evt);
482 	if (mct_int_type == MCT_INT_SPI) {
483 		if (evt->irq != -1)
484 			disable_irq_nosync(evt->irq);
485 	} else {
486 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
487 	}
488 }
489 
490 static int exynos4_mct_cpu_notify(struct notifier_block *self,
491 					   unsigned long action, void *hcpu)
492 {
493 	struct mct_clock_event_device *mevt;
494 
495 	/*
496 	 * Grab cpu pointer in each case to avoid spurious
497 	 * preemptible warnings
498 	 */
499 	switch (action & ~CPU_TASKS_FROZEN) {
500 	case CPU_STARTING:
501 		mevt = this_cpu_ptr(&percpu_mct_tick);
502 		exynos4_local_timer_setup(mevt);
503 		break;
504 	case CPU_DYING:
505 		mevt = this_cpu_ptr(&percpu_mct_tick);
506 		exynos4_local_timer_stop(mevt);
507 		break;
508 	}
509 
510 	return NOTIFY_OK;
511 }
512 
513 static struct notifier_block exynos4_mct_cpu_nb = {
514 	.notifier_call = exynos4_mct_cpu_notify,
515 };
516 
517 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
518 {
519 	int err, cpu;
520 	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
521 	struct clk *mct_clk, *tick_clk;
522 
523 	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
524 				clk_get(NULL, "fin_pll");
525 	if (IS_ERR(tick_clk))
526 		panic("%s: unable to determine tick clock rate\n", __func__);
527 	clk_rate = clk_get_rate(tick_clk);
528 
529 	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
530 	if (IS_ERR(mct_clk))
531 		panic("%s: unable to retrieve mct clock instance\n", __func__);
532 	clk_prepare_enable(mct_clk);
533 
534 	reg_base = base;
535 	if (!reg_base)
536 		panic("%s: unable to ioremap mct address space\n", __func__);
537 
538 	if (mct_int_type == MCT_INT_PPI) {
539 
540 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
541 					 exynos4_mct_tick_isr, "MCT",
542 					 &percpu_mct_tick);
543 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
544 		     mct_irqs[MCT_L0_IRQ], err);
545 	} else {
546 		for_each_possible_cpu(cpu) {
547 			int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
548 			struct mct_clock_event_device *pcpu_mevt =
549 				per_cpu_ptr(&percpu_mct_tick, cpu);
550 
551 			pcpu_mevt->evt.irq = -1;
552 
553 			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
554 			if (request_irq(mct_irq,
555 					exynos4_mct_tick_isr,
556 					IRQF_TIMER | IRQF_NOBALANCING,
557 					pcpu_mevt->name, pcpu_mevt)) {
558 				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
559 									cpu);
560 
561 				continue;
562 			}
563 			pcpu_mevt->evt.irq = mct_irq;
564 		}
565 	}
566 
567 	err = register_cpu_notifier(&exynos4_mct_cpu_nb);
568 	if (err)
569 		goto out_irq;
570 
571 	/* Immediately configure the timer on the boot CPU */
572 	exynos4_local_timer_setup(mevt);
573 	return;
574 
575 out_irq:
576 	free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
577 }
578 
579 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
580 {
581 	u32 nr_irqs, i;
582 
583 	mct_int_type = int_type;
584 
585 	/* This driver uses only one global timer interrupt */
586 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
587 
588 	/*
589 	 * Find out the number of local irqs specified. The local
590 	 * timer irqs are specified after the four global timer
591 	 * irqs are specified.
592 	 */
593 #ifdef CONFIG_OF
594 	nr_irqs = of_irq_count(np);
595 #else
596 	nr_irqs = 0;
597 #endif
598 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
599 		mct_irqs[i] = irq_of_parse_and_map(np, i);
600 
601 	exynos4_timer_resources(np, of_iomap(np, 0));
602 	exynos4_clocksource_init();
603 	exynos4_clockevent_init();
604 }
605 
606 
607 static void __init mct_init_spi(struct device_node *np)
608 {
609 	return mct_init_dt(np, MCT_INT_SPI);
610 }
611 
612 static void __init mct_init_ppi(struct device_node *np)
613 {
614 	return mct_init_dt(np, MCT_INT_PPI);
615 }
616 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
617 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
618