xref: /linux/drivers/clocksource/exynos_mct.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* linux/arch/arm/mach-exynos4/mct.c
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  *		http://www.samsung.com
6  *
7  * Exynos4 MCT(Multi-Core Timer) support
8 */
9 
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/err.h>
13 #include <linux/clk.h>
14 #include <linux/clockchips.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/clocksource.h>
22 #include <linux/sched_clock.h>
23 
24 #define EXYNOS4_MCTREG(x)		(x)
25 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
26 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
27 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
28 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
29 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
30 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
31 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
32 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
33 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
34 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
35 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
36 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
37 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
38 
39 #define MCT_L_TCNTB_OFFSET		(0x00)
40 #define MCT_L_ICNTB_OFFSET		(0x08)
41 #define MCT_L_TCON_OFFSET		(0x20)
42 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
43 #define MCT_L_INT_ENB_OFFSET		(0x34)
44 #define MCT_L_WSTAT_OFFSET		(0x40)
45 #define MCT_G_TCON_START		(1 << 8)
46 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
47 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
48 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
49 #define MCT_L_TCON_INT_START		(1 << 1)
50 #define MCT_L_TCON_TIMER_START		(1 << 0)
51 
52 #define TICK_BASE_CNT	1
53 
54 #ifdef CONFIG_ARM
55 /* Use values higher than ARM arch timer. See 6282edb72bed. */
56 #define MCT_CLKSOURCE_RATING		450
57 #define MCT_CLKEVENTS_RATING		500
58 #else
59 #define MCT_CLKSOURCE_RATING		350
60 #define MCT_CLKEVENTS_RATING		350
61 #endif
62 
63 enum {
64 	MCT_INT_SPI,
65 	MCT_INT_PPI
66 };
67 
68 enum {
69 	MCT_G0_IRQ,
70 	MCT_G1_IRQ,
71 	MCT_G2_IRQ,
72 	MCT_G3_IRQ,
73 	MCT_L0_IRQ,
74 	MCT_L1_IRQ,
75 	MCT_L2_IRQ,
76 	MCT_L3_IRQ,
77 	MCT_L4_IRQ,
78 	MCT_L5_IRQ,
79 	MCT_L6_IRQ,
80 	MCT_L7_IRQ,
81 	MCT_NR_IRQS,
82 };
83 
84 static void __iomem *reg_base;
85 static unsigned long clk_rate;
86 static unsigned int mct_int_type;
87 static int mct_irqs[MCT_NR_IRQS];
88 
89 struct mct_clock_event_device {
90 	struct clock_event_device evt;
91 	unsigned long base;
92 	char name[10];
93 };
94 
95 static void exynos4_mct_write(unsigned int value, unsigned long offset)
96 {
97 	unsigned long stat_addr;
98 	u32 mask;
99 	u32 i;
100 
101 	writel_relaxed(value, reg_base + offset);
102 
103 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
104 		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
105 		switch (offset & ~EXYNOS4_MCT_L_MASK) {
106 		case MCT_L_TCON_OFFSET:
107 			mask = 1 << 3;		/* L_TCON write status */
108 			break;
109 		case MCT_L_ICNTB_OFFSET:
110 			mask = 1 << 1;		/* L_ICNTB write status */
111 			break;
112 		case MCT_L_TCNTB_OFFSET:
113 			mask = 1 << 0;		/* L_TCNTB write status */
114 			break;
115 		default:
116 			return;
117 		}
118 	} else {
119 		switch (offset) {
120 		case EXYNOS4_MCT_G_TCON:
121 			stat_addr = EXYNOS4_MCT_G_WSTAT;
122 			mask = 1 << 16;		/* G_TCON write status */
123 			break;
124 		case EXYNOS4_MCT_G_COMP0_L:
125 			stat_addr = EXYNOS4_MCT_G_WSTAT;
126 			mask = 1 << 0;		/* G_COMP0_L write status */
127 			break;
128 		case EXYNOS4_MCT_G_COMP0_U:
129 			stat_addr = EXYNOS4_MCT_G_WSTAT;
130 			mask = 1 << 1;		/* G_COMP0_U write status */
131 			break;
132 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
133 			stat_addr = EXYNOS4_MCT_G_WSTAT;
134 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
135 			break;
136 		case EXYNOS4_MCT_G_CNT_L:
137 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 			mask = 1 << 0;		/* G_CNT_L write status */
139 			break;
140 		case EXYNOS4_MCT_G_CNT_U:
141 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
142 			mask = 1 << 1;		/* G_CNT_U write status */
143 			break;
144 		default:
145 			return;
146 		}
147 	}
148 
149 	/* Wait maximum 1 ms until written values are applied */
150 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
151 		if (readl_relaxed(reg_base + stat_addr) & mask) {
152 			writel_relaxed(mask, reg_base + stat_addr);
153 			return;
154 		}
155 
156 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
157 }
158 
159 /* Clocksource handling */
160 static void exynos4_mct_frc_start(void)
161 {
162 	u32 reg;
163 
164 	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
165 	reg |= MCT_G_TCON_START;
166 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
167 }
168 
169 /**
170  * exynos4_read_count_64 - Read all 64-bits of the global counter
171  *
172  * This will read all 64-bits of the global counter taking care to make sure
173  * that the upper and lower half match.  Note that reading the MCT can be quite
174  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
175  * only) version when possible.
176  *
177  * Returns the number of cycles in the global counter.
178  */
179 static u64 exynos4_read_count_64(void)
180 {
181 	unsigned int lo, hi;
182 	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
183 
184 	do {
185 		hi = hi2;
186 		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
187 		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
188 	} while (hi != hi2);
189 
190 	return ((u64)hi << 32) | lo;
191 }
192 
193 /**
194  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
195  *
196  * This will read just the lower 32-bits of the global counter.  This is marked
197  * as notrace so it can be used by the scheduler clock.
198  *
199  * Returns the number of cycles in the global counter (lower 32 bits).
200  */
201 static u32 notrace exynos4_read_count_32(void)
202 {
203 	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
204 }
205 
206 static u64 exynos4_frc_read(struct clocksource *cs)
207 {
208 	return exynos4_read_count_32();
209 }
210 
211 static void exynos4_frc_resume(struct clocksource *cs)
212 {
213 	exynos4_mct_frc_start();
214 }
215 
216 static struct clocksource mct_frc = {
217 	.name		= "mct-frc",
218 	.rating		= MCT_CLKSOURCE_RATING,
219 	.read		= exynos4_frc_read,
220 	.mask		= CLOCKSOURCE_MASK(32),
221 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
222 	.resume		= exynos4_frc_resume,
223 };
224 
225 static u64 notrace exynos4_read_sched_clock(void)
226 {
227 	return exynos4_read_count_32();
228 }
229 
230 #if defined(CONFIG_ARM)
231 static struct delay_timer exynos4_delay_timer;
232 
233 static cycles_t exynos4_read_current_timer(void)
234 {
235 	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
236 			 "cycles_t needs to move to 32-bit for ARM64 usage");
237 	return exynos4_read_count_32();
238 }
239 #endif
240 
241 static int __init exynos4_clocksource_init(void)
242 {
243 	exynos4_mct_frc_start();
244 
245 #if defined(CONFIG_ARM)
246 	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
247 	exynos4_delay_timer.freq = clk_rate;
248 	register_current_timer_delay(&exynos4_delay_timer);
249 #endif
250 
251 	if (clocksource_register_hz(&mct_frc, clk_rate))
252 		panic("%s: can't register clocksource\n", mct_frc.name);
253 
254 	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
255 
256 	return 0;
257 }
258 
259 static void exynos4_mct_comp0_stop(void)
260 {
261 	unsigned int tcon;
262 
263 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
264 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
265 
266 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
267 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
268 }
269 
270 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
271 {
272 	unsigned int tcon;
273 	u64 comp_cycle;
274 
275 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
276 
277 	if (periodic) {
278 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
279 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
280 	}
281 
282 	comp_cycle = exynos4_read_count_64() + cycles;
283 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
284 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
285 
286 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
287 
288 	tcon |= MCT_G_TCON_COMP0_ENABLE;
289 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
290 }
291 
292 static int exynos4_comp_set_next_event(unsigned long cycles,
293 				       struct clock_event_device *evt)
294 {
295 	exynos4_mct_comp0_start(false, cycles);
296 
297 	return 0;
298 }
299 
300 static int mct_set_state_shutdown(struct clock_event_device *evt)
301 {
302 	exynos4_mct_comp0_stop();
303 	return 0;
304 }
305 
306 static int mct_set_state_periodic(struct clock_event_device *evt)
307 {
308 	unsigned long cycles_per_jiffy;
309 
310 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
311 			    >> evt->shift);
312 	exynos4_mct_comp0_stop();
313 	exynos4_mct_comp0_start(true, cycles_per_jiffy);
314 	return 0;
315 }
316 
317 static struct clock_event_device mct_comp_device = {
318 	.name			= "mct-comp",
319 	.features		= CLOCK_EVT_FEAT_PERIODIC |
320 				  CLOCK_EVT_FEAT_ONESHOT,
321 	.rating			= 250,
322 	.set_next_event		= exynos4_comp_set_next_event,
323 	.set_state_periodic	= mct_set_state_periodic,
324 	.set_state_shutdown	= mct_set_state_shutdown,
325 	.set_state_oneshot	= mct_set_state_shutdown,
326 	.set_state_oneshot_stopped = mct_set_state_shutdown,
327 	.tick_resume		= mct_set_state_shutdown,
328 };
329 
330 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
331 {
332 	struct clock_event_device *evt = dev_id;
333 
334 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
335 
336 	evt->event_handler(evt);
337 
338 	return IRQ_HANDLED;
339 }
340 
341 static int exynos4_clockevent_init(void)
342 {
343 	mct_comp_device.cpumask = cpumask_of(0);
344 	clockevents_config_and_register(&mct_comp_device, clk_rate,
345 					0xf, 0xffffffff);
346 	if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
347 			IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
348 			&mct_comp_device))
349 		pr_err("%s: request_irq() failed\n", "mct_comp_irq");
350 
351 	return 0;
352 }
353 
354 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
355 
356 /* Clock event handling */
357 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
358 {
359 	unsigned long tmp;
360 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
361 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
362 
363 	tmp = readl_relaxed(reg_base + offset);
364 	if (tmp & mask) {
365 		tmp &= ~mask;
366 		exynos4_mct_write(tmp, offset);
367 	}
368 }
369 
370 static void exynos4_mct_tick_start(unsigned long cycles,
371 				   struct mct_clock_event_device *mevt)
372 {
373 	unsigned long tmp;
374 
375 	exynos4_mct_tick_stop(mevt);
376 
377 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
378 
379 	/* update interrupt count buffer */
380 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
381 
382 	/* enable MCT tick interrupt */
383 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
384 
385 	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
386 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
387 	       MCT_L_TCON_INTERVAL_MODE;
388 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
389 }
390 
391 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
392 {
393 	/* Clear the MCT tick interrupt */
394 	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
395 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
396 }
397 
398 static int exynos4_tick_set_next_event(unsigned long cycles,
399 				       struct clock_event_device *evt)
400 {
401 	struct mct_clock_event_device *mevt;
402 
403 	mevt = container_of(evt, struct mct_clock_event_device, evt);
404 	exynos4_mct_tick_start(cycles, mevt);
405 	return 0;
406 }
407 
408 static int set_state_shutdown(struct clock_event_device *evt)
409 {
410 	struct mct_clock_event_device *mevt;
411 
412 	mevt = container_of(evt, struct mct_clock_event_device, evt);
413 	exynos4_mct_tick_stop(mevt);
414 	exynos4_mct_tick_clear(mevt);
415 	return 0;
416 }
417 
418 static int set_state_periodic(struct clock_event_device *evt)
419 {
420 	struct mct_clock_event_device *mevt;
421 	unsigned long cycles_per_jiffy;
422 
423 	mevt = container_of(evt, struct mct_clock_event_device, evt);
424 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
425 			    >> evt->shift);
426 	exynos4_mct_tick_stop(mevt);
427 	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
428 	return 0;
429 }
430 
431 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
432 {
433 	struct mct_clock_event_device *mevt = dev_id;
434 	struct clock_event_device *evt = &mevt->evt;
435 
436 	/*
437 	 * This is for supporting oneshot mode.
438 	 * Mct would generate interrupt periodically
439 	 * without explicit stopping.
440 	 */
441 	if (!clockevent_state_periodic(&mevt->evt))
442 		exynos4_mct_tick_stop(mevt);
443 
444 	exynos4_mct_tick_clear(mevt);
445 
446 	evt->event_handler(evt);
447 
448 	return IRQ_HANDLED;
449 }
450 
451 static int exynos4_mct_starting_cpu(unsigned int cpu)
452 {
453 	struct mct_clock_event_device *mevt =
454 		per_cpu_ptr(&percpu_mct_tick, cpu);
455 	struct clock_event_device *evt = &mevt->evt;
456 
457 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
458 	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
459 
460 	evt->name = mevt->name;
461 	evt->cpumask = cpumask_of(cpu);
462 	evt->set_next_event = exynos4_tick_set_next_event;
463 	evt->set_state_periodic = set_state_periodic;
464 	evt->set_state_shutdown = set_state_shutdown;
465 	evt->set_state_oneshot = set_state_shutdown;
466 	evt->set_state_oneshot_stopped = set_state_shutdown;
467 	evt->tick_resume = set_state_shutdown;
468 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
469 			CLOCK_EVT_FEAT_PERCPU;
470 	evt->rating = MCT_CLKEVENTS_RATING,
471 
472 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
473 
474 	if (mct_int_type == MCT_INT_SPI) {
475 
476 		if (evt->irq == -1)
477 			return -EIO;
478 
479 		irq_force_affinity(evt->irq, cpumask_of(cpu));
480 		enable_irq(evt->irq);
481 	} else {
482 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
483 	}
484 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
485 					0xf, 0x7fffffff);
486 
487 	return 0;
488 }
489 
490 static int exynos4_mct_dying_cpu(unsigned int cpu)
491 {
492 	struct mct_clock_event_device *mevt =
493 		per_cpu_ptr(&percpu_mct_tick, cpu);
494 	struct clock_event_device *evt = &mevt->evt;
495 
496 	evt->set_state_shutdown(evt);
497 	if (mct_int_type == MCT_INT_SPI) {
498 		if (evt->irq != -1)
499 			disable_irq_nosync(evt->irq);
500 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
501 	} else {
502 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
503 	}
504 	return 0;
505 }
506 
507 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
508 {
509 	int err, cpu;
510 	struct clk *mct_clk, *tick_clk;
511 
512 	tick_clk = of_clk_get_by_name(np, "fin_pll");
513 	if (IS_ERR(tick_clk))
514 		panic("%s: unable to determine tick clock rate\n", __func__);
515 	clk_rate = clk_get_rate(tick_clk);
516 
517 	mct_clk = of_clk_get_by_name(np, "mct");
518 	if (IS_ERR(mct_clk))
519 		panic("%s: unable to retrieve mct clock instance\n", __func__);
520 	clk_prepare_enable(mct_clk);
521 
522 	reg_base = base;
523 	if (!reg_base)
524 		panic("%s: unable to ioremap mct address space\n", __func__);
525 
526 	if (mct_int_type == MCT_INT_PPI) {
527 
528 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
529 					 exynos4_mct_tick_isr, "MCT",
530 					 &percpu_mct_tick);
531 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
532 		     mct_irqs[MCT_L0_IRQ], err);
533 	} else {
534 		for_each_possible_cpu(cpu) {
535 			int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
536 			struct mct_clock_event_device *pcpu_mevt =
537 				per_cpu_ptr(&percpu_mct_tick, cpu);
538 
539 			pcpu_mevt->evt.irq = -1;
540 
541 			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
542 			if (request_irq(mct_irq,
543 					exynos4_mct_tick_isr,
544 					IRQF_TIMER | IRQF_NOBALANCING,
545 					pcpu_mevt->name, pcpu_mevt)) {
546 				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
547 									cpu);
548 
549 				continue;
550 			}
551 			pcpu_mevt->evt.irq = mct_irq;
552 		}
553 	}
554 
555 	/* Install hotplug callbacks which configure the timer on this CPU */
556 	err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
557 				"clockevents/exynos4/mct_timer:starting",
558 				exynos4_mct_starting_cpu,
559 				exynos4_mct_dying_cpu);
560 	if (err)
561 		goto out_irq;
562 
563 	return 0;
564 
565 out_irq:
566 	if (mct_int_type == MCT_INT_PPI) {
567 		free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
568 	} else {
569 		for_each_possible_cpu(cpu) {
570 			struct mct_clock_event_device *pcpu_mevt =
571 				per_cpu_ptr(&percpu_mct_tick, cpu);
572 
573 			if (pcpu_mevt->evt.irq != -1) {
574 				free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
575 				pcpu_mevt->evt.irq = -1;
576 			}
577 		}
578 	}
579 	return err;
580 }
581 
582 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
583 {
584 	u32 nr_irqs, i;
585 	int ret;
586 
587 	mct_int_type = int_type;
588 
589 	/* This driver uses only one global timer interrupt */
590 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
591 
592 	/*
593 	 * Find out the number of local irqs specified. The local
594 	 * timer irqs are specified after the four global timer
595 	 * irqs are specified.
596 	 */
597 	nr_irqs = of_irq_count(np);
598 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
599 		mct_irqs[i] = irq_of_parse_and_map(np, i);
600 
601 	ret = exynos4_timer_resources(np, of_iomap(np, 0));
602 	if (ret)
603 		return ret;
604 
605 	ret = exynos4_clocksource_init();
606 	if (ret)
607 		return ret;
608 
609 	return exynos4_clockevent_init();
610 }
611 
612 
613 static int __init mct_init_spi(struct device_node *np)
614 {
615 	return mct_init_dt(np, MCT_INT_SPI);
616 }
617 
618 static int __init mct_init_ppi(struct device_node *np)
619 {
620 	return mct_init_dt(np, MCT_INT_PPI);
621 }
622 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
623 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
624