xref: /linux/drivers/clocksource/exynos_mct.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12 
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28 
29 #define EXYNOS4_MCTREG(x)		(x)
30 #define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK		(0xffffff00)
43 
44 #define MCT_L_TCNTB_OFFSET		(0x00)
45 #define MCT_L_ICNTB_OFFSET		(0x08)
46 #define MCT_L_TCON_OFFSET		(0x20)
47 #define MCT_L_INT_CSTAT_OFFSET		(0x30)
48 #define MCT_L_INT_ENB_OFFSET		(0x34)
49 #define MCT_L_WSTAT_OFFSET		(0x40)
50 #define MCT_G_TCON_START		(1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
54 #define MCT_L_TCON_INT_START		(1 << 1)
55 #define MCT_L_TCON_TIMER_START		(1 << 0)
56 
57 #define TICK_BASE_CNT	1
58 
59 enum {
60 	MCT_INT_SPI,
61 	MCT_INT_PPI
62 };
63 
64 enum {
65 	MCT_G0_IRQ,
66 	MCT_G1_IRQ,
67 	MCT_G2_IRQ,
68 	MCT_G3_IRQ,
69 	MCT_L0_IRQ,
70 	MCT_L1_IRQ,
71 	MCT_L2_IRQ,
72 	MCT_L3_IRQ,
73 	MCT_L4_IRQ,
74 	MCT_L5_IRQ,
75 	MCT_L6_IRQ,
76 	MCT_L7_IRQ,
77 	MCT_NR_IRQS,
78 };
79 
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84 
85 struct mct_clock_event_device {
86 	struct clock_event_device evt;
87 	unsigned long base;
88 	char name[10];
89 };
90 
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93 	unsigned long stat_addr;
94 	u32 mask;
95 	u32 i;
96 
97 	writel_relaxed(value, reg_base + offset);
98 
99 	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100 		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101 		switch (offset & ~EXYNOS4_MCT_L_MASK) {
102 		case MCT_L_TCON_OFFSET:
103 			mask = 1 << 3;		/* L_TCON write status */
104 			break;
105 		case MCT_L_ICNTB_OFFSET:
106 			mask = 1 << 1;		/* L_ICNTB write status */
107 			break;
108 		case MCT_L_TCNTB_OFFSET:
109 			mask = 1 << 0;		/* L_TCNTB write status */
110 			break;
111 		default:
112 			return;
113 		}
114 	} else {
115 		switch (offset) {
116 		case EXYNOS4_MCT_G_TCON:
117 			stat_addr = EXYNOS4_MCT_G_WSTAT;
118 			mask = 1 << 16;		/* G_TCON write status */
119 			break;
120 		case EXYNOS4_MCT_G_COMP0_L:
121 			stat_addr = EXYNOS4_MCT_G_WSTAT;
122 			mask = 1 << 0;		/* G_COMP0_L write status */
123 			break;
124 		case EXYNOS4_MCT_G_COMP0_U:
125 			stat_addr = EXYNOS4_MCT_G_WSTAT;
126 			mask = 1 << 1;		/* G_COMP0_U write status */
127 			break;
128 		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129 			stat_addr = EXYNOS4_MCT_G_WSTAT;
130 			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
131 			break;
132 		case EXYNOS4_MCT_G_CNT_L:
133 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134 			mask = 1 << 0;		/* G_CNT_L write status */
135 			break;
136 		case EXYNOS4_MCT_G_CNT_U:
137 			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 			mask = 1 << 1;		/* G_CNT_U write status */
139 			break;
140 		default:
141 			return;
142 		}
143 	}
144 
145 	/* Wait maximum 1 ms until written values are applied */
146 	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147 		if (readl_relaxed(reg_base + stat_addr) & mask) {
148 			writel_relaxed(mask, reg_base + stat_addr);
149 			return;
150 		}
151 
152 	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154 
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
157 {
158 	u32 reg;
159 
160 	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161 	reg |= MCT_G_TCON_START;
162 	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164 
165 /**
166  * exynos4_read_count_64 - Read all 64-bits of the global counter
167  *
168  * This will read all 64-bits of the global counter taking care to make sure
169  * that the upper and lower half match.  Note that reading the MCT can be quite
170  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171  * only) version when possible.
172  *
173  * Returns the number of cycles in the global counter.
174  */
175 static u64 exynos4_read_count_64(void)
176 {
177 	unsigned int lo, hi;
178 	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179 
180 	do {
181 		hi = hi2;
182 		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183 		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
184 	} while (hi != hi2);
185 
186 	return ((cycle_t)hi << 32) | lo;
187 }
188 
189 /**
190  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191  *
192  * This will read just the lower 32-bits of the global counter.  This is marked
193  * as notrace so it can be used by the scheduler clock.
194  *
195  * Returns the number of cycles in the global counter (lower 32 bits).
196  */
197 static u32 notrace exynos4_read_count_32(void)
198 {
199 	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200 }
201 
202 static cycle_t exynos4_frc_read(struct clocksource *cs)
203 {
204 	return exynos4_read_count_32();
205 }
206 
207 static void exynos4_frc_resume(struct clocksource *cs)
208 {
209 	exynos4_mct_frc_start();
210 }
211 
212 static struct clocksource mct_frc = {
213 	.name		= "mct-frc",
214 	.rating		= 400,
215 	.read		= exynos4_frc_read,
216 	.mask		= CLOCKSOURCE_MASK(32),
217 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
218 	.resume		= exynos4_frc_resume,
219 };
220 
221 static u64 notrace exynos4_read_sched_clock(void)
222 {
223 	return exynos4_read_count_32();
224 }
225 
226 static struct delay_timer exynos4_delay_timer;
227 
228 static cycles_t exynos4_read_current_timer(void)
229 {
230 	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231 			 "cycles_t needs to move to 32-bit for ARM64 usage");
232 	return exynos4_read_count_32();
233 }
234 
235 static int __init exynos4_clocksource_init(void)
236 {
237 	exynos4_mct_frc_start();
238 
239 	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
240 	exynos4_delay_timer.freq = clk_rate;
241 	register_current_timer_delay(&exynos4_delay_timer);
242 
243 	if (clocksource_register_hz(&mct_frc, clk_rate))
244 		panic("%s: can't register clocksource\n", mct_frc.name);
245 
246 	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
247 
248 	return 0;
249 }
250 
251 static void exynos4_mct_comp0_stop(void)
252 {
253 	unsigned int tcon;
254 
255 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
256 	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
257 
258 	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
259 	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
260 }
261 
262 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
263 {
264 	unsigned int tcon;
265 	cycle_t comp_cycle;
266 
267 	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
268 
269 	if (periodic) {
270 		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
271 		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
272 	}
273 
274 	comp_cycle = exynos4_read_count_64() + cycles;
275 	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
276 	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
277 
278 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
279 
280 	tcon |= MCT_G_TCON_COMP0_ENABLE;
281 	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
282 }
283 
284 static int exynos4_comp_set_next_event(unsigned long cycles,
285 				       struct clock_event_device *evt)
286 {
287 	exynos4_mct_comp0_start(false, cycles);
288 
289 	return 0;
290 }
291 
292 static int mct_set_state_shutdown(struct clock_event_device *evt)
293 {
294 	exynos4_mct_comp0_stop();
295 	return 0;
296 }
297 
298 static int mct_set_state_periodic(struct clock_event_device *evt)
299 {
300 	unsigned long cycles_per_jiffy;
301 
302 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
303 			    >> evt->shift);
304 	exynos4_mct_comp0_stop();
305 	exynos4_mct_comp0_start(true, cycles_per_jiffy);
306 	return 0;
307 }
308 
309 static struct clock_event_device mct_comp_device = {
310 	.name			= "mct-comp",
311 	.features		= CLOCK_EVT_FEAT_PERIODIC |
312 				  CLOCK_EVT_FEAT_ONESHOT,
313 	.rating			= 250,
314 	.set_next_event		= exynos4_comp_set_next_event,
315 	.set_state_periodic	= mct_set_state_periodic,
316 	.set_state_shutdown	= mct_set_state_shutdown,
317 	.set_state_oneshot	= mct_set_state_shutdown,
318 	.set_state_oneshot_stopped = mct_set_state_shutdown,
319 	.tick_resume		= mct_set_state_shutdown,
320 };
321 
322 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
323 {
324 	struct clock_event_device *evt = dev_id;
325 
326 	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
327 
328 	evt->event_handler(evt);
329 
330 	return IRQ_HANDLED;
331 }
332 
333 static struct irqaction mct_comp_event_irq = {
334 	.name		= "mct_comp_irq",
335 	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
336 	.handler	= exynos4_mct_comp_isr,
337 	.dev_id		= &mct_comp_device,
338 };
339 
340 static int exynos4_clockevent_init(void)
341 {
342 	mct_comp_device.cpumask = cpumask_of(0);
343 	clockevents_config_and_register(&mct_comp_device, clk_rate,
344 					0xf, 0xffffffff);
345 	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
346 
347 	return 0;
348 }
349 
350 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
351 
352 /* Clock event handling */
353 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
354 {
355 	unsigned long tmp;
356 	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
357 	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
358 
359 	tmp = readl_relaxed(reg_base + offset);
360 	if (tmp & mask) {
361 		tmp &= ~mask;
362 		exynos4_mct_write(tmp, offset);
363 	}
364 }
365 
366 static void exynos4_mct_tick_start(unsigned long cycles,
367 				   struct mct_clock_event_device *mevt)
368 {
369 	unsigned long tmp;
370 
371 	exynos4_mct_tick_stop(mevt);
372 
373 	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
374 
375 	/* update interrupt count buffer */
376 	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
377 
378 	/* enable MCT tick interrupt */
379 	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
380 
381 	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
382 	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
383 	       MCT_L_TCON_INTERVAL_MODE;
384 	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
385 }
386 
387 static int exynos4_tick_set_next_event(unsigned long cycles,
388 				       struct clock_event_device *evt)
389 {
390 	struct mct_clock_event_device *mevt;
391 
392 	mevt = container_of(evt, struct mct_clock_event_device, evt);
393 	exynos4_mct_tick_start(cycles, mevt);
394 	return 0;
395 }
396 
397 static int set_state_shutdown(struct clock_event_device *evt)
398 {
399 	struct mct_clock_event_device *mevt;
400 
401 	mevt = container_of(evt, struct mct_clock_event_device, evt);
402 	exynos4_mct_tick_stop(mevt);
403 	return 0;
404 }
405 
406 static int set_state_periodic(struct clock_event_device *evt)
407 {
408 	struct mct_clock_event_device *mevt;
409 	unsigned long cycles_per_jiffy;
410 
411 	mevt = container_of(evt, struct mct_clock_event_device, evt);
412 	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
413 			    >> evt->shift);
414 	exynos4_mct_tick_stop(mevt);
415 	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
416 	return 0;
417 }
418 
419 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
420 {
421 	/*
422 	 * This is for supporting oneshot mode.
423 	 * Mct would generate interrupt periodically
424 	 * without explicit stopping.
425 	 */
426 	if (!clockevent_state_periodic(&mevt->evt))
427 		exynos4_mct_tick_stop(mevt);
428 
429 	/* Clear the MCT tick interrupt */
430 	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
431 		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
432 }
433 
434 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
435 {
436 	struct mct_clock_event_device *mevt = dev_id;
437 	struct clock_event_device *evt = &mevt->evt;
438 
439 	exynos4_mct_tick_clear(mevt);
440 
441 	evt->event_handler(evt);
442 
443 	return IRQ_HANDLED;
444 }
445 
446 static int exynos4_mct_starting_cpu(unsigned int cpu)
447 {
448 	struct mct_clock_event_device *mevt =
449 		per_cpu_ptr(&percpu_mct_tick, cpu);
450 	struct clock_event_device *evt = &mevt->evt;
451 
452 	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
453 	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
454 
455 	evt->name = mevt->name;
456 	evt->cpumask = cpumask_of(cpu);
457 	evt->set_next_event = exynos4_tick_set_next_event;
458 	evt->set_state_periodic = set_state_periodic;
459 	evt->set_state_shutdown = set_state_shutdown;
460 	evt->set_state_oneshot = set_state_shutdown;
461 	evt->set_state_oneshot_stopped = set_state_shutdown;
462 	evt->tick_resume = set_state_shutdown;
463 	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
464 	evt->rating = 450;
465 
466 	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
467 
468 	if (mct_int_type == MCT_INT_SPI) {
469 
470 		if (evt->irq == -1)
471 			return -EIO;
472 
473 		irq_force_affinity(evt->irq, cpumask_of(cpu));
474 		enable_irq(evt->irq);
475 	} else {
476 		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
477 	}
478 	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
479 					0xf, 0x7fffffff);
480 
481 	return 0;
482 }
483 
484 static int exynos4_mct_dying_cpu(unsigned int cpu)
485 {
486 	struct mct_clock_event_device *mevt =
487 		per_cpu_ptr(&percpu_mct_tick, cpu);
488 	struct clock_event_device *evt = &mevt->evt;
489 
490 	evt->set_state_shutdown(evt);
491 	if (mct_int_type == MCT_INT_SPI) {
492 		if (evt->irq != -1)
493 			disable_irq_nosync(evt->irq);
494 	} else {
495 		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
496 	}
497 	return 0;
498 }
499 
500 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
501 {
502 	int err, cpu;
503 	struct clk *mct_clk, *tick_clk;
504 
505 	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
506 				clk_get(NULL, "fin_pll");
507 	if (IS_ERR(tick_clk))
508 		panic("%s: unable to determine tick clock rate\n", __func__);
509 	clk_rate = clk_get_rate(tick_clk);
510 
511 	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
512 	if (IS_ERR(mct_clk))
513 		panic("%s: unable to retrieve mct clock instance\n", __func__);
514 	clk_prepare_enable(mct_clk);
515 
516 	reg_base = base;
517 	if (!reg_base)
518 		panic("%s: unable to ioremap mct address space\n", __func__);
519 
520 	if (mct_int_type == MCT_INT_PPI) {
521 
522 		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
523 					 exynos4_mct_tick_isr, "MCT",
524 					 &percpu_mct_tick);
525 		WARN(err, "MCT: can't request IRQ %d (%d)\n",
526 		     mct_irqs[MCT_L0_IRQ], err);
527 	} else {
528 		for_each_possible_cpu(cpu) {
529 			int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
530 			struct mct_clock_event_device *pcpu_mevt =
531 				per_cpu_ptr(&percpu_mct_tick, cpu);
532 
533 			pcpu_mevt->evt.irq = -1;
534 
535 			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
536 			if (request_irq(mct_irq,
537 					exynos4_mct_tick_isr,
538 					IRQF_TIMER | IRQF_NOBALANCING,
539 					pcpu_mevt->name, pcpu_mevt)) {
540 				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
541 									cpu);
542 
543 				continue;
544 			}
545 			pcpu_mevt->evt.irq = mct_irq;
546 		}
547 	}
548 
549 	/* Install hotplug callbacks which configure the timer on this CPU */
550 	err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
551 				"AP_EXYNOS4_MCT_TIMER_STARTING",
552 				exynos4_mct_starting_cpu,
553 				exynos4_mct_dying_cpu);
554 	if (err)
555 		goto out_irq;
556 
557 	return 0;
558 
559 out_irq:
560 	free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
561 	return err;
562 }
563 
564 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
565 {
566 	u32 nr_irqs, i;
567 	int ret;
568 
569 	mct_int_type = int_type;
570 
571 	/* This driver uses only one global timer interrupt */
572 	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
573 
574 	/*
575 	 * Find out the number of local irqs specified. The local
576 	 * timer irqs are specified after the four global timer
577 	 * irqs are specified.
578 	 */
579 #ifdef CONFIG_OF
580 	nr_irqs = of_irq_count(np);
581 #else
582 	nr_irqs = 0;
583 #endif
584 	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
585 		mct_irqs[i] = irq_of_parse_and_map(np, i);
586 
587 	ret = exynos4_timer_resources(np, of_iomap(np, 0));
588 	if (ret)
589 		return ret;
590 
591 	ret = exynos4_clocksource_init();
592 	if (ret)
593 		return ret;
594 
595 	return exynos4_clockevent_init();
596 }
597 
598 
599 static int __init mct_init_spi(struct device_node *np)
600 {
601 	return mct_init_dt(np, MCT_INT_SPI);
602 }
603 
604 static int __init mct_init_ppi(struct device_node *np)
605 {
606 	return mct_init_dt(np, MCT_INT_PPI);
607 }
608 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
609 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
610