xref: /linux/drivers/clocksource/dw_apb_timer.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) Copyright 2009 Intel Corporation
4  * Author: Jacob Pan (jacob.jun.pan@intel.com)
5  *
6  * Shared with ARM platforms, Jamie Iles, Picochip 2011
7  *
8  * Support for the Synopsys DesignWare APB Timers.
9  */
10 #include <linux/dw_apb_timer.h>
11 #include <linux/delay.h>
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/io.h>
16 #include <linux/slab.h>
17 
18 #define APBT_MIN_PERIOD			4
19 #define APBT_MIN_DELTA_USEC		200
20 
21 #define APBTMR_N_LOAD_COUNT		0x00
22 #define APBTMR_N_CURRENT_VALUE		0x04
23 #define APBTMR_N_CONTROL		0x08
24 #define APBTMR_N_EOI			0x0c
25 #define APBTMR_N_INT_STATUS		0x10
26 
27 #define APBTMRS_INT_STATUS		0xa0
28 #define APBTMRS_EOI			0xa4
29 #define APBTMRS_RAW_INT_STATUS		0xa8
30 #define APBTMRS_COMP_VERSION		0xac
31 
32 #define APBTMR_CONTROL_ENABLE		(1 << 0)
33 /* 1: periodic, 0:free running. */
34 #define APBTMR_CONTROL_MODE_PERIODIC	(1 << 1)
35 #define APBTMR_CONTROL_INT		(1 << 2)
36 
37 static inline struct dw_apb_clock_event_device *
38 ced_to_dw_apb_ced(struct clock_event_device *evt)
39 {
40 	return container_of(evt, struct dw_apb_clock_event_device, ced);
41 }
42 
43 static inline struct dw_apb_clocksource *
44 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
45 {
46 	return container_of(cs, struct dw_apb_clocksource, cs);
47 }
48 
49 static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
50 {
51 	return readl(timer->base + offs);
52 }
53 
54 static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
55 			unsigned long offs)
56 {
57 	writel(val, timer->base + offs);
58 }
59 
60 static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
61 {
62 	return readl_relaxed(timer->base + offs);
63 }
64 
65 static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
66 			unsigned long offs)
67 {
68 	writel_relaxed(val, timer->base + offs);
69 }
70 
71 static void apbt_eoi(struct dw_apb_timer *timer)
72 {
73 	apbt_readl_relaxed(timer, APBTMR_N_EOI);
74 }
75 
76 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
77 {
78 	struct clock_event_device *evt = data;
79 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
80 
81 	if (!evt->event_handler) {
82 		pr_info("Spurious APBT timer interrupt %d\n", irq);
83 		return IRQ_NONE;
84 	}
85 
86 	if (dw_ced->eoi)
87 		dw_ced->eoi(&dw_ced->timer);
88 
89 	evt->event_handler(evt);
90 	return IRQ_HANDLED;
91 }
92 
93 static void apbt_enable_int(struct dw_apb_timer *timer)
94 {
95 	u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
96 	/* clear pending intr */
97 	apbt_readl(timer, APBTMR_N_EOI);
98 	ctrl &= ~APBTMR_CONTROL_INT;
99 	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
100 }
101 
102 static int apbt_shutdown(struct clock_event_device *evt)
103 {
104 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
105 	u32 ctrl;
106 
107 	pr_debug("%s CPU %d state=shutdown\n", __func__,
108 		 cpumask_first(evt->cpumask));
109 
110 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
111 	ctrl &= ~APBTMR_CONTROL_ENABLE;
112 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
113 	return 0;
114 }
115 
116 static int apbt_set_oneshot(struct clock_event_device *evt)
117 {
118 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
119 	u32 ctrl;
120 
121 	pr_debug("%s CPU %d state=oneshot\n", __func__,
122 		 cpumask_first(evt->cpumask));
123 
124 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
125 	/*
126 	 * set free running mode, this mode will let timer reload max
127 	 * timeout which will give time (3min on 25MHz clock) to rearm
128 	 * the next event, therefore emulate the one-shot mode.
129 	 */
130 	ctrl &= ~APBTMR_CONTROL_ENABLE;
131 	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
132 
133 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
134 	/* write again to set free running mode */
135 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
136 
137 	/*
138 	 * DW APB p. 46, load counter with all 1s before starting free
139 	 * running mode.
140 	 */
141 	apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
142 	ctrl &= ~APBTMR_CONTROL_INT;
143 	ctrl |= APBTMR_CONTROL_ENABLE;
144 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
145 	return 0;
146 }
147 
148 static int apbt_set_periodic(struct clock_event_device *evt)
149 {
150 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
151 	unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
152 	u32 ctrl;
153 
154 	pr_debug("%s CPU %d state=periodic\n", __func__,
155 		 cpumask_first(evt->cpumask));
156 
157 	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
158 	ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
159 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
160 	/*
161 	 * DW APB p. 46, have to disable timer before load counter,
162 	 * may cause sync problem.
163 	 */
164 	ctrl &= ~APBTMR_CONTROL_ENABLE;
165 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
166 	udelay(1);
167 	pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
168 	apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
169 	ctrl |= APBTMR_CONTROL_ENABLE;
170 	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
171 	return 0;
172 }
173 
174 static int apbt_resume(struct clock_event_device *evt)
175 {
176 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
177 
178 	pr_debug("%s CPU %d state=resume\n", __func__,
179 		 cpumask_first(evt->cpumask));
180 
181 	apbt_enable_int(&dw_ced->timer);
182 	return 0;
183 }
184 
185 static int apbt_next_event(unsigned long delta,
186 			   struct clock_event_device *evt)
187 {
188 	u32 ctrl;
189 	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
190 
191 	/* Disable timer */
192 	ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
193 	ctrl &= ~APBTMR_CONTROL_ENABLE;
194 	apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
195 	/* write new count */
196 	apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
197 	ctrl |= APBTMR_CONTROL_ENABLE;
198 	apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
199 
200 	return 0;
201 }
202 
203 /**
204  * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
205  *
206  * @cpu:	The CPU the events will be targeted at or -1 if CPU affiliation
207  *		isn't required.
208  * @name:	The name used for the timer and the IRQ for it.
209  * @rating:	The rating to give the timer.
210  * @base:	I/O base for the timer registers.
211  * @irq:	The interrupt number to use for the timer.
212  * @freq:	The frequency that the timer counts at.
213  *
214  * This creates a clock_event_device for using with the generic clock layer
215  * but does not start and register it.  This should be done with
216  * dw_apb_clockevent_register() as the next step.  If this is the first time
217  * it has been called for a timer then the IRQ will be requested, if not it
218  * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
219  * releasing the IRQ.
220  */
221 struct dw_apb_clock_event_device *
222 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
223 		       void __iomem *base, int irq, unsigned long freq)
224 {
225 	struct dw_apb_clock_event_device *dw_ced =
226 		kzalloc(sizeof(*dw_ced), GFP_KERNEL);
227 	int err;
228 
229 	if (!dw_ced)
230 		return NULL;
231 
232 	dw_ced->timer.base = base;
233 	dw_ced->timer.irq = irq;
234 	dw_ced->timer.freq = freq;
235 
236 	clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
237 	dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
238 						       &dw_ced->ced);
239 	dw_ced->ced.max_delta_ticks = 0x7fffffff;
240 	dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
241 	dw_ced->ced.min_delta_ticks = 5000;
242 	dw_ced->ced.cpumask = cpu < 0 ? cpu_possible_mask : cpumask_of(cpu);
243 	dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
244 				CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
245 	dw_ced->ced.set_state_shutdown = apbt_shutdown;
246 	dw_ced->ced.set_state_periodic = apbt_set_periodic;
247 	dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
248 	dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
249 	dw_ced->ced.tick_resume = apbt_resume;
250 	dw_ced->ced.set_next_event = apbt_next_event;
251 	dw_ced->ced.irq = dw_ced->timer.irq;
252 	dw_ced->ced.rating = rating;
253 	dw_ced->ced.name = name;
254 
255 	dw_ced->eoi = apbt_eoi;
256 	err = request_irq(irq, dw_apb_clockevent_irq,
257 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
258 			  dw_ced->ced.name, &dw_ced->ced);
259 	if (err) {
260 		pr_err("failed to request timer irq\n");
261 		kfree(dw_ced);
262 		dw_ced = NULL;
263 	}
264 
265 	return dw_ced;
266 }
267 
268 /**
269  * dw_apb_clockevent_register() - register the clock with the generic layer
270  *
271  * @dw_ced:	The APB clock to register as a clock_event_device.
272  */
273 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
274 {
275 	apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
276 	clockevents_register_device(&dw_ced->ced);
277 	apbt_enable_int(&dw_ced->timer);
278 }
279 
280 /**
281  * dw_apb_clocksource_start() - start the clocksource counting.
282  *
283  * @dw_cs:	The clocksource to start.
284  *
285  * This is used to start the clocksource before registration and can be used
286  * to enable calibration of timers.
287  */
288 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
289 {
290 	/*
291 	 * start count down from 0xffff_ffff. this is done by toggling the
292 	 * enable bit then load initial load count to ~0.
293 	 */
294 	u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
295 
296 	ctrl &= ~APBTMR_CONTROL_ENABLE;
297 	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
298 	apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
299 	/* enable, mask interrupt */
300 	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
301 	ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
302 	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
303 	/* read it once to get cached counter value initialized */
304 	dw_apb_clocksource_read(dw_cs);
305 }
306 
307 static u64 __apbt_read_clocksource(struct clocksource *cs)
308 {
309 	u32 current_count;
310 	struct dw_apb_clocksource *dw_cs =
311 		clocksource_to_dw_apb_clocksource(cs);
312 
313 	current_count = apbt_readl_relaxed(&dw_cs->timer,
314 					APBTMR_N_CURRENT_VALUE);
315 
316 	return (u64)~current_count;
317 }
318 
319 static void apbt_restart_clocksource(struct clocksource *cs)
320 {
321 	struct dw_apb_clocksource *dw_cs =
322 		clocksource_to_dw_apb_clocksource(cs);
323 
324 	dw_apb_clocksource_start(dw_cs);
325 }
326 
327 /**
328  * dw_apb_clocksource_init() - use an APB timer as a clocksource.
329  *
330  * @rating:	The rating to give the clocksource.
331  * @name:	The name for the clocksource.
332  * @base:	The I/O base for the timer registers.
333  * @freq:	The frequency that the timer counts at.
334  *
335  * This creates a clocksource using an APB timer but does not yet register it
336  * with the clocksource system.  This should be done with
337  * dw_apb_clocksource_register() as the next step.
338  */
339 struct dw_apb_clocksource *
340 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
341 			unsigned long freq)
342 {
343 	struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
344 
345 	if (!dw_cs)
346 		return NULL;
347 
348 	dw_cs->timer.base = base;
349 	dw_cs->timer.freq = freq;
350 	dw_cs->cs.name = name;
351 	dw_cs->cs.rating = rating;
352 	dw_cs->cs.read = __apbt_read_clocksource;
353 	dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
354 	dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
355 	dw_cs->cs.resume = apbt_restart_clocksource;
356 
357 	return dw_cs;
358 }
359 
360 /**
361  * dw_apb_clocksource_register() - register the APB clocksource.
362  *
363  * @dw_cs:	The clocksource to register.
364  */
365 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
366 {
367 	clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
368 }
369 
370 /**
371  * dw_apb_clocksource_read() - read the current value of a clocksource.
372  *
373  * @dw_cs:	The clocksource to read.
374  */
375 u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
376 {
377 	return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
378 }
379