1 /* 2 * (C) Copyright 2009 Intel Corporation 3 * Author: Jacob Pan (jacob.jun.pan@intel.com) 4 * 5 * Shared with ARM platforms, Jamie Iles, Picochip 2011 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * Support for the Synopsys DesignWare APB Timers. 12 */ 13 #include <linux/dw_apb_timer.h> 14 #include <linux/delay.h> 15 #include <linux/kernel.h> 16 #include <linux/interrupt.h> 17 #include <linux/irq.h> 18 #include <linux/io.h> 19 #include <linux/slab.h> 20 21 #define APBT_MIN_PERIOD 4 22 #define APBT_MIN_DELTA_USEC 200 23 24 #define APBTMR_N_LOAD_COUNT 0x00 25 #define APBTMR_N_CURRENT_VALUE 0x04 26 #define APBTMR_N_CONTROL 0x08 27 #define APBTMR_N_EOI 0x0c 28 #define APBTMR_N_INT_STATUS 0x10 29 30 #define APBTMRS_INT_STATUS 0xa0 31 #define APBTMRS_EOI 0xa4 32 #define APBTMRS_RAW_INT_STATUS 0xa8 33 #define APBTMRS_COMP_VERSION 0xac 34 35 #define APBTMR_CONTROL_ENABLE (1 << 0) 36 /* 1: periodic, 0:free running. */ 37 #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1) 38 #define APBTMR_CONTROL_INT (1 << 2) 39 40 static inline struct dw_apb_clock_event_device * 41 ced_to_dw_apb_ced(struct clock_event_device *evt) 42 { 43 return container_of(evt, struct dw_apb_clock_event_device, ced); 44 } 45 46 static inline struct dw_apb_clocksource * 47 clocksource_to_dw_apb_clocksource(struct clocksource *cs) 48 { 49 return container_of(cs, struct dw_apb_clocksource, cs); 50 } 51 52 static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs) 53 { 54 return readl(timer->base + offs); 55 } 56 57 static void apbt_writel(struct dw_apb_timer *timer, unsigned long val, 58 unsigned long offs) 59 { 60 writel(val, timer->base + offs); 61 } 62 63 static void apbt_disable_int(struct dw_apb_timer *timer) 64 { 65 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL); 66 67 ctrl |= APBTMR_CONTROL_INT; 68 apbt_writel(timer, ctrl, APBTMR_N_CONTROL); 69 } 70 71 /** 72 * dw_apb_clockevent_pause() - stop the clock_event_device from running 73 * 74 * @dw_ced: The APB clock to stop generating events. 75 */ 76 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced) 77 { 78 disable_irq(dw_ced->timer.irq); 79 apbt_disable_int(&dw_ced->timer); 80 } 81 82 static void apbt_eoi(struct dw_apb_timer *timer) 83 { 84 apbt_readl(timer, APBTMR_N_EOI); 85 } 86 87 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data) 88 { 89 struct clock_event_device *evt = data; 90 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); 91 92 if (!evt->event_handler) { 93 pr_info("Spurious APBT timer interrupt %d", irq); 94 return IRQ_NONE; 95 } 96 97 if (dw_ced->eoi) 98 dw_ced->eoi(&dw_ced->timer); 99 100 evt->event_handler(evt); 101 return IRQ_HANDLED; 102 } 103 104 static void apbt_enable_int(struct dw_apb_timer *timer) 105 { 106 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL); 107 /* clear pending intr */ 108 apbt_readl(timer, APBTMR_N_EOI); 109 ctrl &= ~APBTMR_CONTROL_INT; 110 apbt_writel(timer, ctrl, APBTMR_N_CONTROL); 111 } 112 113 static void apbt_set_mode(enum clock_event_mode mode, 114 struct clock_event_device *evt) 115 { 116 unsigned long ctrl; 117 unsigned long period; 118 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); 119 120 pr_debug("%s CPU %d mode=%d\n", __func__, 121 cpumask_first(evt->cpumask), 122 mode); 123 124 switch (mode) { 125 case CLOCK_EVT_MODE_PERIODIC: 126 period = DIV_ROUND_UP(dw_ced->timer.freq, HZ); 127 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); 128 ctrl |= APBTMR_CONTROL_MODE_PERIODIC; 129 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 130 /* 131 * DW APB p. 46, have to disable timer before load counter, 132 * may cause sync problem. 133 */ 134 ctrl &= ~APBTMR_CONTROL_ENABLE; 135 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 136 udelay(1); 137 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ); 138 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT); 139 ctrl |= APBTMR_CONTROL_ENABLE; 140 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 141 break; 142 143 case CLOCK_EVT_MODE_ONESHOT: 144 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); 145 /* 146 * set free running mode, this mode will let timer reload max 147 * timeout which will give time (3min on 25MHz clock) to rearm 148 * the next event, therefore emulate the one-shot mode. 149 */ 150 ctrl &= ~APBTMR_CONTROL_ENABLE; 151 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; 152 153 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 154 /* write again to set free running mode */ 155 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 156 157 /* 158 * DW APB p. 46, load counter with all 1s before starting free 159 * running mode. 160 */ 161 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT); 162 ctrl &= ~APBTMR_CONTROL_INT; 163 ctrl |= APBTMR_CONTROL_ENABLE; 164 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 165 break; 166 167 case CLOCK_EVT_MODE_UNUSED: 168 case CLOCK_EVT_MODE_SHUTDOWN: 169 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); 170 ctrl &= ~APBTMR_CONTROL_ENABLE; 171 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 172 break; 173 174 case CLOCK_EVT_MODE_RESUME: 175 apbt_enable_int(&dw_ced->timer); 176 break; 177 } 178 } 179 180 static int apbt_next_event(unsigned long delta, 181 struct clock_event_device *evt) 182 { 183 unsigned long ctrl; 184 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); 185 186 /* Disable timer */ 187 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); 188 ctrl &= ~APBTMR_CONTROL_ENABLE; 189 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 190 /* write new count */ 191 apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT); 192 ctrl |= APBTMR_CONTROL_ENABLE; 193 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 194 195 return 0; 196 } 197 198 /** 199 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device 200 * 201 * @cpu: The CPU the events will be targeted at. 202 * @name: The name used for the timer and the IRQ for it. 203 * @rating: The rating to give the timer. 204 * @base: I/O base for the timer registers. 205 * @irq: The interrupt number to use for the timer. 206 * @freq: The frequency that the timer counts at. 207 * 208 * This creates a clock_event_device for using with the generic clock layer 209 * but does not start and register it. This should be done with 210 * dw_apb_clockevent_register() as the next step. If this is the first time 211 * it has been called for a timer then the IRQ will be requested, if not it 212 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and 213 * releasing the IRQ. 214 */ 215 struct dw_apb_clock_event_device * 216 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating, 217 void __iomem *base, int irq, unsigned long freq) 218 { 219 struct dw_apb_clock_event_device *dw_ced = 220 kzalloc(sizeof(*dw_ced), GFP_KERNEL); 221 int err; 222 223 if (!dw_ced) 224 return NULL; 225 226 dw_ced->timer.base = base; 227 dw_ced->timer.irq = irq; 228 dw_ced->timer.freq = freq; 229 230 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD); 231 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff, 232 &dw_ced->ced); 233 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced); 234 dw_ced->ced.cpumask = cpumask_of(cpu); 235 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; 236 dw_ced->ced.set_mode = apbt_set_mode; 237 dw_ced->ced.set_next_event = apbt_next_event; 238 dw_ced->ced.irq = dw_ced->timer.irq; 239 dw_ced->ced.rating = rating; 240 dw_ced->ced.name = name; 241 242 dw_ced->irqaction.name = dw_ced->ced.name; 243 dw_ced->irqaction.handler = dw_apb_clockevent_irq; 244 dw_ced->irqaction.dev_id = &dw_ced->ced; 245 dw_ced->irqaction.irq = irq; 246 dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | 247 IRQF_NOBALANCING; 248 249 dw_ced->eoi = apbt_eoi; 250 err = setup_irq(irq, &dw_ced->irqaction); 251 if (err) { 252 pr_err("failed to request timer irq\n"); 253 kfree(dw_ced); 254 dw_ced = NULL; 255 } 256 257 return dw_ced; 258 } 259 260 /** 261 * dw_apb_clockevent_resume() - resume a clock that has been paused. 262 * 263 * @dw_ced: The APB clock to resume. 264 */ 265 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced) 266 { 267 enable_irq(dw_ced->timer.irq); 268 } 269 270 /** 271 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ. 272 * 273 * @dw_ced: The APB clock to stop generating the events. 274 */ 275 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced) 276 { 277 free_irq(dw_ced->timer.irq, &dw_ced->ced); 278 } 279 280 /** 281 * dw_apb_clockevent_register() - register the clock with the generic layer 282 * 283 * @dw_ced: The APB clock to register as a clock_event_device. 284 */ 285 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced) 286 { 287 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL); 288 clockevents_register_device(&dw_ced->ced); 289 apbt_enable_int(&dw_ced->timer); 290 } 291 292 /** 293 * dw_apb_clocksource_start() - start the clocksource counting. 294 * 295 * @dw_cs: The clocksource to start. 296 * 297 * This is used to start the clocksource before registration and can be used 298 * to enable calibration of timers. 299 */ 300 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs) 301 { 302 /* 303 * start count down from 0xffff_ffff. this is done by toggling the 304 * enable bit then load initial load count to ~0. 305 */ 306 unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL); 307 308 ctrl &= ~APBTMR_CONTROL_ENABLE; 309 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL); 310 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT); 311 /* enable, mask interrupt */ 312 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; 313 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); 314 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL); 315 /* read it once to get cached counter value initialized */ 316 dw_apb_clocksource_read(dw_cs); 317 } 318 319 static cycle_t __apbt_read_clocksource(struct clocksource *cs) 320 { 321 unsigned long current_count; 322 struct dw_apb_clocksource *dw_cs = 323 clocksource_to_dw_apb_clocksource(cs); 324 325 current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE); 326 327 return (cycle_t)~current_count; 328 } 329 330 static void apbt_restart_clocksource(struct clocksource *cs) 331 { 332 struct dw_apb_clocksource *dw_cs = 333 clocksource_to_dw_apb_clocksource(cs); 334 335 dw_apb_clocksource_start(dw_cs); 336 } 337 338 /** 339 * dw_apb_clocksource_init() - use an APB timer as a clocksource. 340 * 341 * @rating: The rating to give the clocksource. 342 * @name: The name for the clocksource. 343 * @base: The I/O base for the timer registers. 344 * @freq: The frequency that the timer counts at. 345 * 346 * This creates a clocksource using an APB timer but does not yet register it 347 * with the clocksource system. This should be done with 348 * dw_apb_clocksource_register() as the next step. 349 */ 350 struct dw_apb_clocksource * 351 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base, 352 unsigned long freq) 353 { 354 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL); 355 356 if (!dw_cs) 357 return NULL; 358 359 dw_cs->timer.base = base; 360 dw_cs->timer.freq = freq; 361 dw_cs->cs.name = name; 362 dw_cs->cs.rating = rating; 363 dw_cs->cs.read = __apbt_read_clocksource; 364 dw_cs->cs.mask = CLOCKSOURCE_MASK(32); 365 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS; 366 dw_cs->cs.resume = apbt_restart_clocksource; 367 368 return dw_cs; 369 } 370 371 /** 372 * dw_apb_clocksource_register() - register the APB clocksource. 373 * 374 * @dw_cs: The clocksource to register. 375 */ 376 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs) 377 { 378 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq); 379 } 380 381 /** 382 * dw_apb_clocksource_read() - read the current value of a clocksource. 383 * 384 * @dw_cs: The clocksource to read. 385 */ 386 cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs) 387 { 388 return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE); 389 } 390