xref: /linux/drivers/clocksource/arm_global_timer.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * drivers/clocksource/arm_global_timer.c
3  *
4  * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
5  * Author: Stuart Menefy <stuart.menefy@st.com>
6  * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/clocksource.h>
16 #include <linux/clockchips.h>
17 #include <linux/cpu.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
20 #include <linux/io.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/sched_clock.h>
25 
26 #include <asm/cputype.h>
27 
28 #define GT_COUNTER0	0x00
29 #define GT_COUNTER1	0x04
30 
31 #define GT_CONTROL	0x08
32 #define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */
33 #define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */
34 #define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */
35 #define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */
36 
37 #define GT_INT_STATUS	0x0c
38 #define GT_INT_STATUS_EVENT_FLAG	BIT(0)
39 
40 #define GT_COMP0	0x10
41 #define GT_COMP1	0x14
42 #define GT_AUTO_INC	0x18
43 
44 /*
45  * We are expecting to be clocked by the ARM peripheral clock.
46  *
47  * Note: it is assumed we are using a prescaler value of zero, so this is
48  * the units for all operations.
49  */
50 static void __iomem *gt_base;
51 static unsigned long gt_clk_rate;
52 static int gt_ppi;
53 static struct clock_event_device __percpu *gt_evt;
54 
55 /*
56  * To get the value from the Global Timer Counter register proceed as follows:
57  * 1. Read the upper 32-bit timer counter register
58  * 2. Read the lower 32-bit timer counter register
59  * 3. Read the upper 32-bit timer counter register again. If the value is
60  *  different to the 32-bit upper value read previously, go back to step 2.
61  *  Otherwise the 64-bit timer counter value is correct.
62  */
63 static u64 notrace _gt_counter_read(void)
64 {
65 	u64 counter;
66 	u32 lower;
67 	u32 upper, old_upper;
68 
69 	upper = readl_relaxed(gt_base + GT_COUNTER1);
70 	do {
71 		old_upper = upper;
72 		lower = readl_relaxed(gt_base + GT_COUNTER0);
73 		upper = readl_relaxed(gt_base + GT_COUNTER1);
74 	} while (upper != old_upper);
75 
76 	counter = upper;
77 	counter <<= 32;
78 	counter |= lower;
79 	return counter;
80 }
81 
82 static u64 gt_counter_read(void)
83 {
84 	return _gt_counter_read();
85 }
86 
87 /**
88  * To ensure that updates to comparator value register do not set the
89  * Interrupt Status Register proceed as follows:
90  * 1. Clear the Comp Enable bit in the Timer Control Register.
91  * 2. Write the lower 32-bit Comparator Value Register.
92  * 3. Write the upper 32-bit Comparator Value Register.
93  * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
94  */
95 static void gt_compare_set(unsigned long delta, int periodic)
96 {
97 	u64 counter = gt_counter_read();
98 	unsigned long ctrl;
99 
100 	counter += delta;
101 	ctrl = GT_CONTROL_TIMER_ENABLE;
102 	writel(ctrl, gt_base + GT_CONTROL);
103 	writel(lower_32_bits(counter), gt_base + GT_COMP0);
104 	writel(upper_32_bits(counter), gt_base + GT_COMP1);
105 
106 	if (periodic) {
107 		writel(delta, gt_base + GT_AUTO_INC);
108 		ctrl |= GT_CONTROL_AUTO_INC;
109 	}
110 
111 	ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
112 	writel(ctrl, gt_base + GT_CONTROL);
113 }
114 
115 static int gt_clockevent_shutdown(struct clock_event_device *evt)
116 {
117 	unsigned long ctrl;
118 
119 	ctrl = readl(gt_base + GT_CONTROL);
120 	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
121 		  GT_CONTROL_AUTO_INC);
122 	writel(ctrl, gt_base + GT_CONTROL);
123 	return 0;
124 }
125 
126 static int gt_clockevent_set_periodic(struct clock_event_device *evt)
127 {
128 	gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
129 	return 0;
130 }
131 
132 static int gt_clockevent_set_next_event(unsigned long evt,
133 					struct clock_event_device *unused)
134 {
135 	gt_compare_set(evt, 0);
136 	return 0;
137 }
138 
139 static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
140 {
141 	struct clock_event_device *evt = dev_id;
142 
143 	if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
144 				GT_INT_STATUS_EVENT_FLAG))
145 		return IRQ_NONE;
146 
147 	/**
148 	 * ERRATA 740657( Global Timer can send 2 interrupts for
149 	 * the same event in single-shot mode)
150 	 * Workaround:
151 	 *	Either disable single-shot mode.
152 	 *	Or
153 	 *	Modify the Interrupt Handler to avoid the
154 	 *	offending sequence. This is achieved by clearing
155 	 *	the Global Timer flag _after_ having incremented
156 	 *	the Comparator register	value to a higher value.
157 	 */
158 	if (clockevent_state_oneshot(evt))
159 		gt_compare_set(ULONG_MAX, 0);
160 
161 	writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
162 	evt->event_handler(evt);
163 
164 	return IRQ_HANDLED;
165 }
166 
167 static int gt_clockevents_init(struct clock_event_device *clk)
168 {
169 	int cpu = smp_processor_id();
170 
171 	clk->name = "arm_global_timer";
172 	clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
173 		CLOCK_EVT_FEAT_PERCPU;
174 	clk->set_state_shutdown = gt_clockevent_shutdown;
175 	clk->set_state_periodic = gt_clockevent_set_periodic;
176 	clk->set_state_oneshot = gt_clockevent_shutdown;
177 	clk->set_next_event = gt_clockevent_set_next_event;
178 	clk->cpumask = cpumask_of(cpu);
179 	clk->rating = 300;
180 	clk->irq = gt_ppi;
181 	clockevents_config_and_register(clk, gt_clk_rate,
182 					1, 0xffffffff);
183 	enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
184 	return 0;
185 }
186 
187 static void gt_clockevents_stop(struct clock_event_device *clk)
188 {
189 	gt_clockevent_shutdown(clk);
190 	disable_percpu_irq(clk->irq);
191 }
192 
193 static cycle_t gt_clocksource_read(struct clocksource *cs)
194 {
195 	return gt_counter_read();
196 }
197 
198 static struct clocksource gt_clocksource = {
199 	.name	= "arm_global_timer",
200 	.rating	= 300,
201 	.read	= gt_clocksource_read,
202 	.mask	= CLOCKSOURCE_MASK(64),
203 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
204 };
205 
206 #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
207 static u64 notrace gt_sched_clock_read(void)
208 {
209 	return _gt_counter_read();
210 }
211 #endif
212 
213 static void __init gt_clocksource_init(void)
214 {
215 	writel(0, gt_base + GT_CONTROL);
216 	writel(0, gt_base + GT_COUNTER0);
217 	writel(0, gt_base + GT_COUNTER1);
218 	/* enables timer on all the cores */
219 	writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
220 
221 #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
222 	sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
223 #endif
224 	clocksource_register_hz(&gt_clocksource, gt_clk_rate);
225 }
226 
227 static int gt_cpu_notify(struct notifier_block *self, unsigned long action,
228 			 void *hcpu)
229 {
230 	switch (action & ~CPU_TASKS_FROZEN) {
231 	case CPU_STARTING:
232 		gt_clockevents_init(this_cpu_ptr(gt_evt));
233 		break;
234 	case CPU_DYING:
235 		gt_clockevents_stop(this_cpu_ptr(gt_evt));
236 		break;
237 	}
238 
239 	return NOTIFY_OK;
240 }
241 static struct notifier_block gt_cpu_nb = {
242 	.notifier_call = gt_cpu_notify,
243 };
244 
245 static void __init global_timer_of_register(struct device_node *np)
246 {
247 	struct clk *gt_clk;
248 	int err = 0;
249 
250 	/*
251 	 * In A9 r2p0 the comparators for each processor with the global timer
252 	 * fire when the timer value is greater than or equal to. In previous
253 	 * revisions the comparators fired when the timer value was equal to.
254 	 */
255 	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
256 	    && (read_cpuid_id() & 0xf0000f) < 0x200000) {
257 		pr_warn("global-timer: non support for this cpu version.\n");
258 		return;
259 	}
260 
261 	gt_ppi = irq_of_parse_and_map(np, 0);
262 	if (!gt_ppi) {
263 		pr_warn("global-timer: unable to parse irq\n");
264 		return;
265 	}
266 
267 	gt_base = of_iomap(np, 0);
268 	if (!gt_base) {
269 		pr_warn("global-timer: invalid base address\n");
270 		return;
271 	}
272 
273 	gt_clk = of_clk_get(np, 0);
274 	if (!IS_ERR(gt_clk)) {
275 		err = clk_prepare_enable(gt_clk);
276 		if (err)
277 			goto out_unmap;
278 	} else {
279 		pr_warn("global-timer: clk not found\n");
280 		err = -EINVAL;
281 		goto out_unmap;
282 	}
283 
284 	gt_clk_rate = clk_get_rate(gt_clk);
285 	gt_evt = alloc_percpu(struct clock_event_device);
286 	if (!gt_evt) {
287 		pr_warn("global-timer: can't allocate memory\n");
288 		err = -ENOMEM;
289 		goto out_clk;
290 	}
291 
292 	err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
293 				 "gt", gt_evt);
294 	if (err) {
295 		pr_warn("global-timer: can't register interrupt %d (%d)\n",
296 			gt_ppi, err);
297 		goto out_free;
298 	}
299 
300 	err = register_cpu_notifier(&gt_cpu_nb);
301 	if (err) {
302 		pr_warn("global-timer: unable to register cpu notifier.\n");
303 		goto out_irq;
304 	}
305 
306 	/* Immediately configure the timer on the boot CPU */
307 	gt_clocksource_init();
308 	gt_clockevents_init(this_cpu_ptr(gt_evt));
309 
310 	return;
311 
312 out_irq:
313 	free_percpu_irq(gt_ppi, gt_evt);
314 out_free:
315 	free_percpu(gt_evt);
316 out_clk:
317 	clk_disable_unprepare(gt_clk);
318 out_unmap:
319 	iounmap(gt_base);
320 	WARN(err, "ARM Global timer register failed (%d)\n", err);
321 }
322 
323 /* Only tested on r2p2 and r3p0  */
324 CLOCKSOURCE_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
325 			global_timer_of_register);
326