1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #define pr_fmt(fmt) "arm_arch_timer: " fmt 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/device.h> 17 #include <linux/smp.h> 18 #include <linux/cpu.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/clockchips.h> 21 #include <linux/clocksource.h> 22 #include <linux/interrupt.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_address.h> 25 #include <linux/io.h> 26 #include <linux/slab.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched_clock.h> 29 #include <linux/acpi.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #undef pr_fmt 37 #define pr_fmt(fmt) "arch_timer: " fmt 38 39 #define CNTTIDR 0x08 40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 41 42 #define CNTACR(n) (0x40 + ((n) * 4)) 43 #define CNTACR_RPCT BIT(0) 44 #define CNTACR_RVCT BIT(1) 45 #define CNTACR_RFRQ BIT(2) 46 #define CNTACR_RVOFF BIT(3) 47 #define CNTACR_RWVT BIT(4) 48 #define CNTACR_RWPT BIT(5) 49 50 #define CNTVCT_LO 0x08 51 #define CNTVCT_HI 0x0c 52 #define CNTFRQ 0x10 53 #define CNTP_TVAL 0x28 54 #define CNTP_CTL 0x2c 55 #define CNTV_TVAL 0x38 56 #define CNTV_CTL 0x3c 57 58 static unsigned arch_timers_present __initdata; 59 60 static void __iomem *arch_counter_base; 61 62 struct arch_timer { 63 void __iomem *base; 64 struct clock_event_device evt; 65 }; 66 67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 68 69 static u32 arch_timer_rate; 70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI]; 71 72 static struct clock_event_device __percpu *arch_timer_evt; 73 74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI; 75 static bool arch_timer_c3stop; 76 static bool arch_timer_mem_use_virtual; 77 static bool arch_counter_suspend_stop; 78 static bool vdso_default = true; 79 80 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 81 82 static int __init early_evtstrm_cfg(char *buf) 83 { 84 return strtobool(buf, &evtstrm_enable); 85 } 86 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 87 88 /* 89 * Architected system timer support. 90 */ 91 92 static __always_inline 93 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 94 struct clock_event_device *clk) 95 { 96 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 97 struct arch_timer *timer = to_arch_timer(clk); 98 switch (reg) { 99 case ARCH_TIMER_REG_CTRL: 100 writel_relaxed(val, timer->base + CNTP_CTL); 101 break; 102 case ARCH_TIMER_REG_TVAL: 103 writel_relaxed(val, timer->base + CNTP_TVAL); 104 break; 105 } 106 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 107 struct arch_timer *timer = to_arch_timer(clk); 108 switch (reg) { 109 case ARCH_TIMER_REG_CTRL: 110 writel_relaxed(val, timer->base + CNTV_CTL); 111 break; 112 case ARCH_TIMER_REG_TVAL: 113 writel_relaxed(val, timer->base + CNTV_TVAL); 114 break; 115 } 116 } else { 117 arch_timer_reg_write_cp15(access, reg, val); 118 } 119 } 120 121 static __always_inline 122 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 123 struct clock_event_device *clk) 124 { 125 u32 val; 126 127 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 128 struct arch_timer *timer = to_arch_timer(clk); 129 switch (reg) { 130 case ARCH_TIMER_REG_CTRL: 131 val = readl_relaxed(timer->base + CNTP_CTL); 132 break; 133 case ARCH_TIMER_REG_TVAL: 134 val = readl_relaxed(timer->base + CNTP_TVAL); 135 break; 136 } 137 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 138 struct arch_timer *timer = to_arch_timer(clk); 139 switch (reg) { 140 case ARCH_TIMER_REG_CTRL: 141 val = readl_relaxed(timer->base + CNTV_CTL); 142 break; 143 case ARCH_TIMER_REG_TVAL: 144 val = readl_relaxed(timer->base + CNTV_TVAL); 145 break; 146 } 147 } else { 148 val = arch_timer_reg_read_cp15(access, reg); 149 } 150 151 return val; 152 } 153 154 /* 155 * Default to cp15 based access because arm64 uses this function for 156 * sched_clock() before DT is probed and the cp15 method is guaranteed 157 * to exist on arm64. arm doesn't use this before DT is probed so even 158 * if we don't have the cp15 accessors we won't have a problem. 159 */ 160 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 161 162 static u64 arch_counter_read(struct clocksource *cs) 163 { 164 return arch_timer_read_counter(); 165 } 166 167 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 168 { 169 return arch_timer_read_counter(); 170 } 171 172 static struct clocksource clocksource_counter = { 173 .name = "arch_sys_counter", 174 .rating = 400, 175 .read = arch_counter_read, 176 .mask = CLOCKSOURCE_MASK(56), 177 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 178 }; 179 180 static struct cyclecounter cyclecounter __ro_after_init = { 181 .read = arch_counter_read_cc, 182 .mask = CLOCKSOURCE_MASK(56), 183 }; 184 185 struct ate_acpi_oem_info { 186 char oem_id[ACPI_OEM_ID_SIZE + 1]; 187 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 188 u32 oem_revision; 189 }; 190 191 #ifdef CONFIG_FSL_ERRATUM_A008585 192 /* 193 * The number of retries is an arbitrary value well beyond the highest number 194 * of iterations the loop has been observed to take. 195 */ 196 #define __fsl_a008585_read_reg(reg) ({ \ 197 u64 _old, _new; \ 198 int _retries = 200; \ 199 \ 200 do { \ 201 _old = read_sysreg(reg); \ 202 _new = read_sysreg(reg); \ 203 _retries--; \ 204 } while (unlikely(_old != _new) && _retries); \ 205 \ 206 WARN_ON_ONCE(!_retries); \ 207 _new; \ 208 }) 209 210 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 211 { 212 return __fsl_a008585_read_reg(cntp_tval_el0); 213 } 214 215 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 216 { 217 return __fsl_a008585_read_reg(cntv_tval_el0); 218 } 219 220 static u64 notrace fsl_a008585_read_cntvct_el0(void) 221 { 222 return __fsl_a008585_read_reg(cntvct_el0); 223 } 224 #endif 225 226 #ifdef CONFIG_HISILICON_ERRATUM_161010101 227 /* 228 * Verify whether the value of the second read is larger than the first by 229 * less than 32 is the only way to confirm the value is correct, so clear the 230 * lower 5 bits to check whether the difference is greater than 32 or not. 231 * Theoretically the erratum should not occur more than twice in succession 232 * when reading the system counter, but it is possible that some interrupts 233 * may lead to more than twice read errors, triggering the warning, so setting 234 * the number of retries far beyond the number of iterations the loop has been 235 * observed to take. 236 */ 237 #define __hisi_161010101_read_reg(reg) ({ \ 238 u64 _old, _new; \ 239 int _retries = 50; \ 240 \ 241 do { \ 242 _old = read_sysreg(reg); \ 243 _new = read_sysreg(reg); \ 244 _retries--; \ 245 } while (unlikely((_new - _old) >> 5) && _retries); \ 246 \ 247 WARN_ON_ONCE(!_retries); \ 248 _new; \ 249 }) 250 251 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 252 { 253 return __hisi_161010101_read_reg(cntp_tval_el0); 254 } 255 256 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 257 { 258 return __hisi_161010101_read_reg(cntv_tval_el0); 259 } 260 261 static u64 notrace hisi_161010101_read_cntvct_el0(void) 262 { 263 return __hisi_161010101_read_reg(cntvct_el0); 264 } 265 266 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 267 /* 268 * Note that trailing spaces are required to properly match 269 * the OEM table information. 270 */ 271 { 272 .oem_id = "HISI ", 273 .oem_table_id = "HIP05 ", 274 .oem_revision = 0, 275 }, 276 { 277 .oem_id = "HISI ", 278 .oem_table_id = "HIP06 ", 279 .oem_revision = 0, 280 }, 281 { 282 .oem_id = "HISI ", 283 .oem_table_id = "HIP07 ", 284 .oem_revision = 0, 285 }, 286 { /* Sentinel indicating the end of the OEM array */ }, 287 }; 288 #endif 289 290 #ifdef CONFIG_ARM64_ERRATUM_858921 291 static u64 notrace arm64_858921_read_cntvct_el0(void) 292 { 293 u64 old, new; 294 295 old = read_sysreg(cntvct_el0); 296 new = read_sysreg(cntvct_el0); 297 return (((old ^ new) >> 32) & 1) ? old : new; 298 } 299 #endif 300 301 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 302 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, 303 timer_unstable_counter_workaround); 304 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 305 306 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); 307 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); 308 309 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 310 struct clock_event_device *clk) 311 { 312 unsigned long ctrl; 313 u64 cval = evt + arch_counter_get_cntvct(); 314 315 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 316 ctrl |= ARCH_TIMER_CTRL_ENABLE; 317 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 318 319 if (access == ARCH_TIMER_PHYS_ACCESS) 320 write_sysreg(cval, cntp_cval_el0); 321 else 322 write_sysreg(cval, cntv_cval_el0); 323 324 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 325 } 326 327 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 328 struct clock_event_device *clk) 329 { 330 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 331 return 0; 332 } 333 334 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 335 struct clock_event_device *clk) 336 { 337 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 338 return 0; 339 } 340 341 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 342 #ifdef CONFIG_FSL_ERRATUM_A008585 343 { 344 .match_type = ate_match_dt, 345 .id = "fsl,erratum-a008585", 346 .desc = "Freescale erratum a005858", 347 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 348 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 349 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 350 .set_next_event_phys = erratum_set_next_event_tval_phys, 351 .set_next_event_virt = erratum_set_next_event_tval_virt, 352 }, 353 #endif 354 #ifdef CONFIG_HISILICON_ERRATUM_161010101 355 { 356 .match_type = ate_match_dt, 357 .id = "hisilicon,erratum-161010101", 358 .desc = "HiSilicon erratum 161010101", 359 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 360 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 361 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 362 .set_next_event_phys = erratum_set_next_event_tval_phys, 363 .set_next_event_virt = erratum_set_next_event_tval_virt, 364 }, 365 { 366 .match_type = ate_match_acpi_oem_info, 367 .id = hisi_161010101_oem_info, 368 .desc = "HiSilicon erratum 161010101", 369 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 370 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 371 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 372 .set_next_event_phys = erratum_set_next_event_tval_phys, 373 .set_next_event_virt = erratum_set_next_event_tval_virt, 374 }, 375 #endif 376 #ifdef CONFIG_ARM64_ERRATUM_858921 377 { 378 .match_type = ate_match_local_cap_id, 379 .id = (void *)ARM64_WORKAROUND_858921, 380 .desc = "ARM erratum 858921", 381 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 382 }, 383 #endif 384 }; 385 386 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 387 const void *); 388 389 static 390 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 391 const void *arg) 392 { 393 const struct device_node *np = arg; 394 395 return of_property_read_bool(np, wa->id); 396 } 397 398 static 399 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 400 const void *arg) 401 { 402 return this_cpu_has_cap((uintptr_t)wa->id); 403 } 404 405 406 static 407 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 408 const void *arg) 409 { 410 static const struct ate_acpi_oem_info empty_oem_info = {}; 411 const struct ate_acpi_oem_info *info = wa->id; 412 const struct acpi_table_header *table = arg; 413 414 /* Iterate over the ACPI OEM info array, looking for a match */ 415 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 416 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 417 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 418 info->oem_revision == table->oem_revision) 419 return true; 420 421 info++; 422 } 423 424 return false; 425 } 426 427 static const struct arch_timer_erratum_workaround * 428 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 429 ate_match_fn_t match_fn, 430 void *arg) 431 { 432 int i; 433 434 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 435 if (ool_workarounds[i].match_type != type) 436 continue; 437 438 if (match_fn(&ool_workarounds[i], arg)) 439 return &ool_workarounds[i]; 440 } 441 442 return NULL; 443 } 444 445 static 446 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 447 bool local) 448 { 449 int i; 450 451 if (local) { 452 __this_cpu_write(timer_unstable_counter_workaround, wa); 453 } else { 454 for_each_possible_cpu(i) 455 per_cpu(timer_unstable_counter_workaround, i) = wa; 456 } 457 458 static_branch_enable(&arch_timer_read_ool_enabled); 459 460 /* 461 * Don't use the vdso fastpath if errata require using the 462 * out-of-line counter accessor. We may change our mind pretty 463 * late in the game (with a per-CPU erratum, for example), so 464 * change both the default value and the vdso itself. 465 */ 466 if (wa->read_cntvct_el0) { 467 clocksource_counter.archdata.vdso_direct = false; 468 vdso_default = false; 469 } 470 } 471 472 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 473 void *arg) 474 { 475 const struct arch_timer_erratum_workaround *wa; 476 ate_match_fn_t match_fn = NULL; 477 bool local = false; 478 479 switch (type) { 480 case ate_match_dt: 481 match_fn = arch_timer_check_dt_erratum; 482 break; 483 case ate_match_local_cap_id: 484 match_fn = arch_timer_check_local_cap_erratum; 485 local = true; 486 break; 487 case ate_match_acpi_oem_info: 488 match_fn = arch_timer_check_acpi_oem_erratum; 489 break; 490 default: 491 WARN_ON(1); 492 return; 493 } 494 495 wa = arch_timer_iterate_errata(type, match_fn, arg); 496 if (!wa) 497 return; 498 499 if (needs_unstable_timer_counter_workaround()) { 500 const struct arch_timer_erratum_workaround *__wa; 501 __wa = __this_cpu_read(timer_unstable_counter_workaround); 502 if (__wa && wa != __wa) 503 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 504 wa->desc, __wa->desc); 505 506 if (__wa) 507 return; 508 } 509 510 arch_timer_enable_workaround(wa, local); 511 pr_info("Enabling %s workaround for %s\n", 512 local ? "local" : "global", wa->desc); 513 } 514 515 #define erratum_handler(fn, r, ...) \ 516 ({ \ 517 bool __val; \ 518 if (needs_unstable_timer_counter_workaround()) { \ 519 const struct arch_timer_erratum_workaround *__wa; \ 520 __wa = __this_cpu_read(timer_unstable_counter_workaround); \ 521 if (__wa && __wa->fn) { \ 522 r = __wa->fn(__VA_ARGS__); \ 523 __val = true; \ 524 } else { \ 525 __val = false; \ 526 } \ 527 } else { \ 528 __val = false; \ 529 } \ 530 __val; \ 531 }) 532 533 static bool arch_timer_this_cpu_has_cntvct_wa(void) 534 { 535 const struct arch_timer_erratum_workaround *wa; 536 537 wa = __this_cpu_read(timer_unstable_counter_workaround); 538 return wa && wa->read_cntvct_el0; 539 } 540 #else 541 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 542 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;}) 543 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;}) 544 #define erratum_handler(fn, r, ...) ({false;}) 545 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 546 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 547 548 static __always_inline irqreturn_t timer_handler(const int access, 549 struct clock_event_device *evt) 550 { 551 unsigned long ctrl; 552 553 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 554 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 555 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 556 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 557 evt->event_handler(evt); 558 return IRQ_HANDLED; 559 } 560 561 return IRQ_NONE; 562 } 563 564 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 565 { 566 struct clock_event_device *evt = dev_id; 567 568 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 569 } 570 571 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 572 { 573 struct clock_event_device *evt = dev_id; 574 575 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 576 } 577 578 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 579 { 580 struct clock_event_device *evt = dev_id; 581 582 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 583 } 584 585 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 586 { 587 struct clock_event_device *evt = dev_id; 588 589 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 590 } 591 592 static __always_inline int timer_shutdown(const int access, 593 struct clock_event_device *clk) 594 { 595 unsigned long ctrl; 596 597 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 598 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 599 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 600 601 return 0; 602 } 603 604 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 605 { 606 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 607 } 608 609 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 610 { 611 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 612 } 613 614 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 615 { 616 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 617 } 618 619 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 620 { 621 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 622 } 623 624 static __always_inline void set_next_event(const int access, unsigned long evt, 625 struct clock_event_device *clk) 626 { 627 unsigned long ctrl; 628 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 629 ctrl |= ARCH_TIMER_CTRL_ENABLE; 630 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 631 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 632 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 633 } 634 635 static int arch_timer_set_next_event_virt(unsigned long evt, 636 struct clock_event_device *clk) 637 { 638 int ret; 639 640 if (erratum_handler(set_next_event_virt, ret, evt, clk)) 641 return ret; 642 643 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 644 return 0; 645 } 646 647 static int arch_timer_set_next_event_phys(unsigned long evt, 648 struct clock_event_device *clk) 649 { 650 int ret; 651 652 if (erratum_handler(set_next_event_phys, ret, evt, clk)) 653 return ret; 654 655 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 656 return 0; 657 } 658 659 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 660 struct clock_event_device *clk) 661 { 662 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 663 return 0; 664 } 665 666 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 667 struct clock_event_device *clk) 668 { 669 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 670 return 0; 671 } 672 673 static void __arch_timer_setup(unsigned type, 674 struct clock_event_device *clk) 675 { 676 clk->features = CLOCK_EVT_FEAT_ONESHOT; 677 678 if (type == ARCH_TIMER_TYPE_CP15) { 679 if (arch_timer_c3stop) 680 clk->features |= CLOCK_EVT_FEAT_C3STOP; 681 clk->name = "arch_sys_timer"; 682 clk->rating = 450; 683 clk->cpumask = cpumask_of(smp_processor_id()); 684 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 685 switch (arch_timer_uses_ppi) { 686 case ARCH_TIMER_VIRT_PPI: 687 clk->set_state_shutdown = arch_timer_shutdown_virt; 688 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 689 clk->set_next_event = arch_timer_set_next_event_virt; 690 break; 691 case ARCH_TIMER_PHYS_SECURE_PPI: 692 case ARCH_TIMER_PHYS_NONSECURE_PPI: 693 case ARCH_TIMER_HYP_PPI: 694 clk->set_state_shutdown = arch_timer_shutdown_phys; 695 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 696 clk->set_next_event = arch_timer_set_next_event_phys; 697 break; 698 default: 699 BUG(); 700 } 701 702 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 703 } else { 704 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 705 clk->name = "arch_mem_timer"; 706 clk->rating = 400; 707 clk->cpumask = cpu_all_mask; 708 if (arch_timer_mem_use_virtual) { 709 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 710 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 711 clk->set_next_event = 712 arch_timer_set_next_event_virt_mem; 713 } else { 714 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 715 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 716 clk->set_next_event = 717 arch_timer_set_next_event_phys_mem; 718 } 719 } 720 721 clk->set_state_shutdown(clk); 722 723 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 724 } 725 726 static void arch_timer_evtstrm_enable(int divider) 727 { 728 u32 cntkctl = arch_timer_get_cntkctl(); 729 730 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 731 /* Set the divider and enable virtual event stream */ 732 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 733 | ARCH_TIMER_VIRT_EVT_EN; 734 arch_timer_set_cntkctl(cntkctl); 735 elf_hwcap |= HWCAP_EVTSTRM; 736 #ifdef CONFIG_COMPAT 737 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 738 #endif 739 } 740 741 static void arch_timer_configure_evtstream(void) 742 { 743 int evt_stream_div, pos; 744 745 /* Find the closest power of two to the divisor */ 746 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 747 pos = fls(evt_stream_div); 748 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 749 pos--; 750 /* enable event stream */ 751 arch_timer_evtstrm_enable(min(pos, 15)); 752 } 753 754 static void arch_counter_set_user_access(void) 755 { 756 u32 cntkctl = arch_timer_get_cntkctl(); 757 758 /* Disable user access to the timers and both counters */ 759 /* Also disable virtual event stream */ 760 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 761 | ARCH_TIMER_USR_VT_ACCESS_EN 762 | ARCH_TIMER_USR_VCT_ACCESS_EN 763 | ARCH_TIMER_VIRT_EVT_EN 764 | ARCH_TIMER_USR_PCT_ACCESS_EN); 765 766 /* 767 * Enable user access to the virtual counter if it doesn't 768 * need to be workaround. The vdso may have been already 769 * disabled though. 770 */ 771 if (arch_timer_this_cpu_has_cntvct_wa()) 772 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 773 else 774 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 775 776 arch_timer_set_cntkctl(cntkctl); 777 } 778 779 static bool arch_timer_has_nonsecure_ppi(void) 780 { 781 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 782 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 783 } 784 785 static u32 check_ppi_trigger(int irq) 786 { 787 u32 flags = irq_get_trigger_type(irq); 788 789 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 790 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 791 pr_warn("WARNING: Please fix your firmware\n"); 792 flags = IRQF_TRIGGER_LOW; 793 } 794 795 return flags; 796 } 797 798 static int arch_timer_starting_cpu(unsigned int cpu) 799 { 800 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 801 u32 flags; 802 803 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 804 805 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 806 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 807 808 if (arch_timer_has_nonsecure_ppi()) { 809 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 810 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 811 flags); 812 } 813 814 arch_counter_set_user_access(); 815 if (evtstrm_enable) 816 arch_timer_configure_evtstream(); 817 818 return 0; 819 } 820 821 /* 822 * For historical reasons, when probing with DT we use whichever (non-zero) 823 * rate was probed first, and don't verify that others match. If the first node 824 * probed has a clock-frequency property, this overrides the HW register. 825 */ 826 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np) 827 { 828 /* Who has more than one independent system counter? */ 829 if (arch_timer_rate) 830 return; 831 832 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 833 arch_timer_rate = rate; 834 835 /* Check the timer frequency. */ 836 if (arch_timer_rate == 0) 837 pr_warn("frequency not available\n"); 838 } 839 840 static void arch_timer_banner(unsigned type) 841 { 842 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 843 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 844 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 845 " and " : "", 846 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 847 (unsigned long)arch_timer_rate / 1000000, 848 (unsigned long)(arch_timer_rate / 10000) % 100, 849 type & ARCH_TIMER_TYPE_CP15 ? 850 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 851 "", 852 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 853 type & ARCH_TIMER_TYPE_MEM ? 854 arch_timer_mem_use_virtual ? "virt" : "phys" : 855 ""); 856 } 857 858 u32 arch_timer_get_rate(void) 859 { 860 return arch_timer_rate; 861 } 862 863 static u64 arch_counter_get_cntvct_mem(void) 864 { 865 u32 vct_lo, vct_hi, tmp_hi; 866 867 do { 868 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 869 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 870 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 871 } while (vct_hi != tmp_hi); 872 873 return ((u64) vct_hi << 32) | vct_lo; 874 } 875 876 static struct arch_timer_kvm_info arch_timer_kvm_info; 877 878 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 879 { 880 return &arch_timer_kvm_info; 881 } 882 883 static void __init arch_counter_register(unsigned type) 884 { 885 u64 start_count; 886 887 /* Register the CP15 based counter if we have one */ 888 if (type & ARCH_TIMER_TYPE_CP15) { 889 if (IS_ENABLED(CONFIG_ARM64) || 890 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 891 arch_timer_read_counter = arch_counter_get_cntvct; 892 else 893 arch_timer_read_counter = arch_counter_get_cntpct; 894 895 clocksource_counter.archdata.vdso_direct = vdso_default; 896 } else { 897 arch_timer_read_counter = arch_counter_get_cntvct_mem; 898 } 899 900 if (!arch_counter_suspend_stop) 901 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 902 start_count = arch_timer_read_counter(); 903 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 904 cyclecounter.mult = clocksource_counter.mult; 905 cyclecounter.shift = clocksource_counter.shift; 906 timecounter_init(&arch_timer_kvm_info.timecounter, 907 &cyclecounter, start_count); 908 909 /* 56 bits minimum, so we assume worst case rollover */ 910 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 911 } 912 913 static void arch_timer_stop(struct clock_event_device *clk) 914 { 915 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 916 917 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 918 if (arch_timer_has_nonsecure_ppi()) 919 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 920 921 clk->set_state_shutdown(clk); 922 } 923 924 static int arch_timer_dying_cpu(unsigned int cpu) 925 { 926 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 927 928 arch_timer_stop(clk); 929 return 0; 930 } 931 932 #ifdef CONFIG_CPU_PM 933 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 934 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 935 unsigned long action, void *hcpu) 936 { 937 if (action == CPU_PM_ENTER) 938 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 939 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) 940 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 941 return NOTIFY_OK; 942 } 943 944 static struct notifier_block arch_timer_cpu_pm_notifier = { 945 .notifier_call = arch_timer_cpu_pm_notify, 946 }; 947 948 static int __init arch_timer_cpu_pm_init(void) 949 { 950 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 951 } 952 953 static void __init arch_timer_cpu_pm_deinit(void) 954 { 955 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 956 } 957 958 #else 959 static int __init arch_timer_cpu_pm_init(void) 960 { 961 return 0; 962 } 963 964 static void __init arch_timer_cpu_pm_deinit(void) 965 { 966 } 967 #endif 968 969 static int __init arch_timer_register(void) 970 { 971 int err; 972 int ppi; 973 974 arch_timer_evt = alloc_percpu(struct clock_event_device); 975 if (!arch_timer_evt) { 976 err = -ENOMEM; 977 goto out; 978 } 979 980 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 981 switch (arch_timer_uses_ppi) { 982 case ARCH_TIMER_VIRT_PPI: 983 err = request_percpu_irq(ppi, arch_timer_handler_virt, 984 "arch_timer", arch_timer_evt); 985 break; 986 case ARCH_TIMER_PHYS_SECURE_PPI: 987 case ARCH_TIMER_PHYS_NONSECURE_PPI: 988 err = request_percpu_irq(ppi, arch_timer_handler_phys, 989 "arch_timer", arch_timer_evt); 990 if (!err && arch_timer_has_nonsecure_ppi()) { 991 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 992 err = request_percpu_irq(ppi, arch_timer_handler_phys, 993 "arch_timer", arch_timer_evt); 994 if (err) 995 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 996 arch_timer_evt); 997 } 998 break; 999 case ARCH_TIMER_HYP_PPI: 1000 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1001 "arch_timer", arch_timer_evt); 1002 break; 1003 default: 1004 BUG(); 1005 } 1006 1007 if (err) { 1008 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1009 goto out_free; 1010 } 1011 1012 err = arch_timer_cpu_pm_init(); 1013 if (err) 1014 goto out_unreg_notify; 1015 1016 1017 /* Register and immediately configure the timer on the boot CPU */ 1018 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1019 "clockevents/arm/arch_timer:starting", 1020 arch_timer_starting_cpu, arch_timer_dying_cpu); 1021 if (err) 1022 goto out_unreg_cpupm; 1023 return 0; 1024 1025 out_unreg_cpupm: 1026 arch_timer_cpu_pm_deinit(); 1027 1028 out_unreg_notify: 1029 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1030 if (arch_timer_has_nonsecure_ppi()) 1031 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1032 arch_timer_evt); 1033 1034 out_free: 1035 free_percpu(arch_timer_evt); 1036 out: 1037 return err; 1038 } 1039 1040 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1041 { 1042 int ret; 1043 irq_handler_t func; 1044 struct arch_timer *t; 1045 1046 t = kzalloc(sizeof(*t), GFP_KERNEL); 1047 if (!t) 1048 return -ENOMEM; 1049 1050 t->base = base; 1051 t->evt.irq = irq; 1052 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1053 1054 if (arch_timer_mem_use_virtual) 1055 func = arch_timer_handler_virt_mem; 1056 else 1057 func = arch_timer_handler_phys_mem; 1058 1059 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1060 if (ret) { 1061 pr_err("Failed to request mem timer irq\n"); 1062 kfree(t); 1063 } 1064 1065 return ret; 1066 } 1067 1068 static const struct of_device_id arch_timer_of_match[] __initconst = { 1069 { .compatible = "arm,armv7-timer", }, 1070 { .compatible = "arm,armv8-timer", }, 1071 {}, 1072 }; 1073 1074 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1075 { .compatible = "arm,armv7-timer-mem", }, 1076 {}, 1077 }; 1078 1079 static bool __init arch_timer_needs_of_probing(void) 1080 { 1081 struct device_node *dn; 1082 bool needs_probing = false; 1083 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1084 1085 /* We have two timers, and both device-tree nodes are probed. */ 1086 if ((arch_timers_present & mask) == mask) 1087 return false; 1088 1089 /* 1090 * Only one type of timer is probed, 1091 * check if we have another type of timer node in device-tree. 1092 */ 1093 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1094 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1095 else 1096 dn = of_find_matching_node(NULL, arch_timer_of_match); 1097 1098 if (dn && of_device_is_available(dn)) 1099 needs_probing = true; 1100 1101 of_node_put(dn); 1102 1103 return needs_probing; 1104 } 1105 1106 static int __init arch_timer_common_init(void) 1107 { 1108 arch_timer_banner(arch_timers_present); 1109 arch_counter_register(arch_timers_present); 1110 return arch_timer_arch_init(); 1111 } 1112 1113 /** 1114 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1115 * 1116 * If HYP mode is available, we know that the physical timer 1117 * has been configured to be accessible from PL1. Use it, so 1118 * that a guest can use the virtual timer instead. 1119 * 1120 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1121 * accesses to CNTP_*_EL1 registers are silently redirected to 1122 * their CNTHP_*_EL2 counterparts, and use a different PPI 1123 * number. 1124 * 1125 * If no interrupt provided for virtual timer, we'll have to 1126 * stick to the physical timer. It'd better be accessible... 1127 * For arm64 we never use the secure interrupt. 1128 * 1129 * Return: a suitable PPI type for the current system. 1130 */ 1131 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1132 { 1133 if (is_kernel_in_hyp_mode()) 1134 return ARCH_TIMER_HYP_PPI; 1135 1136 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1137 return ARCH_TIMER_VIRT_PPI; 1138 1139 if (IS_ENABLED(CONFIG_ARM64)) 1140 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1141 1142 return ARCH_TIMER_PHYS_SECURE_PPI; 1143 } 1144 1145 static int __init arch_timer_of_init(struct device_node *np) 1146 { 1147 int i, ret; 1148 u32 rate; 1149 1150 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1151 pr_warn("multiple nodes in dt, skipping\n"); 1152 return 0; 1153 } 1154 1155 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1156 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) 1157 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 1158 1159 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1160 1161 rate = arch_timer_get_cntfrq(); 1162 arch_timer_of_configure_rate(rate, np); 1163 1164 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1165 1166 /* Check for globally applicable workarounds */ 1167 arch_timer_check_ool_workaround(ate_match_dt, np); 1168 1169 /* 1170 * If we cannot rely on firmware initializing the timer registers then 1171 * we should use the physical timers instead. 1172 */ 1173 if (IS_ENABLED(CONFIG_ARM) && 1174 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1175 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1176 else 1177 arch_timer_uses_ppi = arch_timer_select_ppi(); 1178 1179 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1180 pr_err("No interrupt available, giving up\n"); 1181 return -EINVAL; 1182 } 1183 1184 /* On some systems, the counter stops ticking when in suspend. */ 1185 arch_counter_suspend_stop = of_property_read_bool(np, 1186 "arm,no-tick-in-suspend"); 1187 1188 ret = arch_timer_register(); 1189 if (ret) 1190 return ret; 1191 1192 if (arch_timer_needs_of_probing()) 1193 return 0; 1194 1195 return arch_timer_common_init(); 1196 } 1197 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1198 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1199 1200 static u32 __init 1201 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1202 { 1203 void __iomem *base; 1204 u32 rate; 1205 1206 base = ioremap(frame->cntbase, frame->size); 1207 if (!base) { 1208 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1209 return 0; 1210 } 1211 1212 rate = readl_relaxed(frame + CNTFRQ); 1213 1214 iounmap(frame); 1215 1216 return rate; 1217 } 1218 1219 static struct arch_timer_mem_frame * __init 1220 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1221 { 1222 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1223 void __iomem *cntctlbase; 1224 u32 cnttidr; 1225 int i; 1226 1227 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1228 if (!cntctlbase) { 1229 pr_err("Can't map CNTCTLBase @ %pa\n", 1230 &timer_mem->cntctlbase); 1231 return NULL; 1232 } 1233 1234 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1235 1236 /* 1237 * Try to find a virtual capable frame. Otherwise fall back to a 1238 * physical capable frame. 1239 */ 1240 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1241 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1242 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1243 1244 frame = &timer_mem->frame[i]; 1245 if (!frame->valid) 1246 continue; 1247 1248 /* Try enabling everything, and see what sticks */ 1249 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1250 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1251 1252 if ((cnttidr & CNTTIDR_VIRT(i)) && 1253 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1254 best_frame = frame; 1255 arch_timer_mem_use_virtual = true; 1256 break; 1257 } 1258 1259 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1260 continue; 1261 1262 best_frame = frame; 1263 } 1264 1265 iounmap(cntctlbase); 1266 1267 if (!best_frame) 1268 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1269 &timer_mem->cntctlbase); 1270 1271 return best_frame; 1272 } 1273 1274 static int __init 1275 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1276 { 1277 void __iomem *base; 1278 int ret, irq = 0; 1279 1280 if (arch_timer_mem_use_virtual) 1281 irq = frame->virt_irq; 1282 else 1283 irq = frame->phys_irq; 1284 1285 if (!irq) { 1286 pr_err("Frame missing %s irq.\n", 1287 arch_timer_mem_use_virtual ? "virt" : "phys"); 1288 return -EINVAL; 1289 } 1290 1291 if (!request_mem_region(frame->cntbase, frame->size, 1292 "arch_mem_timer")) 1293 return -EBUSY; 1294 1295 base = ioremap(frame->cntbase, frame->size); 1296 if (!base) { 1297 pr_err("Can't map frame's registers\n"); 1298 return -ENXIO; 1299 } 1300 1301 ret = arch_timer_mem_register(base, irq); 1302 if (ret) { 1303 iounmap(base); 1304 return ret; 1305 } 1306 1307 arch_counter_base = base; 1308 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1309 1310 return 0; 1311 } 1312 1313 static int __init arch_timer_mem_of_init(struct device_node *np) 1314 { 1315 struct arch_timer_mem *timer_mem; 1316 struct arch_timer_mem_frame *frame; 1317 struct device_node *frame_node; 1318 struct resource res; 1319 int ret = -EINVAL; 1320 u32 rate; 1321 1322 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1323 if (!timer_mem) 1324 return -ENOMEM; 1325 1326 if (of_address_to_resource(np, 0, &res)) 1327 goto out; 1328 timer_mem->cntctlbase = res.start; 1329 timer_mem->size = resource_size(&res); 1330 1331 for_each_available_child_of_node(np, frame_node) { 1332 u32 n; 1333 struct arch_timer_mem_frame *frame; 1334 1335 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1336 pr_err(FW_BUG "Missing frame-number.\n"); 1337 of_node_put(frame_node); 1338 goto out; 1339 } 1340 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1341 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1342 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1343 of_node_put(frame_node); 1344 goto out; 1345 } 1346 frame = &timer_mem->frame[n]; 1347 1348 if (frame->valid) { 1349 pr_err(FW_BUG "Duplicated frame-number.\n"); 1350 of_node_put(frame_node); 1351 goto out; 1352 } 1353 1354 if (of_address_to_resource(frame_node, 0, &res)) { 1355 of_node_put(frame_node); 1356 goto out; 1357 } 1358 frame->cntbase = res.start; 1359 frame->size = resource_size(&res); 1360 1361 frame->virt_irq = irq_of_parse_and_map(frame_node, 1362 ARCH_TIMER_VIRT_SPI); 1363 frame->phys_irq = irq_of_parse_and_map(frame_node, 1364 ARCH_TIMER_PHYS_SPI); 1365 1366 frame->valid = true; 1367 } 1368 1369 frame = arch_timer_mem_find_best_frame(timer_mem); 1370 if (!frame) { 1371 ret = -EINVAL; 1372 goto out; 1373 } 1374 1375 rate = arch_timer_mem_frame_get_cntfrq(frame); 1376 arch_timer_of_configure_rate(rate, np); 1377 1378 ret = arch_timer_mem_frame_register(frame); 1379 if (!ret && !arch_timer_needs_of_probing()) 1380 ret = arch_timer_common_init(); 1381 out: 1382 kfree(timer_mem); 1383 return ret; 1384 } 1385 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1386 arch_timer_mem_of_init); 1387 1388 #ifdef CONFIG_ACPI_GTDT 1389 static int __init 1390 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1391 { 1392 struct arch_timer_mem_frame *frame; 1393 u32 rate; 1394 int i; 1395 1396 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1397 frame = &timer_mem->frame[i]; 1398 1399 if (!frame->valid) 1400 continue; 1401 1402 rate = arch_timer_mem_frame_get_cntfrq(frame); 1403 if (rate == arch_timer_rate) 1404 continue; 1405 1406 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1407 &frame->cntbase, 1408 (unsigned long)rate, (unsigned long)arch_timer_rate); 1409 1410 return -EINVAL; 1411 } 1412 1413 return 0; 1414 } 1415 1416 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1417 { 1418 struct arch_timer_mem *timers, *timer; 1419 struct arch_timer_mem_frame *frame; 1420 int timer_count, i, ret = 0; 1421 1422 timers = kcalloc(platform_timer_count, sizeof(*timers), 1423 GFP_KERNEL); 1424 if (!timers) 1425 return -ENOMEM; 1426 1427 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1428 if (ret || !timer_count) 1429 goto out; 1430 1431 for (i = 0; i < timer_count; i++) { 1432 ret = arch_timer_mem_verify_cntfrq(&timers[i]); 1433 if (ret) { 1434 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1435 goto out; 1436 } 1437 } 1438 1439 /* 1440 * While unlikely, it's theoretically possible that none of the frames 1441 * in a timer expose the combination of feature we want. 1442 */ 1443 for (i = i; i < timer_count; i++) { 1444 timer = &timers[i]; 1445 1446 frame = arch_timer_mem_find_best_frame(timer); 1447 if (frame) 1448 break; 1449 } 1450 1451 if (frame) 1452 ret = arch_timer_mem_frame_register(frame); 1453 out: 1454 kfree(timers); 1455 return ret; 1456 } 1457 1458 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1459 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1460 { 1461 int ret, platform_timer_count; 1462 1463 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1464 pr_warn("already initialized, skipping\n"); 1465 return -EINVAL; 1466 } 1467 1468 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1469 1470 ret = acpi_gtdt_init(table, &platform_timer_count); 1471 if (ret) { 1472 pr_err("Failed to init GTDT table.\n"); 1473 return ret; 1474 } 1475 1476 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1477 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1478 1479 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1480 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1481 1482 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1483 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1484 1485 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1486 1487 /* 1488 * When probing via ACPI, we have no mechanism to override the sysreg 1489 * CNTFRQ value. This *must* be correct. 1490 */ 1491 arch_timer_rate = arch_timer_get_cntfrq(); 1492 if (!arch_timer_rate) { 1493 pr_err(FW_BUG "frequency not available.\n"); 1494 return -EINVAL; 1495 } 1496 1497 arch_timer_uses_ppi = arch_timer_select_ppi(); 1498 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1499 pr_err("No interrupt available, giving up\n"); 1500 return -EINVAL; 1501 } 1502 1503 /* Always-on capability */ 1504 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1505 1506 /* Check for globally applicable workarounds */ 1507 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1508 1509 ret = arch_timer_register(); 1510 if (ret) 1511 return ret; 1512 1513 if (platform_timer_count && 1514 arch_timer_mem_acpi_init(platform_timer_count)) 1515 pr_err("Failed to initialize memory-mapped timer.\n"); 1516 1517 return arch_timer_common_init(); 1518 } 1519 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1520 #endif 1521