xref: /linux/drivers/clocksource/arm_arch_timer.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"arm_arch_timer: " fmt
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30 
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33 
34 #include <clocksource/arm_arch_timer.h>
35 
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38 
39 #define CNTTIDR		0x08
40 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
41 
42 #define CNTACR(n)	(0x40 + ((n) * 4))
43 #define CNTACR_RPCT	BIT(0)
44 #define CNTACR_RVCT	BIT(1)
45 #define CNTACR_RFRQ	BIT(2)
46 #define CNTACR_RVOFF	BIT(3)
47 #define CNTACR_RWVT	BIT(4)
48 #define CNTACR_RWPT	BIT(5)
49 
50 #define CNTVCT_LO	0x08
51 #define CNTVCT_HI	0x0c
52 #define CNTFRQ		0x10
53 #define CNTP_TVAL	0x28
54 #define CNTP_CTL	0x2c
55 #define CNTV_TVAL	0x38
56 #define CNTV_CTL	0x3c
57 
58 static unsigned arch_timers_present __initdata;
59 
60 static void __iomem *arch_counter_base;
61 
62 struct arch_timer {
63 	void __iomem *base;
64 	struct clock_event_device evt;
65 };
66 
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68 
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71 
72 static struct clock_event_device __percpu *arch_timer_evt;
73 
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79 
80 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
81 
82 static int __init early_evtstrm_cfg(char *buf)
83 {
84 	return strtobool(buf, &evtstrm_enable);
85 }
86 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
87 
88 /*
89  * Architected system timer support.
90  */
91 
92 static __always_inline
93 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
94 			  struct clock_event_device *clk)
95 {
96 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
97 		struct arch_timer *timer = to_arch_timer(clk);
98 		switch (reg) {
99 		case ARCH_TIMER_REG_CTRL:
100 			writel_relaxed(val, timer->base + CNTP_CTL);
101 			break;
102 		case ARCH_TIMER_REG_TVAL:
103 			writel_relaxed(val, timer->base + CNTP_TVAL);
104 			break;
105 		}
106 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
107 		struct arch_timer *timer = to_arch_timer(clk);
108 		switch (reg) {
109 		case ARCH_TIMER_REG_CTRL:
110 			writel_relaxed(val, timer->base + CNTV_CTL);
111 			break;
112 		case ARCH_TIMER_REG_TVAL:
113 			writel_relaxed(val, timer->base + CNTV_TVAL);
114 			break;
115 		}
116 	} else {
117 		arch_timer_reg_write_cp15(access, reg, val);
118 	}
119 }
120 
121 static __always_inline
122 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
123 			struct clock_event_device *clk)
124 {
125 	u32 val;
126 
127 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
128 		struct arch_timer *timer = to_arch_timer(clk);
129 		switch (reg) {
130 		case ARCH_TIMER_REG_CTRL:
131 			val = readl_relaxed(timer->base + CNTP_CTL);
132 			break;
133 		case ARCH_TIMER_REG_TVAL:
134 			val = readl_relaxed(timer->base + CNTP_TVAL);
135 			break;
136 		}
137 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
138 		struct arch_timer *timer = to_arch_timer(clk);
139 		switch (reg) {
140 		case ARCH_TIMER_REG_CTRL:
141 			val = readl_relaxed(timer->base + CNTV_CTL);
142 			break;
143 		case ARCH_TIMER_REG_TVAL:
144 			val = readl_relaxed(timer->base + CNTV_TVAL);
145 			break;
146 		}
147 	} else {
148 		val = arch_timer_reg_read_cp15(access, reg);
149 	}
150 
151 	return val;
152 }
153 
154 /*
155  * Default to cp15 based access because arm64 uses this function for
156  * sched_clock() before DT is probed and the cp15 method is guaranteed
157  * to exist on arm64. arm doesn't use this before DT is probed so even
158  * if we don't have the cp15 accessors we won't have a problem.
159  */
160 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
161 
162 static u64 arch_counter_read(struct clocksource *cs)
163 {
164 	return arch_timer_read_counter();
165 }
166 
167 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
168 {
169 	return arch_timer_read_counter();
170 }
171 
172 static struct clocksource clocksource_counter = {
173 	.name	= "arch_sys_counter",
174 	.rating	= 400,
175 	.read	= arch_counter_read,
176 	.mask	= CLOCKSOURCE_MASK(56),
177 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
178 };
179 
180 static struct cyclecounter cyclecounter __ro_after_init = {
181 	.read	= arch_counter_read_cc,
182 	.mask	= CLOCKSOURCE_MASK(56),
183 };
184 
185 struct ate_acpi_oem_info {
186 	char oem_id[ACPI_OEM_ID_SIZE + 1];
187 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
188 	u32 oem_revision;
189 };
190 
191 #ifdef CONFIG_FSL_ERRATUM_A008585
192 /*
193  * The number of retries is an arbitrary value well beyond the highest number
194  * of iterations the loop has been observed to take.
195  */
196 #define __fsl_a008585_read_reg(reg) ({			\
197 	u64 _old, _new;					\
198 	int _retries = 200;				\
199 							\
200 	do {						\
201 		_old = read_sysreg(reg);		\
202 		_new = read_sysreg(reg);		\
203 		_retries--;				\
204 	} while (unlikely(_old != _new) && _retries);	\
205 							\
206 	WARN_ON_ONCE(!_retries);			\
207 	_new;						\
208 })
209 
210 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
211 {
212 	return __fsl_a008585_read_reg(cntp_tval_el0);
213 }
214 
215 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
216 {
217 	return __fsl_a008585_read_reg(cntv_tval_el0);
218 }
219 
220 static u64 notrace fsl_a008585_read_cntvct_el0(void)
221 {
222 	return __fsl_a008585_read_reg(cntvct_el0);
223 }
224 #endif
225 
226 #ifdef CONFIG_HISILICON_ERRATUM_161010101
227 /*
228  * Verify whether the value of the second read is larger than the first by
229  * less than 32 is the only way to confirm the value is correct, so clear the
230  * lower 5 bits to check whether the difference is greater than 32 or not.
231  * Theoretically the erratum should not occur more than twice in succession
232  * when reading the system counter, but it is possible that some interrupts
233  * may lead to more than twice read errors, triggering the warning, so setting
234  * the number of retries far beyond the number of iterations the loop has been
235  * observed to take.
236  */
237 #define __hisi_161010101_read_reg(reg) ({				\
238 	u64 _old, _new;						\
239 	int _retries = 50;					\
240 								\
241 	do {							\
242 		_old = read_sysreg(reg);			\
243 		_new = read_sysreg(reg);			\
244 		_retries--;					\
245 	} while (unlikely((_new - _old) >> 5) && _retries);	\
246 								\
247 	WARN_ON_ONCE(!_retries);				\
248 	_new;							\
249 })
250 
251 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
252 {
253 	return __hisi_161010101_read_reg(cntp_tval_el0);
254 }
255 
256 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
257 {
258 	return __hisi_161010101_read_reg(cntv_tval_el0);
259 }
260 
261 static u64 notrace hisi_161010101_read_cntvct_el0(void)
262 {
263 	return __hisi_161010101_read_reg(cntvct_el0);
264 }
265 
266 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
267 	/*
268 	 * Note that trailing spaces are required to properly match
269 	 * the OEM table information.
270 	 */
271 	{
272 		.oem_id		= "HISI  ",
273 		.oem_table_id	= "HIP05   ",
274 		.oem_revision	= 0,
275 	},
276 	{
277 		.oem_id		= "HISI  ",
278 		.oem_table_id	= "HIP06   ",
279 		.oem_revision	= 0,
280 	},
281 	{
282 		.oem_id		= "HISI  ",
283 		.oem_table_id	= "HIP07   ",
284 		.oem_revision	= 0,
285 	},
286 	{ /* Sentinel indicating the end of the OEM array */ },
287 };
288 #endif
289 
290 #ifdef CONFIG_ARM64_ERRATUM_858921
291 static u64 notrace arm64_858921_read_cntvct_el0(void)
292 {
293 	u64 old, new;
294 
295 	old = read_sysreg(cntvct_el0);
296 	new = read_sysreg(cntvct_el0);
297 	return (((old ^ new) >> 32) & 1) ? old : new;
298 }
299 #endif
300 
301 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
302 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *,
303 	       timer_unstable_counter_workaround);
304 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
305 
306 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
307 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
308 
309 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
310 						struct clock_event_device *clk)
311 {
312 	unsigned long ctrl;
313 	u64 cval = evt + arch_counter_get_cntvct();
314 
315 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
316 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
317 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
318 
319 	if (access == ARCH_TIMER_PHYS_ACCESS)
320 		write_sysreg(cval, cntp_cval_el0);
321 	else
322 		write_sysreg(cval, cntv_cval_el0);
323 
324 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
325 }
326 
327 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
328 					    struct clock_event_device *clk)
329 {
330 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
331 	return 0;
332 }
333 
334 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
335 					    struct clock_event_device *clk)
336 {
337 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
338 	return 0;
339 }
340 
341 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
342 #ifdef CONFIG_FSL_ERRATUM_A008585
343 	{
344 		.match_type = ate_match_dt,
345 		.id = "fsl,erratum-a008585",
346 		.desc = "Freescale erratum a005858",
347 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
348 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
349 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
350 		.set_next_event_phys = erratum_set_next_event_tval_phys,
351 		.set_next_event_virt = erratum_set_next_event_tval_virt,
352 	},
353 #endif
354 #ifdef CONFIG_HISILICON_ERRATUM_161010101
355 	{
356 		.match_type = ate_match_dt,
357 		.id = "hisilicon,erratum-161010101",
358 		.desc = "HiSilicon erratum 161010101",
359 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
360 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
361 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
362 		.set_next_event_phys = erratum_set_next_event_tval_phys,
363 		.set_next_event_virt = erratum_set_next_event_tval_virt,
364 	},
365 	{
366 		.match_type = ate_match_acpi_oem_info,
367 		.id = hisi_161010101_oem_info,
368 		.desc = "HiSilicon erratum 161010101",
369 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
370 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
371 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
372 		.set_next_event_phys = erratum_set_next_event_tval_phys,
373 		.set_next_event_virt = erratum_set_next_event_tval_virt,
374 	},
375 #endif
376 #ifdef CONFIG_ARM64_ERRATUM_858921
377 	{
378 		.match_type = ate_match_local_cap_id,
379 		.id = (void *)ARM64_WORKAROUND_858921,
380 		.desc = "ARM erratum 858921",
381 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
382 	},
383 #endif
384 };
385 
386 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
387 			       const void *);
388 
389 static
390 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
391 				 const void *arg)
392 {
393 	const struct device_node *np = arg;
394 
395 	return of_property_read_bool(np, wa->id);
396 }
397 
398 static
399 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
400 					const void *arg)
401 {
402 	return this_cpu_has_cap((uintptr_t)wa->id);
403 }
404 
405 
406 static
407 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
408 				       const void *arg)
409 {
410 	static const struct ate_acpi_oem_info empty_oem_info = {};
411 	const struct ate_acpi_oem_info *info = wa->id;
412 	const struct acpi_table_header *table = arg;
413 
414 	/* Iterate over the ACPI OEM info array, looking for a match */
415 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
416 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
417 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
418 		    info->oem_revision == table->oem_revision)
419 			return true;
420 
421 		info++;
422 	}
423 
424 	return false;
425 }
426 
427 static const struct arch_timer_erratum_workaround *
428 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
429 			  ate_match_fn_t match_fn,
430 			  void *arg)
431 {
432 	int i;
433 
434 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
435 		if (ool_workarounds[i].match_type != type)
436 			continue;
437 
438 		if (match_fn(&ool_workarounds[i], arg))
439 			return &ool_workarounds[i];
440 	}
441 
442 	return NULL;
443 }
444 
445 static
446 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
447 				  bool local)
448 {
449 	int i;
450 
451 	if (local) {
452 		__this_cpu_write(timer_unstable_counter_workaround, wa);
453 	} else {
454 		for_each_possible_cpu(i)
455 			per_cpu(timer_unstable_counter_workaround, i) = wa;
456 	}
457 
458 	static_branch_enable(&arch_timer_read_ool_enabled);
459 
460 	/*
461 	 * Don't use the vdso fastpath if errata require using the
462 	 * out-of-line counter accessor. We may change our mind pretty
463 	 * late in the game (with a per-CPU erratum, for example), so
464 	 * change both the default value and the vdso itself.
465 	 */
466 	if (wa->read_cntvct_el0) {
467 		clocksource_counter.archdata.vdso_direct = false;
468 		vdso_default = false;
469 	}
470 }
471 
472 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
473 					    void *arg)
474 {
475 	const struct arch_timer_erratum_workaround *wa;
476 	ate_match_fn_t match_fn = NULL;
477 	bool local = false;
478 
479 	switch (type) {
480 	case ate_match_dt:
481 		match_fn = arch_timer_check_dt_erratum;
482 		break;
483 	case ate_match_local_cap_id:
484 		match_fn = arch_timer_check_local_cap_erratum;
485 		local = true;
486 		break;
487 	case ate_match_acpi_oem_info:
488 		match_fn = arch_timer_check_acpi_oem_erratum;
489 		break;
490 	default:
491 		WARN_ON(1);
492 		return;
493 	}
494 
495 	wa = arch_timer_iterate_errata(type, match_fn, arg);
496 	if (!wa)
497 		return;
498 
499 	if (needs_unstable_timer_counter_workaround()) {
500 		const struct arch_timer_erratum_workaround *__wa;
501 		__wa = __this_cpu_read(timer_unstable_counter_workaround);
502 		if (__wa && wa != __wa)
503 			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
504 				wa->desc, __wa->desc);
505 
506 		if (__wa)
507 			return;
508 	}
509 
510 	arch_timer_enable_workaround(wa, local);
511 	pr_info("Enabling %s workaround for %s\n",
512 		local ? "local" : "global", wa->desc);
513 }
514 
515 #define erratum_handler(fn, r, ...)					\
516 ({									\
517 	bool __val;							\
518 	if (needs_unstable_timer_counter_workaround()) {		\
519 		const struct arch_timer_erratum_workaround *__wa;	\
520 		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
521 		if (__wa && __wa->fn) {					\
522 			r = __wa->fn(__VA_ARGS__);			\
523 			__val = true;					\
524 		} else {						\
525 			__val = false;					\
526 		}							\
527 	} else {							\
528 		__val = false;						\
529 	}								\
530 	__val;								\
531 })
532 
533 static bool arch_timer_this_cpu_has_cntvct_wa(void)
534 {
535 	const struct arch_timer_erratum_workaround *wa;
536 
537 	wa = __this_cpu_read(timer_unstable_counter_workaround);
538 	return wa && wa->read_cntvct_el0;
539 }
540 #else
541 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
542 #define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
543 #define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
544 #define erratum_handler(fn, r, ...)			({false;})
545 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
546 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
547 
548 static __always_inline irqreturn_t timer_handler(const int access,
549 					struct clock_event_device *evt)
550 {
551 	unsigned long ctrl;
552 
553 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
554 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
555 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
556 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
557 		evt->event_handler(evt);
558 		return IRQ_HANDLED;
559 	}
560 
561 	return IRQ_NONE;
562 }
563 
564 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
565 {
566 	struct clock_event_device *evt = dev_id;
567 
568 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
569 }
570 
571 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
572 {
573 	struct clock_event_device *evt = dev_id;
574 
575 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
576 }
577 
578 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
579 {
580 	struct clock_event_device *evt = dev_id;
581 
582 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
583 }
584 
585 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
586 {
587 	struct clock_event_device *evt = dev_id;
588 
589 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
590 }
591 
592 static __always_inline int timer_shutdown(const int access,
593 					  struct clock_event_device *clk)
594 {
595 	unsigned long ctrl;
596 
597 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
598 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
599 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
600 
601 	return 0;
602 }
603 
604 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
605 {
606 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
607 }
608 
609 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
610 {
611 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
612 }
613 
614 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
615 {
616 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
617 }
618 
619 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
620 {
621 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
622 }
623 
624 static __always_inline void set_next_event(const int access, unsigned long evt,
625 					   struct clock_event_device *clk)
626 {
627 	unsigned long ctrl;
628 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
629 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
630 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
631 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
632 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
633 }
634 
635 static int arch_timer_set_next_event_virt(unsigned long evt,
636 					  struct clock_event_device *clk)
637 {
638 	int ret;
639 
640 	if (erratum_handler(set_next_event_virt, ret, evt, clk))
641 		return ret;
642 
643 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
644 	return 0;
645 }
646 
647 static int arch_timer_set_next_event_phys(unsigned long evt,
648 					  struct clock_event_device *clk)
649 {
650 	int ret;
651 
652 	if (erratum_handler(set_next_event_phys, ret, evt, clk))
653 		return ret;
654 
655 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
656 	return 0;
657 }
658 
659 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
660 					      struct clock_event_device *clk)
661 {
662 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
663 	return 0;
664 }
665 
666 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
667 					      struct clock_event_device *clk)
668 {
669 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
670 	return 0;
671 }
672 
673 static void __arch_timer_setup(unsigned type,
674 			       struct clock_event_device *clk)
675 {
676 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
677 
678 	if (type == ARCH_TIMER_TYPE_CP15) {
679 		if (arch_timer_c3stop)
680 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
681 		clk->name = "arch_sys_timer";
682 		clk->rating = 450;
683 		clk->cpumask = cpumask_of(smp_processor_id());
684 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
685 		switch (arch_timer_uses_ppi) {
686 		case ARCH_TIMER_VIRT_PPI:
687 			clk->set_state_shutdown = arch_timer_shutdown_virt;
688 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
689 			clk->set_next_event = arch_timer_set_next_event_virt;
690 			break;
691 		case ARCH_TIMER_PHYS_SECURE_PPI:
692 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
693 		case ARCH_TIMER_HYP_PPI:
694 			clk->set_state_shutdown = arch_timer_shutdown_phys;
695 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
696 			clk->set_next_event = arch_timer_set_next_event_phys;
697 			break;
698 		default:
699 			BUG();
700 		}
701 
702 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
703 	} else {
704 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
705 		clk->name = "arch_mem_timer";
706 		clk->rating = 400;
707 		clk->cpumask = cpu_all_mask;
708 		if (arch_timer_mem_use_virtual) {
709 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
710 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
711 			clk->set_next_event =
712 				arch_timer_set_next_event_virt_mem;
713 		} else {
714 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
715 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
716 			clk->set_next_event =
717 				arch_timer_set_next_event_phys_mem;
718 		}
719 	}
720 
721 	clk->set_state_shutdown(clk);
722 
723 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
724 }
725 
726 static void arch_timer_evtstrm_enable(int divider)
727 {
728 	u32 cntkctl = arch_timer_get_cntkctl();
729 
730 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
731 	/* Set the divider and enable virtual event stream */
732 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
733 			| ARCH_TIMER_VIRT_EVT_EN;
734 	arch_timer_set_cntkctl(cntkctl);
735 	elf_hwcap |= HWCAP_EVTSTRM;
736 #ifdef CONFIG_COMPAT
737 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
738 #endif
739 }
740 
741 static void arch_timer_configure_evtstream(void)
742 {
743 	int evt_stream_div, pos;
744 
745 	/* Find the closest power of two to the divisor */
746 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
747 	pos = fls(evt_stream_div);
748 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
749 		pos--;
750 	/* enable event stream */
751 	arch_timer_evtstrm_enable(min(pos, 15));
752 }
753 
754 static void arch_counter_set_user_access(void)
755 {
756 	u32 cntkctl = arch_timer_get_cntkctl();
757 
758 	/* Disable user access to the timers and both counters */
759 	/* Also disable virtual event stream */
760 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
761 			| ARCH_TIMER_USR_VT_ACCESS_EN
762 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
763 			| ARCH_TIMER_VIRT_EVT_EN
764 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
765 
766 	/*
767 	 * Enable user access to the virtual counter if it doesn't
768 	 * need to be workaround. The vdso may have been already
769 	 * disabled though.
770 	 */
771 	if (arch_timer_this_cpu_has_cntvct_wa())
772 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
773 	else
774 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
775 
776 	arch_timer_set_cntkctl(cntkctl);
777 }
778 
779 static bool arch_timer_has_nonsecure_ppi(void)
780 {
781 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
782 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
783 }
784 
785 static u32 check_ppi_trigger(int irq)
786 {
787 	u32 flags = irq_get_trigger_type(irq);
788 
789 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
790 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
791 		pr_warn("WARNING: Please fix your firmware\n");
792 		flags = IRQF_TRIGGER_LOW;
793 	}
794 
795 	return flags;
796 }
797 
798 static int arch_timer_starting_cpu(unsigned int cpu)
799 {
800 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
801 	u32 flags;
802 
803 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
804 
805 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
806 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
807 
808 	if (arch_timer_has_nonsecure_ppi()) {
809 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
810 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
811 				  flags);
812 	}
813 
814 	arch_counter_set_user_access();
815 	if (evtstrm_enable)
816 		arch_timer_configure_evtstream();
817 
818 	return 0;
819 }
820 
821 /*
822  * For historical reasons, when probing with DT we use whichever (non-zero)
823  * rate was probed first, and don't verify that others match. If the first node
824  * probed has a clock-frequency property, this overrides the HW register.
825  */
826 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
827 {
828 	/* Who has more than one independent system counter? */
829 	if (arch_timer_rate)
830 		return;
831 
832 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
833 		arch_timer_rate = rate;
834 
835 	/* Check the timer frequency. */
836 	if (arch_timer_rate == 0)
837 		pr_warn("frequency not available\n");
838 }
839 
840 static void arch_timer_banner(unsigned type)
841 {
842 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
843 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
844 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
845 			" and " : "",
846 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
847 		(unsigned long)arch_timer_rate / 1000000,
848 		(unsigned long)(arch_timer_rate / 10000) % 100,
849 		type & ARCH_TIMER_TYPE_CP15 ?
850 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
851 			"",
852 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
853 		type & ARCH_TIMER_TYPE_MEM ?
854 			arch_timer_mem_use_virtual ? "virt" : "phys" :
855 			"");
856 }
857 
858 u32 arch_timer_get_rate(void)
859 {
860 	return arch_timer_rate;
861 }
862 
863 static u64 arch_counter_get_cntvct_mem(void)
864 {
865 	u32 vct_lo, vct_hi, tmp_hi;
866 
867 	do {
868 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
869 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
870 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
871 	} while (vct_hi != tmp_hi);
872 
873 	return ((u64) vct_hi << 32) | vct_lo;
874 }
875 
876 static struct arch_timer_kvm_info arch_timer_kvm_info;
877 
878 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
879 {
880 	return &arch_timer_kvm_info;
881 }
882 
883 static void __init arch_counter_register(unsigned type)
884 {
885 	u64 start_count;
886 
887 	/* Register the CP15 based counter if we have one */
888 	if (type & ARCH_TIMER_TYPE_CP15) {
889 		if (IS_ENABLED(CONFIG_ARM64) ||
890 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
891 			arch_timer_read_counter = arch_counter_get_cntvct;
892 		else
893 			arch_timer_read_counter = arch_counter_get_cntpct;
894 
895 		clocksource_counter.archdata.vdso_direct = vdso_default;
896 	} else {
897 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
898 	}
899 
900 	if (!arch_counter_suspend_stop)
901 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
902 	start_count = arch_timer_read_counter();
903 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
904 	cyclecounter.mult = clocksource_counter.mult;
905 	cyclecounter.shift = clocksource_counter.shift;
906 	timecounter_init(&arch_timer_kvm_info.timecounter,
907 			 &cyclecounter, start_count);
908 
909 	/* 56 bits minimum, so we assume worst case rollover */
910 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
911 }
912 
913 static void arch_timer_stop(struct clock_event_device *clk)
914 {
915 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
916 
917 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
918 	if (arch_timer_has_nonsecure_ppi())
919 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
920 
921 	clk->set_state_shutdown(clk);
922 }
923 
924 static int arch_timer_dying_cpu(unsigned int cpu)
925 {
926 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
927 
928 	arch_timer_stop(clk);
929 	return 0;
930 }
931 
932 #ifdef CONFIG_CPU_PM
933 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
934 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
935 				    unsigned long action, void *hcpu)
936 {
937 	if (action == CPU_PM_ENTER)
938 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
939 	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
940 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
941 	return NOTIFY_OK;
942 }
943 
944 static struct notifier_block arch_timer_cpu_pm_notifier = {
945 	.notifier_call = arch_timer_cpu_pm_notify,
946 };
947 
948 static int __init arch_timer_cpu_pm_init(void)
949 {
950 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
951 }
952 
953 static void __init arch_timer_cpu_pm_deinit(void)
954 {
955 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
956 }
957 
958 #else
959 static int __init arch_timer_cpu_pm_init(void)
960 {
961 	return 0;
962 }
963 
964 static void __init arch_timer_cpu_pm_deinit(void)
965 {
966 }
967 #endif
968 
969 static int __init arch_timer_register(void)
970 {
971 	int err;
972 	int ppi;
973 
974 	arch_timer_evt = alloc_percpu(struct clock_event_device);
975 	if (!arch_timer_evt) {
976 		err = -ENOMEM;
977 		goto out;
978 	}
979 
980 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
981 	switch (arch_timer_uses_ppi) {
982 	case ARCH_TIMER_VIRT_PPI:
983 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
984 					 "arch_timer", arch_timer_evt);
985 		break;
986 	case ARCH_TIMER_PHYS_SECURE_PPI:
987 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
988 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
989 					 "arch_timer", arch_timer_evt);
990 		if (!err && arch_timer_has_nonsecure_ppi()) {
991 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
992 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
993 						 "arch_timer", arch_timer_evt);
994 			if (err)
995 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
996 						arch_timer_evt);
997 		}
998 		break;
999 	case ARCH_TIMER_HYP_PPI:
1000 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1001 					 "arch_timer", arch_timer_evt);
1002 		break;
1003 	default:
1004 		BUG();
1005 	}
1006 
1007 	if (err) {
1008 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1009 		goto out_free;
1010 	}
1011 
1012 	err = arch_timer_cpu_pm_init();
1013 	if (err)
1014 		goto out_unreg_notify;
1015 
1016 
1017 	/* Register and immediately configure the timer on the boot CPU */
1018 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1019 				"clockevents/arm/arch_timer:starting",
1020 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1021 	if (err)
1022 		goto out_unreg_cpupm;
1023 	return 0;
1024 
1025 out_unreg_cpupm:
1026 	arch_timer_cpu_pm_deinit();
1027 
1028 out_unreg_notify:
1029 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1030 	if (arch_timer_has_nonsecure_ppi())
1031 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1032 				arch_timer_evt);
1033 
1034 out_free:
1035 	free_percpu(arch_timer_evt);
1036 out:
1037 	return err;
1038 }
1039 
1040 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1041 {
1042 	int ret;
1043 	irq_handler_t func;
1044 	struct arch_timer *t;
1045 
1046 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1047 	if (!t)
1048 		return -ENOMEM;
1049 
1050 	t->base = base;
1051 	t->evt.irq = irq;
1052 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1053 
1054 	if (arch_timer_mem_use_virtual)
1055 		func = arch_timer_handler_virt_mem;
1056 	else
1057 		func = arch_timer_handler_phys_mem;
1058 
1059 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1060 	if (ret) {
1061 		pr_err("Failed to request mem timer irq\n");
1062 		kfree(t);
1063 	}
1064 
1065 	return ret;
1066 }
1067 
1068 static const struct of_device_id arch_timer_of_match[] __initconst = {
1069 	{ .compatible   = "arm,armv7-timer",    },
1070 	{ .compatible   = "arm,armv8-timer",    },
1071 	{},
1072 };
1073 
1074 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1075 	{ .compatible   = "arm,armv7-timer-mem", },
1076 	{},
1077 };
1078 
1079 static bool __init arch_timer_needs_of_probing(void)
1080 {
1081 	struct device_node *dn;
1082 	bool needs_probing = false;
1083 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1084 
1085 	/* We have two timers, and both device-tree nodes are probed. */
1086 	if ((arch_timers_present & mask) == mask)
1087 		return false;
1088 
1089 	/*
1090 	 * Only one type of timer is probed,
1091 	 * check if we have another type of timer node in device-tree.
1092 	 */
1093 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1094 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1095 	else
1096 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1097 
1098 	if (dn && of_device_is_available(dn))
1099 		needs_probing = true;
1100 
1101 	of_node_put(dn);
1102 
1103 	return needs_probing;
1104 }
1105 
1106 static int __init arch_timer_common_init(void)
1107 {
1108 	arch_timer_banner(arch_timers_present);
1109 	arch_counter_register(arch_timers_present);
1110 	return arch_timer_arch_init();
1111 }
1112 
1113 /**
1114  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1115  *
1116  * If HYP mode is available, we know that the physical timer
1117  * has been configured to be accessible from PL1. Use it, so
1118  * that a guest can use the virtual timer instead.
1119  *
1120  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1121  * accesses to CNTP_*_EL1 registers are silently redirected to
1122  * their CNTHP_*_EL2 counterparts, and use a different PPI
1123  * number.
1124  *
1125  * If no interrupt provided for virtual timer, we'll have to
1126  * stick to the physical timer. It'd better be accessible...
1127  * For arm64 we never use the secure interrupt.
1128  *
1129  * Return: a suitable PPI type for the current system.
1130  */
1131 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1132 {
1133 	if (is_kernel_in_hyp_mode())
1134 		return ARCH_TIMER_HYP_PPI;
1135 
1136 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1137 		return ARCH_TIMER_VIRT_PPI;
1138 
1139 	if (IS_ENABLED(CONFIG_ARM64))
1140 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1141 
1142 	return ARCH_TIMER_PHYS_SECURE_PPI;
1143 }
1144 
1145 static int __init arch_timer_of_init(struct device_node *np)
1146 {
1147 	int i, ret;
1148 	u32 rate;
1149 
1150 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1151 		pr_warn("multiple nodes in dt, skipping\n");
1152 		return 0;
1153 	}
1154 
1155 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1156 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1157 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1158 
1159 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1160 
1161 	rate = arch_timer_get_cntfrq();
1162 	arch_timer_of_configure_rate(rate, np);
1163 
1164 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1165 
1166 	/* Check for globally applicable workarounds */
1167 	arch_timer_check_ool_workaround(ate_match_dt, np);
1168 
1169 	/*
1170 	 * If we cannot rely on firmware initializing the timer registers then
1171 	 * we should use the physical timers instead.
1172 	 */
1173 	if (IS_ENABLED(CONFIG_ARM) &&
1174 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1175 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1176 	else
1177 		arch_timer_uses_ppi = arch_timer_select_ppi();
1178 
1179 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1180 		pr_err("No interrupt available, giving up\n");
1181 		return -EINVAL;
1182 	}
1183 
1184 	/* On some systems, the counter stops ticking when in suspend. */
1185 	arch_counter_suspend_stop = of_property_read_bool(np,
1186 							 "arm,no-tick-in-suspend");
1187 
1188 	ret = arch_timer_register();
1189 	if (ret)
1190 		return ret;
1191 
1192 	if (arch_timer_needs_of_probing())
1193 		return 0;
1194 
1195 	return arch_timer_common_init();
1196 }
1197 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1198 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1199 
1200 static u32 __init
1201 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1202 {
1203 	void __iomem *base;
1204 	u32 rate;
1205 
1206 	base = ioremap(frame->cntbase, frame->size);
1207 	if (!base) {
1208 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1209 		return 0;
1210 	}
1211 
1212 	rate = readl_relaxed(frame + CNTFRQ);
1213 
1214 	iounmap(frame);
1215 
1216 	return rate;
1217 }
1218 
1219 static struct arch_timer_mem_frame * __init
1220 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1221 {
1222 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1223 	void __iomem *cntctlbase;
1224 	u32 cnttidr;
1225 	int i;
1226 
1227 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1228 	if (!cntctlbase) {
1229 		pr_err("Can't map CNTCTLBase @ %pa\n",
1230 			&timer_mem->cntctlbase);
1231 		return NULL;
1232 	}
1233 
1234 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1235 
1236 	/*
1237 	 * Try to find a virtual capable frame. Otherwise fall back to a
1238 	 * physical capable frame.
1239 	 */
1240 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1241 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1242 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1243 
1244 		frame = &timer_mem->frame[i];
1245 		if (!frame->valid)
1246 			continue;
1247 
1248 		/* Try enabling everything, and see what sticks */
1249 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1250 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1251 
1252 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1253 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1254 			best_frame = frame;
1255 			arch_timer_mem_use_virtual = true;
1256 			break;
1257 		}
1258 
1259 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1260 			continue;
1261 
1262 		best_frame = frame;
1263 	}
1264 
1265 	iounmap(cntctlbase);
1266 
1267 	if (!best_frame)
1268 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1269 			&timer_mem->cntctlbase);
1270 
1271 	return best_frame;
1272 }
1273 
1274 static int __init
1275 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1276 {
1277 	void __iomem *base;
1278 	int ret, irq = 0;
1279 
1280 	if (arch_timer_mem_use_virtual)
1281 		irq = frame->virt_irq;
1282 	else
1283 		irq = frame->phys_irq;
1284 
1285 	if (!irq) {
1286 		pr_err("Frame missing %s irq.\n",
1287 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1288 		return -EINVAL;
1289 	}
1290 
1291 	if (!request_mem_region(frame->cntbase, frame->size,
1292 				"arch_mem_timer"))
1293 		return -EBUSY;
1294 
1295 	base = ioremap(frame->cntbase, frame->size);
1296 	if (!base) {
1297 		pr_err("Can't map frame's registers\n");
1298 		return -ENXIO;
1299 	}
1300 
1301 	ret = arch_timer_mem_register(base, irq);
1302 	if (ret) {
1303 		iounmap(base);
1304 		return ret;
1305 	}
1306 
1307 	arch_counter_base = base;
1308 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1309 
1310 	return 0;
1311 }
1312 
1313 static int __init arch_timer_mem_of_init(struct device_node *np)
1314 {
1315 	struct arch_timer_mem *timer_mem;
1316 	struct arch_timer_mem_frame *frame;
1317 	struct device_node *frame_node;
1318 	struct resource res;
1319 	int ret = -EINVAL;
1320 	u32 rate;
1321 
1322 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1323 	if (!timer_mem)
1324 		return -ENOMEM;
1325 
1326 	if (of_address_to_resource(np, 0, &res))
1327 		goto out;
1328 	timer_mem->cntctlbase = res.start;
1329 	timer_mem->size = resource_size(&res);
1330 
1331 	for_each_available_child_of_node(np, frame_node) {
1332 		u32 n;
1333 		struct arch_timer_mem_frame *frame;
1334 
1335 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1336 			pr_err(FW_BUG "Missing frame-number.\n");
1337 			of_node_put(frame_node);
1338 			goto out;
1339 		}
1340 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1341 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1342 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1343 			of_node_put(frame_node);
1344 			goto out;
1345 		}
1346 		frame = &timer_mem->frame[n];
1347 
1348 		if (frame->valid) {
1349 			pr_err(FW_BUG "Duplicated frame-number.\n");
1350 			of_node_put(frame_node);
1351 			goto out;
1352 		}
1353 
1354 		if (of_address_to_resource(frame_node, 0, &res)) {
1355 			of_node_put(frame_node);
1356 			goto out;
1357 		}
1358 		frame->cntbase = res.start;
1359 		frame->size = resource_size(&res);
1360 
1361 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1362 						       ARCH_TIMER_VIRT_SPI);
1363 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1364 						       ARCH_TIMER_PHYS_SPI);
1365 
1366 		frame->valid = true;
1367 	}
1368 
1369 	frame = arch_timer_mem_find_best_frame(timer_mem);
1370 	if (!frame) {
1371 		ret = -EINVAL;
1372 		goto out;
1373 	}
1374 
1375 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1376 	arch_timer_of_configure_rate(rate, np);
1377 
1378 	ret = arch_timer_mem_frame_register(frame);
1379 	if (!ret && !arch_timer_needs_of_probing())
1380 		ret = arch_timer_common_init();
1381 out:
1382 	kfree(timer_mem);
1383 	return ret;
1384 }
1385 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1386 		       arch_timer_mem_of_init);
1387 
1388 #ifdef CONFIG_ACPI_GTDT
1389 static int __init
1390 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1391 {
1392 	struct arch_timer_mem_frame *frame;
1393 	u32 rate;
1394 	int i;
1395 
1396 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1397 		frame = &timer_mem->frame[i];
1398 
1399 		if (!frame->valid)
1400 			continue;
1401 
1402 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1403 		if (rate == arch_timer_rate)
1404 			continue;
1405 
1406 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1407 			&frame->cntbase,
1408 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1409 
1410 		return -EINVAL;
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1417 {
1418 	struct arch_timer_mem *timers, *timer;
1419 	struct arch_timer_mem_frame *frame;
1420 	int timer_count, i, ret = 0;
1421 
1422 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1423 			    GFP_KERNEL);
1424 	if (!timers)
1425 		return -ENOMEM;
1426 
1427 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1428 	if (ret || !timer_count)
1429 		goto out;
1430 
1431 	for (i = 0; i < timer_count; i++) {
1432 		ret = arch_timer_mem_verify_cntfrq(&timers[i]);
1433 		if (ret) {
1434 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1435 			goto out;
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * While unlikely, it's theoretically possible that none of the frames
1441 	 * in a timer expose the combination of feature we want.
1442 	 */
1443 	for (i = i; i < timer_count; i++) {
1444 		timer = &timers[i];
1445 
1446 		frame = arch_timer_mem_find_best_frame(timer);
1447 		if (frame)
1448 			break;
1449 	}
1450 
1451 	if (frame)
1452 		ret = arch_timer_mem_frame_register(frame);
1453 out:
1454 	kfree(timers);
1455 	return ret;
1456 }
1457 
1458 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1459 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1460 {
1461 	int ret, platform_timer_count;
1462 
1463 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1464 		pr_warn("already initialized, skipping\n");
1465 		return -EINVAL;
1466 	}
1467 
1468 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1469 
1470 	ret = acpi_gtdt_init(table, &platform_timer_count);
1471 	if (ret) {
1472 		pr_err("Failed to init GTDT table.\n");
1473 		return ret;
1474 	}
1475 
1476 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1477 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1478 
1479 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1480 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1481 
1482 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1483 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1484 
1485 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1486 
1487 	/*
1488 	 * When probing via ACPI, we have no mechanism to override the sysreg
1489 	 * CNTFRQ value. This *must* be correct.
1490 	 */
1491 	arch_timer_rate = arch_timer_get_cntfrq();
1492 	if (!arch_timer_rate) {
1493 		pr_err(FW_BUG "frequency not available.\n");
1494 		return -EINVAL;
1495 	}
1496 
1497 	arch_timer_uses_ppi = arch_timer_select_ppi();
1498 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1499 		pr_err("No interrupt available, giving up\n");
1500 		return -EINVAL;
1501 	}
1502 
1503 	/* Always-on capability */
1504 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1505 
1506 	/* Check for globally applicable workarounds */
1507 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1508 
1509 	ret = arch_timer_register();
1510 	if (ret)
1511 		return ret;
1512 
1513 	if (platform_timer_count &&
1514 	    arch_timer_mem_acpi_init(platform_timer_count))
1515 		pr_err("Failed to initialize memory-mapped timer.\n");
1516 
1517 	return arch_timer_common_init();
1518 }
1519 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1520 #endif
1521