1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/interrupt.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_address.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <linux/sched_clock.h> 25 #include <linux/acpi.h> 26 27 #include <asm/arch_timer.h> 28 #include <asm/virt.h> 29 30 #include <clocksource/arm_arch_timer.h> 31 32 #define CNTTIDR 0x08 33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 34 35 #define CNTVCT_LO 0x08 36 #define CNTVCT_HI 0x0c 37 #define CNTFRQ 0x10 38 #define CNTP_TVAL 0x28 39 #define CNTP_CTL 0x2c 40 #define CNTV_TVAL 0x38 41 #define CNTV_CTL 0x3c 42 43 #define ARCH_CP15_TIMER BIT(0) 44 #define ARCH_MEM_TIMER BIT(1) 45 static unsigned arch_timers_present __initdata; 46 47 static void __iomem *arch_counter_base; 48 49 struct arch_timer { 50 void __iomem *base; 51 struct clock_event_device evt; 52 }; 53 54 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 55 56 static u32 arch_timer_rate; 57 58 enum ppi_nr { 59 PHYS_SECURE_PPI, 60 PHYS_NONSECURE_PPI, 61 VIRT_PPI, 62 HYP_PPI, 63 MAX_TIMER_PPI 64 }; 65 66 static int arch_timer_ppi[MAX_TIMER_PPI]; 67 68 static struct clock_event_device __percpu *arch_timer_evt; 69 70 static bool arch_timer_use_virtual = true; 71 static bool arch_timer_c3stop; 72 static bool arch_timer_mem_use_virtual; 73 74 /* 75 * Architected system timer support. 76 */ 77 78 static __always_inline 79 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 80 struct clock_event_device *clk) 81 { 82 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 83 struct arch_timer *timer = to_arch_timer(clk); 84 switch (reg) { 85 case ARCH_TIMER_REG_CTRL: 86 writel_relaxed(val, timer->base + CNTP_CTL); 87 break; 88 case ARCH_TIMER_REG_TVAL: 89 writel_relaxed(val, timer->base + CNTP_TVAL); 90 break; 91 } 92 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 93 struct arch_timer *timer = to_arch_timer(clk); 94 switch (reg) { 95 case ARCH_TIMER_REG_CTRL: 96 writel_relaxed(val, timer->base + CNTV_CTL); 97 break; 98 case ARCH_TIMER_REG_TVAL: 99 writel_relaxed(val, timer->base + CNTV_TVAL); 100 break; 101 } 102 } else { 103 arch_timer_reg_write_cp15(access, reg, val); 104 } 105 } 106 107 static __always_inline 108 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 109 struct clock_event_device *clk) 110 { 111 u32 val; 112 113 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 114 struct arch_timer *timer = to_arch_timer(clk); 115 switch (reg) { 116 case ARCH_TIMER_REG_CTRL: 117 val = readl_relaxed(timer->base + CNTP_CTL); 118 break; 119 case ARCH_TIMER_REG_TVAL: 120 val = readl_relaxed(timer->base + CNTP_TVAL); 121 break; 122 } 123 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 124 struct arch_timer *timer = to_arch_timer(clk); 125 switch (reg) { 126 case ARCH_TIMER_REG_CTRL: 127 val = readl_relaxed(timer->base + CNTV_CTL); 128 break; 129 case ARCH_TIMER_REG_TVAL: 130 val = readl_relaxed(timer->base + CNTV_TVAL); 131 break; 132 } 133 } else { 134 val = arch_timer_reg_read_cp15(access, reg); 135 } 136 137 return val; 138 } 139 140 static __always_inline irqreturn_t timer_handler(const int access, 141 struct clock_event_device *evt) 142 { 143 unsigned long ctrl; 144 145 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 146 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 147 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 148 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 149 evt->event_handler(evt); 150 return IRQ_HANDLED; 151 } 152 153 return IRQ_NONE; 154 } 155 156 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 157 { 158 struct clock_event_device *evt = dev_id; 159 160 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 161 } 162 163 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 164 { 165 struct clock_event_device *evt = dev_id; 166 167 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 168 } 169 170 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 171 { 172 struct clock_event_device *evt = dev_id; 173 174 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 175 } 176 177 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 178 { 179 struct clock_event_device *evt = dev_id; 180 181 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 182 } 183 184 static __always_inline int timer_shutdown(const int access, 185 struct clock_event_device *clk) 186 { 187 unsigned long ctrl; 188 189 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 190 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 191 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 192 193 return 0; 194 } 195 196 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 197 { 198 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 199 } 200 201 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 202 { 203 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 204 } 205 206 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 207 { 208 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 209 } 210 211 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 212 { 213 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 214 } 215 216 static __always_inline void set_next_event(const int access, unsigned long evt, 217 struct clock_event_device *clk) 218 { 219 unsigned long ctrl; 220 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 221 ctrl |= ARCH_TIMER_CTRL_ENABLE; 222 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 223 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 224 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 225 } 226 227 static int arch_timer_set_next_event_virt(unsigned long evt, 228 struct clock_event_device *clk) 229 { 230 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 231 return 0; 232 } 233 234 static int arch_timer_set_next_event_phys(unsigned long evt, 235 struct clock_event_device *clk) 236 { 237 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 238 return 0; 239 } 240 241 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 242 struct clock_event_device *clk) 243 { 244 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 245 return 0; 246 } 247 248 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 249 struct clock_event_device *clk) 250 { 251 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 252 return 0; 253 } 254 255 static void __arch_timer_setup(unsigned type, 256 struct clock_event_device *clk) 257 { 258 clk->features = CLOCK_EVT_FEAT_ONESHOT; 259 260 if (type == ARCH_CP15_TIMER) { 261 if (arch_timer_c3stop) 262 clk->features |= CLOCK_EVT_FEAT_C3STOP; 263 clk->name = "arch_sys_timer"; 264 clk->rating = 450; 265 clk->cpumask = cpumask_of(smp_processor_id()); 266 if (arch_timer_use_virtual) { 267 clk->irq = arch_timer_ppi[VIRT_PPI]; 268 clk->set_state_shutdown = arch_timer_shutdown_virt; 269 clk->set_next_event = arch_timer_set_next_event_virt; 270 } else { 271 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; 272 clk->set_state_shutdown = arch_timer_shutdown_phys; 273 clk->set_next_event = arch_timer_set_next_event_phys; 274 } 275 } else { 276 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 277 clk->name = "arch_mem_timer"; 278 clk->rating = 400; 279 clk->cpumask = cpu_all_mask; 280 if (arch_timer_mem_use_virtual) { 281 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 282 clk->set_next_event = 283 arch_timer_set_next_event_virt_mem; 284 } else { 285 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 286 clk->set_next_event = 287 arch_timer_set_next_event_phys_mem; 288 } 289 } 290 291 clk->set_state_shutdown(clk); 292 293 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 294 } 295 296 static void arch_timer_evtstrm_enable(int divider) 297 { 298 u32 cntkctl = arch_timer_get_cntkctl(); 299 300 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 301 /* Set the divider and enable virtual event stream */ 302 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 303 | ARCH_TIMER_VIRT_EVT_EN; 304 arch_timer_set_cntkctl(cntkctl); 305 elf_hwcap |= HWCAP_EVTSTRM; 306 #ifdef CONFIG_COMPAT 307 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 308 #endif 309 } 310 311 static void arch_timer_configure_evtstream(void) 312 { 313 int evt_stream_div, pos; 314 315 /* Find the closest power of two to the divisor */ 316 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 317 pos = fls(evt_stream_div); 318 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 319 pos--; 320 /* enable event stream */ 321 arch_timer_evtstrm_enable(min(pos, 15)); 322 } 323 324 static void arch_counter_set_user_access(void) 325 { 326 u32 cntkctl = arch_timer_get_cntkctl(); 327 328 /* Disable user access to the timers and the physical counter */ 329 /* Also disable virtual event stream */ 330 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 331 | ARCH_TIMER_USR_VT_ACCESS_EN 332 | ARCH_TIMER_VIRT_EVT_EN 333 | ARCH_TIMER_USR_PCT_ACCESS_EN); 334 335 /* Enable user access to the virtual counter */ 336 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 337 338 arch_timer_set_cntkctl(cntkctl); 339 } 340 341 static int arch_timer_setup(struct clock_event_device *clk) 342 { 343 __arch_timer_setup(ARCH_CP15_TIMER, clk); 344 345 if (arch_timer_use_virtual) 346 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); 347 else { 348 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0); 349 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 350 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); 351 } 352 353 arch_counter_set_user_access(); 354 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM)) 355 arch_timer_configure_evtstream(); 356 357 return 0; 358 } 359 360 static void 361 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np) 362 { 363 /* Who has more than one independent system counter? */ 364 if (arch_timer_rate) 365 return; 366 367 /* 368 * Try to determine the frequency from the device tree or CNTFRQ, 369 * if ACPI is enabled, get the frequency from CNTFRQ ONLY. 370 */ 371 if (!acpi_disabled || 372 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) { 373 if (cntbase) 374 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ); 375 else 376 arch_timer_rate = arch_timer_get_cntfrq(); 377 } 378 379 /* Check the timer frequency. */ 380 if (arch_timer_rate == 0) 381 pr_warn("Architected timer frequency not available\n"); 382 } 383 384 static void arch_timer_banner(unsigned type) 385 { 386 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 387 type & ARCH_CP15_TIMER ? "cp15" : "", 388 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "", 389 type & ARCH_MEM_TIMER ? "mmio" : "", 390 (unsigned long)arch_timer_rate / 1000000, 391 (unsigned long)(arch_timer_rate / 10000) % 100, 392 type & ARCH_CP15_TIMER ? 393 arch_timer_use_virtual ? "virt" : "phys" : 394 "", 395 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "", 396 type & ARCH_MEM_TIMER ? 397 arch_timer_mem_use_virtual ? "virt" : "phys" : 398 ""); 399 } 400 401 u32 arch_timer_get_rate(void) 402 { 403 return arch_timer_rate; 404 } 405 406 static u64 arch_counter_get_cntvct_mem(void) 407 { 408 u32 vct_lo, vct_hi, tmp_hi; 409 410 do { 411 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 412 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 413 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 414 } while (vct_hi != tmp_hi); 415 416 return ((u64) vct_hi << 32) | vct_lo; 417 } 418 419 /* 420 * Default to cp15 based access because arm64 uses this function for 421 * sched_clock() before DT is probed and the cp15 method is guaranteed 422 * to exist on arm64. arm doesn't use this before DT is probed so even 423 * if we don't have the cp15 accessors we won't have a problem. 424 */ 425 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 426 427 static cycle_t arch_counter_read(struct clocksource *cs) 428 { 429 return arch_timer_read_counter(); 430 } 431 432 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) 433 { 434 return arch_timer_read_counter(); 435 } 436 437 static struct clocksource clocksource_counter = { 438 .name = "arch_sys_counter", 439 .rating = 400, 440 .read = arch_counter_read, 441 .mask = CLOCKSOURCE_MASK(56), 442 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, 443 }; 444 445 static struct cyclecounter cyclecounter = { 446 .read = arch_counter_read_cc, 447 .mask = CLOCKSOURCE_MASK(56), 448 }; 449 450 static struct timecounter timecounter; 451 452 struct timecounter *arch_timer_get_timecounter(void) 453 { 454 return &timecounter; 455 } 456 457 static void __init arch_counter_register(unsigned type) 458 { 459 u64 start_count; 460 461 /* Register the CP15 based counter if we have one */ 462 if (type & ARCH_CP15_TIMER) { 463 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual) 464 arch_timer_read_counter = arch_counter_get_cntvct; 465 else 466 arch_timer_read_counter = arch_counter_get_cntpct; 467 } else { 468 arch_timer_read_counter = arch_counter_get_cntvct_mem; 469 470 /* If the clocksource name is "arch_sys_counter" the 471 * VDSO will attempt to read the CP15-based counter. 472 * Ensure this does not happen when CP15-based 473 * counter is not available. 474 */ 475 clocksource_counter.name = "arch_mem_counter"; 476 } 477 478 start_count = arch_timer_read_counter(); 479 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 480 cyclecounter.mult = clocksource_counter.mult; 481 cyclecounter.shift = clocksource_counter.shift; 482 timecounter_init(&timecounter, &cyclecounter, start_count); 483 484 /* 56 bits minimum, so we assume worst case rollover */ 485 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 486 } 487 488 static void arch_timer_stop(struct clock_event_device *clk) 489 { 490 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", 491 clk->irq, smp_processor_id()); 492 493 if (arch_timer_use_virtual) 494 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]); 495 else { 496 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]); 497 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 498 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); 499 } 500 501 clk->set_state_shutdown(clk); 502 } 503 504 static int arch_timer_cpu_notify(struct notifier_block *self, 505 unsigned long action, void *hcpu) 506 { 507 /* 508 * Grab cpu pointer in each case to avoid spurious 509 * preemptible warnings 510 */ 511 switch (action & ~CPU_TASKS_FROZEN) { 512 case CPU_STARTING: 513 arch_timer_setup(this_cpu_ptr(arch_timer_evt)); 514 break; 515 case CPU_DYING: 516 arch_timer_stop(this_cpu_ptr(arch_timer_evt)); 517 break; 518 } 519 520 return NOTIFY_OK; 521 } 522 523 static struct notifier_block arch_timer_cpu_nb = { 524 .notifier_call = arch_timer_cpu_notify, 525 }; 526 527 #ifdef CONFIG_CPU_PM 528 static unsigned int saved_cntkctl; 529 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 530 unsigned long action, void *hcpu) 531 { 532 if (action == CPU_PM_ENTER) 533 saved_cntkctl = arch_timer_get_cntkctl(); 534 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) 535 arch_timer_set_cntkctl(saved_cntkctl); 536 return NOTIFY_OK; 537 } 538 539 static struct notifier_block arch_timer_cpu_pm_notifier = { 540 .notifier_call = arch_timer_cpu_pm_notify, 541 }; 542 543 static int __init arch_timer_cpu_pm_init(void) 544 { 545 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 546 } 547 #else 548 static int __init arch_timer_cpu_pm_init(void) 549 { 550 return 0; 551 } 552 #endif 553 554 static int __init arch_timer_register(void) 555 { 556 int err; 557 int ppi; 558 559 arch_timer_evt = alloc_percpu(struct clock_event_device); 560 if (!arch_timer_evt) { 561 err = -ENOMEM; 562 goto out; 563 } 564 565 if (arch_timer_use_virtual) { 566 ppi = arch_timer_ppi[VIRT_PPI]; 567 err = request_percpu_irq(ppi, arch_timer_handler_virt, 568 "arch_timer", arch_timer_evt); 569 } else { 570 ppi = arch_timer_ppi[PHYS_SECURE_PPI]; 571 err = request_percpu_irq(ppi, arch_timer_handler_phys, 572 "arch_timer", arch_timer_evt); 573 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { 574 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; 575 err = request_percpu_irq(ppi, arch_timer_handler_phys, 576 "arch_timer", arch_timer_evt); 577 if (err) 578 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 579 arch_timer_evt); 580 } 581 } 582 583 if (err) { 584 pr_err("arch_timer: can't register interrupt %d (%d)\n", 585 ppi, err); 586 goto out_free; 587 } 588 589 err = register_cpu_notifier(&arch_timer_cpu_nb); 590 if (err) 591 goto out_free_irq; 592 593 err = arch_timer_cpu_pm_init(); 594 if (err) 595 goto out_unreg_notify; 596 597 /* Immediately configure the timer on the boot CPU */ 598 arch_timer_setup(this_cpu_ptr(arch_timer_evt)); 599 600 return 0; 601 602 out_unreg_notify: 603 unregister_cpu_notifier(&arch_timer_cpu_nb); 604 out_free_irq: 605 if (arch_timer_use_virtual) 606 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt); 607 else { 608 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 609 arch_timer_evt); 610 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 611 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 612 arch_timer_evt); 613 } 614 615 out_free: 616 free_percpu(arch_timer_evt); 617 out: 618 return err; 619 } 620 621 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 622 { 623 int ret; 624 irq_handler_t func; 625 struct arch_timer *t; 626 627 t = kzalloc(sizeof(*t), GFP_KERNEL); 628 if (!t) 629 return -ENOMEM; 630 631 t->base = base; 632 t->evt.irq = irq; 633 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt); 634 635 if (arch_timer_mem_use_virtual) 636 func = arch_timer_handler_virt_mem; 637 else 638 func = arch_timer_handler_phys_mem; 639 640 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 641 if (ret) { 642 pr_err("arch_timer: Failed to request mem timer irq\n"); 643 kfree(t); 644 } 645 646 return ret; 647 } 648 649 static const struct of_device_id arch_timer_of_match[] __initconst = { 650 { .compatible = "arm,armv7-timer", }, 651 { .compatible = "arm,armv8-timer", }, 652 {}, 653 }; 654 655 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 656 { .compatible = "arm,armv7-timer-mem", }, 657 {}, 658 }; 659 660 static bool __init 661 arch_timer_needs_probing(int type, const struct of_device_id *matches) 662 { 663 struct device_node *dn; 664 bool needs_probing = false; 665 666 dn = of_find_matching_node(NULL, matches); 667 if (dn && of_device_is_available(dn) && !(arch_timers_present & type)) 668 needs_probing = true; 669 of_node_put(dn); 670 671 return needs_probing; 672 } 673 674 static void __init arch_timer_common_init(void) 675 { 676 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER; 677 678 /* Wait until both nodes are probed if we have two timers */ 679 if ((arch_timers_present & mask) != mask) { 680 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match)) 681 return; 682 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match)) 683 return; 684 } 685 686 arch_timer_banner(arch_timers_present); 687 arch_counter_register(arch_timers_present); 688 arch_timer_arch_init(); 689 } 690 691 static void __init arch_timer_init(void) 692 { 693 /* 694 * If HYP mode is available, we know that the physical timer 695 * has been configured to be accessible from PL1. Use it, so 696 * that a guest can use the virtual timer instead. 697 * 698 * If no interrupt provided for virtual timer, we'll have to 699 * stick to the physical timer. It'd better be accessible... 700 */ 701 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { 702 arch_timer_use_virtual = false; 703 704 if (!arch_timer_ppi[PHYS_SECURE_PPI] || 705 !arch_timer_ppi[PHYS_NONSECURE_PPI]) { 706 pr_warn("arch_timer: No interrupt available, giving up\n"); 707 return; 708 } 709 } 710 711 arch_timer_register(); 712 arch_timer_common_init(); 713 } 714 715 static void __init arch_timer_of_init(struct device_node *np) 716 { 717 int i; 718 719 if (arch_timers_present & ARCH_CP15_TIMER) { 720 pr_warn("arch_timer: multiple nodes in dt, skipping\n"); 721 return; 722 } 723 724 arch_timers_present |= ARCH_CP15_TIMER; 725 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) 726 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 727 728 arch_timer_detect_rate(NULL, np); 729 730 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 731 732 /* 733 * If we cannot rely on firmware initializing the timer registers then 734 * we should use the physical timers instead. 735 */ 736 if (IS_ENABLED(CONFIG_ARM) && 737 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 738 arch_timer_use_virtual = false; 739 740 arch_timer_init(); 741 } 742 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 743 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 744 745 static void __init arch_timer_mem_init(struct device_node *np) 746 { 747 struct device_node *frame, *best_frame = NULL; 748 void __iomem *cntctlbase, *base; 749 unsigned int irq; 750 u32 cnttidr; 751 752 arch_timers_present |= ARCH_MEM_TIMER; 753 cntctlbase = of_iomap(np, 0); 754 if (!cntctlbase) { 755 pr_err("arch_timer: Can't find CNTCTLBase\n"); 756 return; 757 } 758 759 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 760 iounmap(cntctlbase); 761 762 /* 763 * Try to find a virtual capable frame. Otherwise fall back to a 764 * physical capable frame. 765 */ 766 for_each_available_child_of_node(np, frame) { 767 int n; 768 769 if (of_property_read_u32(frame, "frame-number", &n)) { 770 pr_err("arch_timer: Missing frame-number\n"); 771 of_node_put(best_frame); 772 of_node_put(frame); 773 return; 774 } 775 776 if (cnttidr & CNTTIDR_VIRT(n)) { 777 of_node_put(best_frame); 778 best_frame = frame; 779 arch_timer_mem_use_virtual = true; 780 break; 781 } 782 of_node_put(best_frame); 783 best_frame = of_node_get(frame); 784 } 785 786 base = arch_counter_base = of_iomap(best_frame, 0); 787 if (!base) { 788 pr_err("arch_timer: Can't map frame's registers\n"); 789 of_node_put(best_frame); 790 return; 791 } 792 793 if (arch_timer_mem_use_virtual) 794 irq = irq_of_parse_and_map(best_frame, 1); 795 else 796 irq = irq_of_parse_and_map(best_frame, 0); 797 of_node_put(best_frame); 798 if (!irq) { 799 pr_err("arch_timer: Frame missing %s irq", 800 arch_timer_mem_use_virtual ? "virt" : "phys"); 801 return; 802 } 803 804 arch_timer_detect_rate(base, np); 805 arch_timer_mem_register(base, irq); 806 arch_timer_common_init(); 807 } 808 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 809 arch_timer_mem_init); 810 811 #ifdef CONFIG_ACPI 812 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags) 813 { 814 int trigger, polarity; 815 816 if (!interrupt) 817 return 0; 818 819 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE 820 : ACPI_LEVEL_SENSITIVE; 821 822 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW 823 : ACPI_ACTIVE_HIGH; 824 825 return acpi_register_gsi(NULL, interrupt, trigger, polarity); 826 } 827 828 /* Initialize per-processor generic timer */ 829 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 830 { 831 struct acpi_table_gtdt *gtdt; 832 833 if (arch_timers_present & ARCH_CP15_TIMER) { 834 pr_warn("arch_timer: already initialized, skipping\n"); 835 return -EINVAL; 836 } 837 838 gtdt = container_of(table, struct acpi_table_gtdt, header); 839 840 arch_timers_present |= ARCH_CP15_TIMER; 841 842 arch_timer_ppi[PHYS_SECURE_PPI] = 843 map_generic_timer_interrupt(gtdt->secure_el1_interrupt, 844 gtdt->secure_el1_flags); 845 846 arch_timer_ppi[PHYS_NONSECURE_PPI] = 847 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt, 848 gtdt->non_secure_el1_flags); 849 850 arch_timer_ppi[VIRT_PPI] = 851 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt, 852 gtdt->virtual_timer_flags); 853 854 arch_timer_ppi[HYP_PPI] = 855 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt, 856 gtdt->non_secure_el2_flags); 857 858 /* Get the frequency from CNTFRQ */ 859 arch_timer_detect_rate(NULL, NULL); 860 861 /* Always-on capability */ 862 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON); 863 864 arch_timer_init(); 865 return 0; 866 } 867 868 /* Initialize all the generic timers presented in GTDT */ 869 void __init acpi_generic_timer_init(void) 870 { 871 if (acpi_disabled) 872 return; 873 874 acpi_table_parse(ACPI_SIG_GTDT, arch_timer_acpi_init); 875 } 876 #endif 877