xref: /linux/drivers/clocksource/arm_arch_timer.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27 
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30 
31 #include <clocksource/arm_arch_timer.h>
32 
33 #define CNTTIDR		0x08
34 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
35 
36 #define CNTACR(n)	(0x40 + ((n) * 4))
37 #define CNTACR_RPCT	BIT(0)
38 #define CNTACR_RVCT	BIT(1)
39 #define CNTACR_RFRQ	BIT(2)
40 #define CNTACR_RVOFF	BIT(3)
41 #define CNTACR_RWVT	BIT(4)
42 #define CNTACR_RWPT	BIT(5)
43 
44 #define CNTVCT_LO	0x08
45 #define CNTVCT_HI	0x0c
46 #define CNTFRQ		0x10
47 #define CNTP_TVAL	0x28
48 #define CNTP_CTL	0x2c
49 #define CNTV_TVAL	0x38
50 #define CNTV_CTL	0x3c
51 
52 static unsigned arch_timers_present __initdata;
53 
54 static void __iomem *arch_counter_base;
55 
56 struct arch_timer {
57 	void __iomem *base;
58 	struct clock_event_device evt;
59 };
60 
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62 
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65 
66 static struct clock_event_device __percpu *arch_timer_evt;
67 
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 static bool vdso_default = true;
73 
74 static cpumask_t evtstrm_available = CPU_MASK_NONE;
75 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
76 
77 static int __init early_evtstrm_cfg(char *buf)
78 {
79 	return strtobool(buf, &evtstrm_enable);
80 }
81 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
82 
83 /*
84  * Architected system timer support.
85  */
86 
87 static __always_inline
88 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
89 			  struct clock_event_device *clk)
90 {
91 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
92 		struct arch_timer *timer = to_arch_timer(clk);
93 		switch (reg) {
94 		case ARCH_TIMER_REG_CTRL:
95 			writel_relaxed(val, timer->base + CNTP_CTL);
96 			break;
97 		case ARCH_TIMER_REG_TVAL:
98 			writel_relaxed(val, timer->base + CNTP_TVAL);
99 			break;
100 		}
101 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
102 		struct arch_timer *timer = to_arch_timer(clk);
103 		switch (reg) {
104 		case ARCH_TIMER_REG_CTRL:
105 			writel_relaxed(val, timer->base + CNTV_CTL);
106 			break;
107 		case ARCH_TIMER_REG_TVAL:
108 			writel_relaxed(val, timer->base + CNTV_TVAL);
109 			break;
110 		}
111 	} else {
112 		arch_timer_reg_write_cp15(access, reg, val);
113 	}
114 }
115 
116 static __always_inline
117 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
118 			struct clock_event_device *clk)
119 {
120 	u32 val;
121 
122 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
123 		struct arch_timer *timer = to_arch_timer(clk);
124 		switch (reg) {
125 		case ARCH_TIMER_REG_CTRL:
126 			val = readl_relaxed(timer->base + CNTP_CTL);
127 			break;
128 		case ARCH_TIMER_REG_TVAL:
129 			val = readl_relaxed(timer->base + CNTP_TVAL);
130 			break;
131 		}
132 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
133 		struct arch_timer *timer = to_arch_timer(clk);
134 		switch (reg) {
135 		case ARCH_TIMER_REG_CTRL:
136 			val = readl_relaxed(timer->base + CNTV_CTL);
137 			break;
138 		case ARCH_TIMER_REG_TVAL:
139 			val = readl_relaxed(timer->base + CNTV_TVAL);
140 			break;
141 		}
142 	} else {
143 		val = arch_timer_reg_read_cp15(access, reg);
144 	}
145 
146 	return val;
147 }
148 
149 static notrace u64 arch_counter_get_cntpct_stable(void)
150 {
151 	return __arch_counter_get_cntpct_stable();
152 }
153 
154 static notrace u64 arch_counter_get_cntpct(void)
155 {
156 	return __arch_counter_get_cntpct();
157 }
158 
159 static notrace u64 arch_counter_get_cntvct_stable(void)
160 {
161 	return __arch_counter_get_cntvct_stable();
162 }
163 
164 static notrace u64 arch_counter_get_cntvct(void)
165 {
166 	return __arch_counter_get_cntvct();
167 }
168 
169 /*
170  * Default to cp15 based access because arm64 uses this function for
171  * sched_clock() before DT is probed and the cp15 method is guaranteed
172  * to exist on arm64. arm doesn't use this before DT is probed so even
173  * if we don't have the cp15 accessors we won't have a problem.
174  */
175 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
176 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
177 
178 static u64 arch_counter_read(struct clocksource *cs)
179 {
180 	return arch_timer_read_counter();
181 }
182 
183 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
184 {
185 	return arch_timer_read_counter();
186 }
187 
188 static struct clocksource clocksource_counter = {
189 	.name	= "arch_sys_counter",
190 	.rating	= 400,
191 	.read	= arch_counter_read,
192 	.mask	= CLOCKSOURCE_MASK(56),
193 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
194 };
195 
196 static struct cyclecounter cyclecounter __ro_after_init = {
197 	.read	= arch_counter_read_cc,
198 	.mask	= CLOCKSOURCE_MASK(56),
199 };
200 
201 struct ate_acpi_oem_info {
202 	char oem_id[ACPI_OEM_ID_SIZE + 1];
203 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
204 	u32 oem_revision;
205 };
206 
207 #ifdef CONFIG_FSL_ERRATUM_A008585
208 /*
209  * The number of retries is an arbitrary value well beyond the highest number
210  * of iterations the loop has been observed to take.
211  */
212 #define __fsl_a008585_read_reg(reg) ({			\
213 	u64 _old, _new;					\
214 	int _retries = 200;				\
215 							\
216 	do {						\
217 		_old = read_sysreg(reg);		\
218 		_new = read_sysreg(reg);		\
219 		_retries--;				\
220 	} while (unlikely(_old != _new) && _retries);	\
221 							\
222 	WARN_ON_ONCE(!_retries);			\
223 	_new;						\
224 })
225 
226 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
227 {
228 	return __fsl_a008585_read_reg(cntp_tval_el0);
229 }
230 
231 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
232 {
233 	return __fsl_a008585_read_reg(cntv_tval_el0);
234 }
235 
236 static u64 notrace fsl_a008585_read_cntpct_el0(void)
237 {
238 	return __fsl_a008585_read_reg(cntpct_el0);
239 }
240 
241 static u64 notrace fsl_a008585_read_cntvct_el0(void)
242 {
243 	return __fsl_a008585_read_reg(cntvct_el0);
244 }
245 #endif
246 
247 #ifdef CONFIG_HISILICON_ERRATUM_161010101
248 /*
249  * Verify whether the value of the second read is larger than the first by
250  * less than 32 is the only way to confirm the value is correct, so clear the
251  * lower 5 bits to check whether the difference is greater than 32 or not.
252  * Theoretically the erratum should not occur more than twice in succession
253  * when reading the system counter, but it is possible that some interrupts
254  * may lead to more than twice read errors, triggering the warning, so setting
255  * the number of retries far beyond the number of iterations the loop has been
256  * observed to take.
257  */
258 #define __hisi_161010101_read_reg(reg) ({				\
259 	u64 _old, _new;						\
260 	int _retries = 50;					\
261 								\
262 	do {							\
263 		_old = read_sysreg(reg);			\
264 		_new = read_sysreg(reg);			\
265 		_retries--;					\
266 	} while (unlikely((_new - _old) >> 5) && _retries);	\
267 								\
268 	WARN_ON_ONCE(!_retries);				\
269 	_new;							\
270 })
271 
272 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
273 {
274 	return __hisi_161010101_read_reg(cntp_tval_el0);
275 }
276 
277 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
278 {
279 	return __hisi_161010101_read_reg(cntv_tval_el0);
280 }
281 
282 static u64 notrace hisi_161010101_read_cntpct_el0(void)
283 {
284 	return __hisi_161010101_read_reg(cntpct_el0);
285 }
286 
287 static u64 notrace hisi_161010101_read_cntvct_el0(void)
288 {
289 	return __hisi_161010101_read_reg(cntvct_el0);
290 }
291 
292 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
293 	/*
294 	 * Note that trailing spaces are required to properly match
295 	 * the OEM table information.
296 	 */
297 	{
298 		.oem_id		= "HISI  ",
299 		.oem_table_id	= "HIP05   ",
300 		.oem_revision	= 0,
301 	},
302 	{
303 		.oem_id		= "HISI  ",
304 		.oem_table_id	= "HIP06   ",
305 		.oem_revision	= 0,
306 	},
307 	{
308 		.oem_id		= "HISI  ",
309 		.oem_table_id	= "HIP07   ",
310 		.oem_revision	= 0,
311 	},
312 	{ /* Sentinel indicating the end of the OEM array */ },
313 };
314 #endif
315 
316 #ifdef CONFIG_ARM64_ERRATUM_858921
317 static u64 notrace arm64_858921_read_cntpct_el0(void)
318 {
319 	u64 old, new;
320 
321 	old = read_sysreg(cntpct_el0);
322 	new = read_sysreg(cntpct_el0);
323 	return (((old ^ new) >> 32) & 1) ? old : new;
324 }
325 
326 static u64 notrace arm64_858921_read_cntvct_el0(void)
327 {
328 	u64 old, new;
329 
330 	old = read_sysreg(cntvct_el0);
331 	new = read_sysreg(cntvct_el0);
332 	return (((old ^ new) >> 32) & 1) ? old : new;
333 }
334 #endif
335 
336 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
337 /*
338  * The low bits of the counter registers are indeterminate while bit 10 or
339  * greater is rolling over. Since the counter value can jump both backward
340  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
341  * with all ones or all zeros in the low bits. Bound the loop by the maximum
342  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
343  */
344 #define __sun50i_a64_read_reg(reg) ({					\
345 	u64 _val;							\
346 	int _retries = 150;						\
347 									\
348 	do {								\
349 		_val = read_sysreg(reg);				\
350 		_retries--;						\
351 	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
352 									\
353 	WARN_ON_ONCE(!_retries);					\
354 	_val;								\
355 })
356 
357 static u64 notrace sun50i_a64_read_cntpct_el0(void)
358 {
359 	return __sun50i_a64_read_reg(cntpct_el0);
360 }
361 
362 static u64 notrace sun50i_a64_read_cntvct_el0(void)
363 {
364 	return __sun50i_a64_read_reg(cntvct_el0);
365 }
366 
367 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
368 {
369 	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
370 }
371 
372 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
373 {
374 	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
375 }
376 #endif
377 
378 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
379 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
380 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
381 
382 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
383 
384 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
385 						struct clock_event_device *clk)
386 {
387 	unsigned long ctrl;
388 	u64 cval;
389 
390 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
391 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
392 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
393 
394 	if (access == ARCH_TIMER_PHYS_ACCESS) {
395 		cval = evt + arch_counter_get_cntpct();
396 		write_sysreg(cval, cntp_cval_el0);
397 	} else {
398 		cval = evt + arch_counter_get_cntvct();
399 		write_sysreg(cval, cntv_cval_el0);
400 	}
401 
402 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
403 }
404 
405 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
406 					    struct clock_event_device *clk)
407 {
408 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
409 	return 0;
410 }
411 
412 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
413 					    struct clock_event_device *clk)
414 {
415 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
416 	return 0;
417 }
418 
419 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
420 #ifdef CONFIG_FSL_ERRATUM_A008585
421 	{
422 		.match_type = ate_match_dt,
423 		.id = "fsl,erratum-a008585",
424 		.desc = "Freescale erratum a005858",
425 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
426 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
427 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
428 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
429 		.set_next_event_phys = erratum_set_next_event_tval_phys,
430 		.set_next_event_virt = erratum_set_next_event_tval_virt,
431 	},
432 #endif
433 #ifdef CONFIG_HISILICON_ERRATUM_161010101
434 	{
435 		.match_type = ate_match_dt,
436 		.id = "hisilicon,erratum-161010101",
437 		.desc = "HiSilicon erratum 161010101",
438 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
439 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
440 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
441 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
442 		.set_next_event_phys = erratum_set_next_event_tval_phys,
443 		.set_next_event_virt = erratum_set_next_event_tval_virt,
444 	},
445 	{
446 		.match_type = ate_match_acpi_oem_info,
447 		.id = hisi_161010101_oem_info,
448 		.desc = "HiSilicon erratum 161010101",
449 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
450 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
451 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
452 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
453 		.set_next_event_phys = erratum_set_next_event_tval_phys,
454 		.set_next_event_virt = erratum_set_next_event_tval_virt,
455 	},
456 #endif
457 #ifdef CONFIG_ARM64_ERRATUM_858921
458 	{
459 		.match_type = ate_match_local_cap_id,
460 		.id = (void *)ARM64_WORKAROUND_858921,
461 		.desc = "ARM erratum 858921",
462 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
463 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
464 	},
465 #endif
466 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
467 	{
468 		.match_type = ate_match_dt,
469 		.id = "allwinner,erratum-unknown1",
470 		.desc = "Allwinner erratum UNKNOWN1",
471 		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
472 		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
473 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
474 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
475 		.set_next_event_phys = erratum_set_next_event_tval_phys,
476 		.set_next_event_virt = erratum_set_next_event_tval_virt,
477 	},
478 #endif
479 };
480 
481 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
482 			       const void *);
483 
484 static
485 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
486 				 const void *arg)
487 {
488 	const struct device_node *np = arg;
489 
490 	return of_property_read_bool(np, wa->id);
491 }
492 
493 static
494 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
495 					const void *arg)
496 {
497 	return this_cpu_has_cap((uintptr_t)wa->id);
498 }
499 
500 
501 static
502 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
503 				       const void *arg)
504 {
505 	static const struct ate_acpi_oem_info empty_oem_info = {};
506 	const struct ate_acpi_oem_info *info = wa->id;
507 	const struct acpi_table_header *table = arg;
508 
509 	/* Iterate over the ACPI OEM info array, looking for a match */
510 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
511 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
512 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
513 		    info->oem_revision == table->oem_revision)
514 			return true;
515 
516 		info++;
517 	}
518 
519 	return false;
520 }
521 
522 static const struct arch_timer_erratum_workaround *
523 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
524 			  ate_match_fn_t match_fn,
525 			  void *arg)
526 {
527 	int i;
528 
529 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
530 		if (ool_workarounds[i].match_type != type)
531 			continue;
532 
533 		if (match_fn(&ool_workarounds[i], arg))
534 			return &ool_workarounds[i];
535 	}
536 
537 	return NULL;
538 }
539 
540 static
541 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
542 				  bool local)
543 {
544 	int i;
545 
546 	if (local) {
547 		__this_cpu_write(timer_unstable_counter_workaround, wa);
548 	} else {
549 		for_each_possible_cpu(i)
550 			per_cpu(timer_unstable_counter_workaround, i) = wa;
551 	}
552 
553 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
554 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
555 
556 	/*
557 	 * Don't use the vdso fastpath if errata require using the
558 	 * out-of-line counter accessor. We may change our mind pretty
559 	 * late in the game (with a per-CPU erratum, for example), so
560 	 * change both the default value and the vdso itself.
561 	 */
562 	if (wa->read_cntvct_el0) {
563 		clocksource_counter.archdata.vdso_direct = false;
564 		vdso_default = false;
565 	}
566 }
567 
568 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
569 					    void *arg)
570 {
571 	const struct arch_timer_erratum_workaround *wa, *__wa;
572 	ate_match_fn_t match_fn = NULL;
573 	bool local = false;
574 
575 	switch (type) {
576 	case ate_match_dt:
577 		match_fn = arch_timer_check_dt_erratum;
578 		break;
579 	case ate_match_local_cap_id:
580 		match_fn = arch_timer_check_local_cap_erratum;
581 		local = true;
582 		break;
583 	case ate_match_acpi_oem_info:
584 		match_fn = arch_timer_check_acpi_oem_erratum;
585 		break;
586 	default:
587 		WARN_ON(1);
588 		return;
589 	}
590 
591 	wa = arch_timer_iterate_errata(type, match_fn, arg);
592 	if (!wa)
593 		return;
594 
595 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
596 	if (__wa && wa != __wa)
597 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
598 			wa->desc, __wa->desc);
599 
600 	if (__wa)
601 		return;
602 
603 	arch_timer_enable_workaround(wa, local);
604 	pr_info("Enabling %s workaround for %s\n",
605 		local ? "local" : "global", wa->desc);
606 }
607 
608 static bool arch_timer_this_cpu_has_cntvct_wa(void)
609 {
610 	return has_erratum_handler(read_cntvct_el0);
611 }
612 
613 static bool arch_timer_counter_has_wa(void)
614 {
615 	return atomic_read(&timer_unstable_counter_workaround_in_use);
616 }
617 #else
618 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
619 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
620 #define arch_timer_counter_has_wa()			({false;})
621 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
622 
623 static __always_inline irqreturn_t timer_handler(const int access,
624 					struct clock_event_device *evt)
625 {
626 	unsigned long ctrl;
627 
628 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
629 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
630 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
631 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
632 		evt->event_handler(evt);
633 		return IRQ_HANDLED;
634 	}
635 
636 	return IRQ_NONE;
637 }
638 
639 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
640 {
641 	struct clock_event_device *evt = dev_id;
642 
643 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
644 }
645 
646 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
647 {
648 	struct clock_event_device *evt = dev_id;
649 
650 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
651 }
652 
653 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
654 {
655 	struct clock_event_device *evt = dev_id;
656 
657 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
658 }
659 
660 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
661 {
662 	struct clock_event_device *evt = dev_id;
663 
664 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
665 }
666 
667 static __always_inline int timer_shutdown(const int access,
668 					  struct clock_event_device *clk)
669 {
670 	unsigned long ctrl;
671 
672 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
673 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
674 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
675 
676 	return 0;
677 }
678 
679 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
680 {
681 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
682 }
683 
684 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
685 {
686 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
687 }
688 
689 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
690 {
691 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
692 }
693 
694 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
695 {
696 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
697 }
698 
699 static __always_inline void set_next_event(const int access, unsigned long evt,
700 					   struct clock_event_device *clk)
701 {
702 	unsigned long ctrl;
703 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
704 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
705 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
706 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
707 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
708 }
709 
710 static int arch_timer_set_next_event_virt(unsigned long evt,
711 					  struct clock_event_device *clk)
712 {
713 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
714 	return 0;
715 }
716 
717 static int arch_timer_set_next_event_phys(unsigned long evt,
718 					  struct clock_event_device *clk)
719 {
720 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
721 	return 0;
722 }
723 
724 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
725 					      struct clock_event_device *clk)
726 {
727 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
728 	return 0;
729 }
730 
731 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
732 					      struct clock_event_device *clk)
733 {
734 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
735 	return 0;
736 }
737 
738 static void __arch_timer_setup(unsigned type,
739 			       struct clock_event_device *clk)
740 {
741 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
742 
743 	if (type == ARCH_TIMER_TYPE_CP15) {
744 		typeof(clk->set_next_event) sne;
745 
746 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
747 
748 		if (arch_timer_c3stop)
749 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
750 		clk->name = "arch_sys_timer";
751 		clk->rating = 450;
752 		clk->cpumask = cpumask_of(smp_processor_id());
753 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
754 		switch (arch_timer_uses_ppi) {
755 		case ARCH_TIMER_VIRT_PPI:
756 			clk->set_state_shutdown = arch_timer_shutdown_virt;
757 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
758 			sne = erratum_handler(set_next_event_virt);
759 			break;
760 		case ARCH_TIMER_PHYS_SECURE_PPI:
761 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
762 		case ARCH_TIMER_HYP_PPI:
763 			clk->set_state_shutdown = arch_timer_shutdown_phys;
764 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
765 			sne = erratum_handler(set_next_event_phys);
766 			break;
767 		default:
768 			BUG();
769 		}
770 
771 		clk->set_next_event = sne;
772 	} else {
773 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
774 		clk->name = "arch_mem_timer";
775 		clk->rating = 400;
776 		clk->cpumask = cpu_possible_mask;
777 		if (arch_timer_mem_use_virtual) {
778 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
779 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
780 			clk->set_next_event =
781 				arch_timer_set_next_event_virt_mem;
782 		} else {
783 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
784 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
785 			clk->set_next_event =
786 				arch_timer_set_next_event_phys_mem;
787 		}
788 	}
789 
790 	clk->set_state_shutdown(clk);
791 
792 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
793 }
794 
795 static void arch_timer_evtstrm_enable(int divider)
796 {
797 	u32 cntkctl = arch_timer_get_cntkctl();
798 
799 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
800 	/* Set the divider and enable virtual event stream */
801 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
802 			| ARCH_TIMER_VIRT_EVT_EN;
803 	arch_timer_set_cntkctl(cntkctl);
804 	arch_timer_set_evtstrm_feature();
805 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
806 }
807 
808 static void arch_timer_configure_evtstream(void)
809 {
810 	int evt_stream_div, pos;
811 
812 	/* Find the closest power of two to the divisor */
813 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
814 	pos = fls(evt_stream_div);
815 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
816 		pos--;
817 	/* enable event stream */
818 	arch_timer_evtstrm_enable(min(pos, 15));
819 }
820 
821 static void arch_counter_set_user_access(void)
822 {
823 	u32 cntkctl = arch_timer_get_cntkctl();
824 
825 	/* Disable user access to the timers and both counters */
826 	/* Also disable virtual event stream */
827 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
828 			| ARCH_TIMER_USR_VT_ACCESS_EN
829 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
830 			| ARCH_TIMER_VIRT_EVT_EN
831 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
832 
833 	/*
834 	 * Enable user access to the virtual counter if it doesn't
835 	 * need to be workaround. The vdso may have been already
836 	 * disabled though.
837 	 */
838 	if (arch_timer_this_cpu_has_cntvct_wa())
839 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
840 	else
841 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
842 
843 	arch_timer_set_cntkctl(cntkctl);
844 }
845 
846 static bool arch_timer_has_nonsecure_ppi(void)
847 {
848 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
849 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
850 }
851 
852 static u32 check_ppi_trigger(int irq)
853 {
854 	u32 flags = irq_get_trigger_type(irq);
855 
856 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
857 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
858 		pr_warn("WARNING: Please fix your firmware\n");
859 		flags = IRQF_TRIGGER_LOW;
860 	}
861 
862 	return flags;
863 }
864 
865 static int arch_timer_starting_cpu(unsigned int cpu)
866 {
867 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
868 	u32 flags;
869 
870 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
871 
872 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
873 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
874 
875 	if (arch_timer_has_nonsecure_ppi()) {
876 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
877 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
878 				  flags);
879 	}
880 
881 	arch_counter_set_user_access();
882 	if (evtstrm_enable)
883 		arch_timer_configure_evtstream();
884 
885 	return 0;
886 }
887 
888 /*
889  * For historical reasons, when probing with DT we use whichever (non-zero)
890  * rate was probed first, and don't verify that others match. If the first node
891  * probed has a clock-frequency property, this overrides the HW register.
892  */
893 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
894 {
895 	/* Who has more than one independent system counter? */
896 	if (arch_timer_rate)
897 		return;
898 
899 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
900 		arch_timer_rate = rate;
901 
902 	/* Check the timer frequency. */
903 	if (arch_timer_rate == 0)
904 		pr_warn("frequency not available\n");
905 }
906 
907 static void arch_timer_banner(unsigned type)
908 {
909 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
910 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
911 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
912 			" and " : "",
913 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
914 		(unsigned long)arch_timer_rate / 1000000,
915 		(unsigned long)(arch_timer_rate / 10000) % 100,
916 		type & ARCH_TIMER_TYPE_CP15 ?
917 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
918 			"",
919 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
920 		type & ARCH_TIMER_TYPE_MEM ?
921 			arch_timer_mem_use_virtual ? "virt" : "phys" :
922 			"");
923 }
924 
925 u32 arch_timer_get_rate(void)
926 {
927 	return arch_timer_rate;
928 }
929 
930 bool arch_timer_evtstrm_available(void)
931 {
932 	/*
933 	 * We might get called from a preemptible context. This is fine
934 	 * because availability of the event stream should be always the same
935 	 * for a preemptible context and context where we might resume a task.
936 	 */
937 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
938 }
939 
940 static u64 arch_counter_get_cntvct_mem(void)
941 {
942 	u32 vct_lo, vct_hi, tmp_hi;
943 
944 	do {
945 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
946 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
947 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
948 	} while (vct_hi != tmp_hi);
949 
950 	return ((u64) vct_hi << 32) | vct_lo;
951 }
952 
953 static struct arch_timer_kvm_info arch_timer_kvm_info;
954 
955 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
956 {
957 	return &arch_timer_kvm_info;
958 }
959 
960 static void __init arch_counter_register(unsigned type)
961 {
962 	u64 start_count;
963 
964 	/* Register the CP15 based counter if we have one */
965 	if (type & ARCH_TIMER_TYPE_CP15) {
966 		u64 (*rd)(void);
967 
968 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
969 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
970 			if (arch_timer_counter_has_wa())
971 				rd = arch_counter_get_cntvct_stable;
972 			else
973 				rd = arch_counter_get_cntvct;
974 		} else {
975 			if (arch_timer_counter_has_wa())
976 				rd = arch_counter_get_cntpct_stable;
977 			else
978 				rd = arch_counter_get_cntpct;
979 		}
980 
981 		arch_timer_read_counter = rd;
982 		clocksource_counter.archdata.vdso_direct = vdso_default;
983 	} else {
984 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
985 	}
986 
987 	if (!arch_counter_suspend_stop)
988 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
989 	start_count = arch_timer_read_counter();
990 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
991 	cyclecounter.mult = clocksource_counter.mult;
992 	cyclecounter.shift = clocksource_counter.shift;
993 	timecounter_init(&arch_timer_kvm_info.timecounter,
994 			 &cyclecounter, start_count);
995 
996 	/* 56 bits minimum, so we assume worst case rollover */
997 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
998 }
999 
1000 static void arch_timer_stop(struct clock_event_device *clk)
1001 {
1002 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1003 
1004 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1005 	if (arch_timer_has_nonsecure_ppi())
1006 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1007 
1008 	clk->set_state_shutdown(clk);
1009 }
1010 
1011 static int arch_timer_dying_cpu(unsigned int cpu)
1012 {
1013 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1014 
1015 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1016 
1017 	arch_timer_stop(clk);
1018 	return 0;
1019 }
1020 
1021 #ifdef CONFIG_CPU_PM
1022 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1023 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1024 				    unsigned long action, void *hcpu)
1025 {
1026 	if (action == CPU_PM_ENTER) {
1027 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1028 
1029 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1030 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1031 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1032 
1033 		if (arch_timer_have_evtstrm_feature())
1034 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1035 	}
1036 	return NOTIFY_OK;
1037 }
1038 
1039 static struct notifier_block arch_timer_cpu_pm_notifier = {
1040 	.notifier_call = arch_timer_cpu_pm_notify,
1041 };
1042 
1043 static int __init arch_timer_cpu_pm_init(void)
1044 {
1045 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1046 }
1047 
1048 static void __init arch_timer_cpu_pm_deinit(void)
1049 {
1050 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1051 }
1052 
1053 #else
1054 static int __init arch_timer_cpu_pm_init(void)
1055 {
1056 	return 0;
1057 }
1058 
1059 static void __init arch_timer_cpu_pm_deinit(void)
1060 {
1061 }
1062 #endif
1063 
1064 static int __init arch_timer_register(void)
1065 {
1066 	int err;
1067 	int ppi;
1068 
1069 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1070 	if (!arch_timer_evt) {
1071 		err = -ENOMEM;
1072 		goto out;
1073 	}
1074 
1075 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1076 	switch (arch_timer_uses_ppi) {
1077 	case ARCH_TIMER_VIRT_PPI:
1078 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1079 					 "arch_timer", arch_timer_evt);
1080 		break;
1081 	case ARCH_TIMER_PHYS_SECURE_PPI:
1082 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1083 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1084 					 "arch_timer", arch_timer_evt);
1085 		if (!err && arch_timer_has_nonsecure_ppi()) {
1086 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1087 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1088 						 "arch_timer", arch_timer_evt);
1089 			if (err)
1090 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1091 						arch_timer_evt);
1092 		}
1093 		break;
1094 	case ARCH_TIMER_HYP_PPI:
1095 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1096 					 "arch_timer", arch_timer_evt);
1097 		break;
1098 	default:
1099 		BUG();
1100 	}
1101 
1102 	if (err) {
1103 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1104 		goto out_free;
1105 	}
1106 
1107 	err = arch_timer_cpu_pm_init();
1108 	if (err)
1109 		goto out_unreg_notify;
1110 
1111 	/* Register and immediately configure the timer on the boot CPU */
1112 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1113 				"clockevents/arm/arch_timer:starting",
1114 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1115 	if (err)
1116 		goto out_unreg_cpupm;
1117 	return 0;
1118 
1119 out_unreg_cpupm:
1120 	arch_timer_cpu_pm_deinit();
1121 
1122 out_unreg_notify:
1123 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1124 	if (arch_timer_has_nonsecure_ppi())
1125 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1126 				arch_timer_evt);
1127 
1128 out_free:
1129 	free_percpu(arch_timer_evt);
1130 out:
1131 	return err;
1132 }
1133 
1134 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1135 {
1136 	int ret;
1137 	irq_handler_t func;
1138 	struct arch_timer *t;
1139 
1140 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1141 	if (!t)
1142 		return -ENOMEM;
1143 
1144 	t->base = base;
1145 	t->evt.irq = irq;
1146 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1147 
1148 	if (arch_timer_mem_use_virtual)
1149 		func = arch_timer_handler_virt_mem;
1150 	else
1151 		func = arch_timer_handler_phys_mem;
1152 
1153 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1154 	if (ret) {
1155 		pr_err("Failed to request mem timer irq\n");
1156 		kfree(t);
1157 	}
1158 
1159 	return ret;
1160 }
1161 
1162 static const struct of_device_id arch_timer_of_match[] __initconst = {
1163 	{ .compatible   = "arm,armv7-timer",    },
1164 	{ .compatible   = "arm,armv8-timer",    },
1165 	{},
1166 };
1167 
1168 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1169 	{ .compatible   = "arm,armv7-timer-mem", },
1170 	{},
1171 };
1172 
1173 static bool __init arch_timer_needs_of_probing(void)
1174 {
1175 	struct device_node *dn;
1176 	bool needs_probing = false;
1177 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1178 
1179 	/* We have two timers, and both device-tree nodes are probed. */
1180 	if ((arch_timers_present & mask) == mask)
1181 		return false;
1182 
1183 	/*
1184 	 * Only one type of timer is probed,
1185 	 * check if we have another type of timer node in device-tree.
1186 	 */
1187 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1188 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1189 	else
1190 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1191 
1192 	if (dn && of_device_is_available(dn))
1193 		needs_probing = true;
1194 
1195 	of_node_put(dn);
1196 
1197 	return needs_probing;
1198 }
1199 
1200 static int __init arch_timer_common_init(void)
1201 {
1202 	arch_timer_banner(arch_timers_present);
1203 	arch_counter_register(arch_timers_present);
1204 	return arch_timer_arch_init();
1205 }
1206 
1207 /**
1208  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1209  *
1210  * If HYP mode is available, we know that the physical timer
1211  * has been configured to be accessible from PL1. Use it, so
1212  * that a guest can use the virtual timer instead.
1213  *
1214  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1215  * accesses to CNTP_*_EL1 registers are silently redirected to
1216  * their CNTHP_*_EL2 counterparts, and use a different PPI
1217  * number.
1218  *
1219  * If no interrupt provided for virtual timer, we'll have to
1220  * stick to the physical timer. It'd better be accessible...
1221  * For arm64 we never use the secure interrupt.
1222  *
1223  * Return: a suitable PPI type for the current system.
1224  */
1225 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1226 {
1227 	if (is_kernel_in_hyp_mode())
1228 		return ARCH_TIMER_HYP_PPI;
1229 
1230 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1231 		return ARCH_TIMER_VIRT_PPI;
1232 
1233 	if (IS_ENABLED(CONFIG_ARM64))
1234 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1235 
1236 	return ARCH_TIMER_PHYS_SECURE_PPI;
1237 }
1238 
1239 static void __init arch_timer_populate_kvm_info(void)
1240 {
1241 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1242 	if (is_kernel_in_hyp_mode())
1243 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1244 }
1245 
1246 static int __init arch_timer_of_init(struct device_node *np)
1247 {
1248 	int i, ret;
1249 	u32 rate;
1250 
1251 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1252 		pr_warn("multiple nodes in dt, skipping\n");
1253 		return 0;
1254 	}
1255 
1256 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1257 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1258 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1259 
1260 	arch_timer_populate_kvm_info();
1261 
1262 	rate = arch_timer_get_cntfrq();
1263 	arch_timer_of_configure_rate(rate, np);
1264 
1265 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1266 
1267 	/* Check for globally applicable workarounds */
1268 	arch_timer_check_ool_workaround(ate_match_dt, np);
1269 
1270 	/*
1271 	 * If we cannot rely on firmware initializing the timer registers then
1272 	 * we should use the physical timers instead.
1273 	 */
1274 	if (IS_ENABLED(CONFIG_ARM) &&
1275 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1276 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1277 	else
1278 		arch_timer_uses_ppi = arch_timer_select_ppi();
1279 
1280 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1281 		pr_err("No interrupt available, giving up\n");
1282 		return -EINVAL;
1283 	}
1284 
1285 	/* On some systems, the counter stops ticking when in suspend. */
1286 	arch_counter_suspend_stop = of_property_read_bool(np,
1287 							 "arm,no-tick-in-suspend");
1288 
1289 	ret = arch_timer_register();
1290 	if (ret)
1291 		return ret;
1292 
1293 	if (arch_timer_needs_of_probing())
1294 		return 0;
1295 
1296 	return arch_timer_common_init();
1297 }
1298 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1299 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1300 
1301 static u32 __init
1302 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1303 {
1304 	void __iomem *base;
1305 	u32 rate;
1306 
1307 	base = ioremap(frame->cntbase, frame->size);
1308 	if (!base) {
1309 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1310 		return 0;
1311 	}
1312 
1313 	rate = readl_relaxed(base + CNTFRQ);
1314 
1315 	iounmap(base);
1316 
1317 	return rate;
1318 }
1319 
1320 static struct arch_timer_mem_frame * __init
1321 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1322 {
1323 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1324 	void __iomem *cntctlbase;
1325 	u32 cnttidr;
1326 	int i;
1327 
1328 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1329 	if (!cntctlbase) {
1330 		pr_err("Can't map CNTCTLBase @ %pa\n",
1331 			&timer_mem->cntctlbase);
1332 		return NULL;
1333 	}
1334 
1335 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1336 
1337 	/*
1338 	 * Try to find a virtual capable frame. Otherwise fall back to a
1339 	 * physical capable frame.
1340 	 */
1341 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1342 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1343 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1344 
1345 		frame = &timer_mem->frame[i];
1346 		if (!frame->valid)
1347 			continue;
1348 
1349 		/* Try enabling everything, and see what sticks */
1350 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1351 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1352 
1353 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1354 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1355 			best_frame = frame;
1356 			arch_timer_mem_use_virtual = true;
1357 			break;
1358 		}
1359 
1360 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1361 			continue;
1362 
1363 		best_frame = frame;
1364 	}
1365 
1366 	iounmap(cntctlbase);
1367 
1368 	return best_frame;
1369 }
1370 
1371 static int __init
1372 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1373 {
1374 	void __iomem *base;
1375 	int ret, irq = 0;
1376 
1377 	if (arch_timer_mem_use_virtual)
1378 		irq = frame->virt_irq;
1379 	else
1380 		irq = frame->phys_irq;
1381 
1382 	if (!irq) {
1383 		pr_err("Frame missing %s irq.\n",
1384 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1385 		return -EINVAL;
1386 	}
1387 
1388 	if (!request_mem_region(frame->cntbase, frame->size,
1389 				"arch_mem_timer"))
1390 		return -EBUSY;
1391 
1392 	base = ioremap(frame->cntbase, frame->size);
1393 	if (!base) {
1394 		pr_err("Can't map frame's registers\n");
1395 		return -ENXIO;
1396 	}
1397 
1398 	ret = arch_timer_mem_register(base, irq);
1399 	if (ret) {
1400 		iounmap(base);
1401 		return ret;
1402 	}
1403 
1404 	arch_counter_base = base;
1405 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1406 
1407 	return 0;
1408 }
1409 
1410 static int __init arch_timer_mem_of_init(struct device_node *np)
1411 {
1412 	struct arch_timer_mem *timer_mem;
1413 	struct arch_timer_mem_frame *frame;
1414 	struct device_node *frame_node;
1415 	struct resource res;
1416 	int ret = -EINVAL;
1417 	u32 rate;
1418 
1419 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1420 	if (!timer_mem)
1421 		return -ENOMEM;
1422 
1423 	if (of_address_to_resource(np, 0, &res))
1424 		goto out;
1425 	timer_mem->cntctlbase = res.start;
1426 	timer_mem->size = resource_size(&res);
1427 
1428 	for_each_available_child_of_node(np, frame_node) {
1429 		u32 n;
1430 		struct arch_timer_mem_frame *frame;
1431 
1432 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1433 			pr_err(FW_BUG "Missing frame-number.\n");
1434 			of_node_put(frame_node);
1435 			goto out;
1436 		}
1437 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1438 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1439 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1440 			of_node_put(frame_node);
1441 			goto out;
1442 		}
1443 		frame = &timer_mem->frame[n];
1444 
1445 		if (frame->valid) {
1446 			pr_err(FW_BUG "Duplicated frame-number.\n");
1447 			of_node_put(frame_node);
1448 			goto out;
1449 		}
1450 
1451 		if (of_address_to_resource(frame_node, 0, &res)) {
1452 			of_node_put(frame_node);
1453 			goto out;
1454 		}
1455 		frame->cntbase = res.start;
1456 		frame->size = resource_size(&res);
1457 
1458 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1459 						       ARCH_TIMER_VIRT_SPI);
1460 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1461 						       ARCH_TIMER_PHYS_SPI);
1462 
1463 		frame->valid = true;
1464 	}
1465 
1466 	frame = arch_timer_mem_find_best_frame(timer_mem);
1467 	if (!frame) {
1468 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1469 			&timer_mem->cntctlbase);
1470 		ret = -EINVAL;
1471 		goto out;
1472 	}
1473 
1474 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1475 	arch_timer_of_configure_rate(rate, np);
1476 
1477 	ret = arch_timer_mem_frame_register(frame);
1478 	if (!ret && !arch_timer_needs_of_probing())
1479 		ret = arch_timer_common_init();
1480 out:
1481 	kfree(timer_mem);
1482 	return ret;
1483 }
1484 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1485 		       arch_timer_mem_of_init);
1486 
1487 #ifdef CONFIG_ACPI_GTDT
1488 static int __init
1489 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1490 {
1491 	struct arch_timer_mem_frame *frame;
1492 	u32 rate;
1493 	int i;
1494 
1495 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1496 		frame = &timer_mem->frame[i];
1497 
1498 		if (!frame->valid)
1499 			continue;
1500 
1501 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1502 		if (rate == arch_timer_rate)
1503 			continue;
1504 
1505 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1506 			&frame->cntbase,
1507 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1508 
1509 		return -EINVAL;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1516 {
1517 	struct arch_timer_mem *timers, *timer;
1518 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1519 	int timer_count, i, ret = 0;
1520 
1521 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1522 			    GFP_KERNEL);
1523 	if (!timers)
1524 		return -ENOMEM;
1525 
1526 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1527 	if (ret || !timer_count)
1528 		goto out;
1529 
1530 	/*
1531 	 * While unlikely, it's theoretically possible that none of the frames
1532 	 * in a timer expose the combination of feature we want.
1533 	 */
1534 	for (i = 0; i < timer_count; i++) {
1535 		timer = &timers[i];
1536 
1537 		frame = arch_timer_mem_find_best_frame(timer);
1538 		if (!best_frame)
1539 			best_frame = frame;
1540 
1541 		ret = arch_timer_mem_verify_cntfrq(timer);
1542 		if (ret) {
1543 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1544 			goto out;
1545 		}
1546 
1547 		if (!best_frame) /* implies !frame */
1548 			/*
1549 			 * Only complain about missing suitable frames if we
1550 			 * haven't already found one in a previous iteration.
1551 			 */
1552 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1553 				&timer->cntctlbase);
1554 	}
1555 
1556 	if (best_frame)
1557 		ret = arch_timer_mem_frame_register(best_frame);
1558 out:
1559 	kfree(timers);
1560 	return ret;
1561 }
1562 
1563 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1564 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1565 {
1566 	int ret, platform_timer_count;
1567 
1568 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1569 		pr_warn("already initialized, skipping\n");
1570 		return -EINVAL;
1571 	}
1572 
1573 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1574 
1575 	ret = acpi_gtdt_init(table, &platform_timer_count);
1576 	if (ret) {
1577 		pr_err("Failed to init GTDT table.\n");
1578 		return ret;
1579 	}
1580 
1581 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1582 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1583 
1584 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1585 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1586 
1587 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1588 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1589 
1590 	arch_timer_populate_kvm_info();
1591 
1592 	/*
1593 	 * When probing via ACPI, we have no mechanism to override the sysreg
1594 	 * CNTFRQ value. This *must* be correct.
1595 	 */
1596 	arch_timer_rate = arch_timer_get_cntfrq();
1597 	if (!arch_timer_rate) {
1598 		pr_err(FW_BUG "frequency not available.\n");
1599 		return -EINVAL;
1600 	}
1601 
1602 	arch_timer_uses_ppi = arch_timer_select_ppi();
1603 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1604 		pr_err("No interrupt available, giving up\n");
1605 		return -EINVAL;
1606 	}
1607 
1608 	/* Always-on capability */
1609 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1610 
1611 	/* Check for globally applicable workarounds */
1612 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1613 
1614 	ret = arch_timer_register();
1615 	if (ret)
1616 		return ret;
1617 
1618 	if (platform_timer_count &&
1619 	    arch_timer_mem_acpi_init(platform_timer_count))
1620 		pr_err("Failed to initialize memory-mapped timer.\n");
1621 
1622 	return arch_timer_common_init();
1623 }
1624 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1625 #endif
1626