1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #define pr_fmt(fmt) "arm_arch_timer: " fmt 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/device.h> 17 #include <linux/smp.h> 18 #include <linux/cpu.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/clockchips.h> 21 #include <linux/clocksource.h> 22 #include <linux/interrupt.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_address.h> 25 #include <linux/io.h> 26 #include <linux/slab.h> 27 #include <linux/sched_clock.h> 28 #include <linux/acpi.h> 29 30 #include <asm/arch_timer.h> 31 #include <asm/virt.h> 32 33 #include <clocksource/arm_arch_timer.h> 34 35 #define CNTTIDR 0x08 36 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 37 38 #define CNTACR(n) (0x40 + ((n) * 4)) 39 #define CNTACR_RPCT BIT(0) 40 #define CNTACR_RVCT BIT(1) 41 #define CNTACR_RFRQ BIT(2) 42 #define CNTACR_RVOFF BIT(3) 43 #define CNTACR_RWVT BIT(4) 44 #define CNTACR_RWPT BIT(5) 45 46 #define CNTVCT_LO 0x08 47 #define CNTVCT_HI 0x0c 48 #define CNTFRQ 0x10 49 #define CNTP_TVAL 0x28 50 #define CNTP_CTL 0x2c 51 #define CNTV_TVAL 0x38 52 #define CNTV_CTL 0x3c 53 54 #define ARCH_CP15_TIMER BIT(0) 55 #define ARCH_MEM_TIMER BIT(1) 56 static unsigned arch_timers_present __initdata; 57 58 static void __iomem *arch_counter_base; 59 60 struct arch_timer { 61 void __iomem *base; 62 struct clock_event_device evt; 63 }; 64 65 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 66 67 static u32 arch_timer_rate; 68 69 enum ppi_nr { 70 PHYS_SECURE_PPI, 71 PHYS_NONSECURE_PPI, 72 VIRT_PPI, 73 HYP_PPI, 74 MAX_TIMER_PPI 75 }; 76 77 static int arch_timer_ppi[MAX_TIMER_PPI]; 78 79 static struct clock_event_device __percpu *arch_timer_evt; 80 81 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI; 82 static bool arch_timer_c3stop; 83 static bool arch_timer_mem_use_virtual; 84 85 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 86 87 static int __init early_evtstrm_cfg(char *buf) 88 { 89 return strtobool(buf, &evtstrm_enable); 90 } 91 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 92 93 /* 94 * Architected system timer support. 95 */ 96 97 #ifdef CONFIG_FSL_ERRATUM_A008585 98 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); 99 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); 100 101 static int fsl_a008585_enable = -1; 102 103 static int __init early_fsl_a008585_cfg(char *buf) 104 { 105 int ret; 106 bool val; 107 108 ret = strtobool(buf, &val); 109 if (ret) 110 return ret; 111 112 fsl_a008585_enable = val; 113 return 0; 114 } 115 early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg); 116 117 u32 __fsl_a008585_read_cntp_tval_el0(void) 118 { 119 return __fsl_a008585_read_reg(cntp_tval_el0); 120 } 121 122 u32 __fsl_a008585_read_cntv_tval_el0(void) 123 { 124 return __fsl_a008585_read_reg(cntv_tval_el0); 125 } 126 127 u64 __fsl_a008585_read_cntvct_el0(void) 128 { 129 return __fsl_a008585_read_reg(cntvct_el0); 130 } 131 EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0); 132 #endif /* CONFIG_FSL_ERRATUM_A008585 */ 133 134 static __always_inline 135 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 136 struct clock_event_device *clk) 137 { 138 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 139 struct arch_timer *timer = to_arch_timer(clk); 140 switch (reg) { 141 case ARCH_TIMER_REG_CTRL: 142 writel_relaxed(val, timer->base + CNTP_CTL); 143 break; 144 case ARCH_TIMER_REG_TVAL: 145 writel_relaxed(val, timer->base + CNTP_TVAL); 146 break; 147 } 148 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 149 struct arch_timer *timer = to_arch_timer(clk); 150 switch (reg) { 151 case ARCH_TIMER_REG_CTRL: 152 writel_relaxed(val, timer->base + CNTV_CTL); 153 break; 154 case ARCH_TIMER_REG_TVAL: 155 writel_relaxed(val, timer->base + CNTV_TVAL); 156 break; 157 } 158 } else { 159 arch_timer_reg_write_cp15(access, reg, val); 160 } 161 } 162 163 static __always_inline 164 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 165 struct clock_event_device *clk) 166 { 167 u32 val; 168 169 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 170 struct arch_timer *timer = to_arch_timer(clk); 171 switch (reg) { 172 case ARCH_TIMER_REG_CTRL: 173 val = readl_relaxed(timer->base + CNTP_CTL); 174 break; 175 case ARCH_TIMER_REG_TVAL: 176 val = readl_relaxed(timer->base + CNTP_TVAL); 177 break; 178 } 179 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 180 struct arch_timer *timer = to_arch_timer(clk); 181 switch (reg) { 182 case ARCH_TIMER_REG_CTRL: 183 val = readl_relaxed(timer->base + CNTV_CTL); 184 break; 185 case ARCH_TIMER_REG_TVAL: 186 val = readl_relaxed(timer->base + CNTV_TVAL); 187 break; 188 } 189 } else { 190 val = arch_timer_reg_read_cp15(access, reg); 191 } 192 193 return val; 194 } 195 196 static __always_inline irqreturn_t timer_handler(const int access, 197 struct clock_event_device *evt) 198 { 199 unsigned long ctrl; 200 201 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 202 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 203 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 204 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 205 evt->event_handler(evt); 206 return IRQ_HANDLED; 207 } 208 209 return IRQ_NONE; 210 } 211 212 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 213 { 214 struct clock_event_device *evt = dev_id; 215 216 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 217 } 218 219 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 220 { 221 struct clock_event_device *evt = dev_id; 222 223 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 224 } 225 226 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 227 { 228 struct clock_event_device *evt = dev_id; 229 230 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 231 } 232 233 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 234 { 235 struct clock_event_device *evt = dev_id; 236 237 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 238 } 239 240 static __always_inline int timer_shutdown(const int access, 241 struct clock_event_device *clk) 242 { 243 unsigned long ctrl; 244 245 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 246 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 247 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 248 249 return 0; 250 } 251 252 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 253 { 254 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 255 } 256 257 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 258 { 259 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 260 } 261 262 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 263 { 264 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 265 } 266 267 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 268 { 269 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 270 } 271 272 static __always_inline void set_next_event(const int access, unsigned long evt, 273 struct clock_event_device *clk) 274 { 275 unsigned long ctrl; 276 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 277 ctrl |= ARCH_TIMER_CTRL_ENABLE; 278 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 279 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 280 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 281 } 282 283 #ifdef CONFIG_FSL_ERRATUM_A008585 284 static __always_inline void fsl_a008585_set_next_event(const int access, 285 unsigned long evt, struct clock_event_device *clk) 286 { 287 unsigned long ctrl; 288 u64 cval = evt + arch_counter_get_cntvct(); 289 290 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 291 ctrl |= ARCH_TIMER_CTRL_ENABLE; 292 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 293 294 if (access == ARCH_TIMER_PHYS_ACCESS) 295 write_sysreg(cval, cntp_cval_el0); 296 else if (access == ARCH_TIMER_VIRT_ACCESS) 297 write_sysreg(cval, cntv_cval_el0); 298 299 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 300 } 301 302 static int fsl_a008585_set_next_event_virt(unsigned long evt, 303 struct clock_event_device *clk) 304 { 305 fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 306 return 0; 307 } 308 309 static int fsl_a008585_set_next_event_phys(unsigned long evt, 310 struct clock_event_device *clk) 311 { 312 fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 313 return 0; 314 } 315 #endif /* CONFIG_FSL_ERRATUM_A008585 */ 316 317 static int arch_timer_set_next_event_virt(unsigned long evt, 318 struct clock_event_device *clk) 319 { 320 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 321 return 0; 322 } 323 324 static int arch_timer_set_next_event_phys(unsigned long evt, 325 struct clock_event_device *clk) 326 { 327 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 328 return 0; 329 } 330 331 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 332 struct clock_event_device *clk) 333 { 334 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 335 return 0; 336 } 337 338 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 339 struct clock_event_device *clk) 340 { 341 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 342 return 0; 343 } 344 345 static void fsl_a008585_set_sne(struct clock_event_device *clk) 346 { 347 #ifdef CONFIG_FSL_ERRATUM_A008585 348 if (!static_branch_unlikely(&arch_timer_read_ool_enabled)) 349 return; 350 351 if (arch_timer_uses_ppi == VIRT_PPI) 352 clk->set_next_event = fsl_a008585_set_next_event_virt; 353 else 354 clk->set_next_event = fsl_a008585_set_next_event_phys; 355 #endif 356 } 357 358 static void __arch_timer_setup(unsigned type, 359 struct clock_event_device *clk) 360 { 361 clk->features = CLOCK_EVT_FEAT_ONESHOT; 362 363 if (type == ARCH_CP15_TIMER) { 364 if (arch_timer_c3stop) 365 clk->features |= CLOCK_EVT_FEAT_C3STOP; 366 clk->name = "arch_sys_timer"; 367 clk->rating = 450; 368 clk->cpumask = cpumask_of(smp_processor_id()); 369 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 370 switch (arch_timer_uses_ppi) { 371 case VIRT_PPI: 372 clk->set_state_shutdown = arch_timer_shutdown_virt; 373 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 374 clk->set_next_event = arch_timer_set_next_event_virt; 375 break; 376 case PHYS_SECURE_PPI: 377 case PHYS_NONSECURE_PPI: 378 case HYP_PPI: 379 clk->set_state_shutdown = arch_timer_shutdown_phys; 380 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 381 clk->set_next_event = arch_timer_set_next_event_phys; 382 break; 383 default: 384 BUG(); 385 } 386 387 fsl_a008585_set_sne(clk); 388 } else { 389 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 390 clk->name = "arch_mem_timer"; 391 clk->rating = 400; 392 clk->cpumask = cpu_all_mask; 393 if (arch_timer_mem_use_virtual) { 394 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 395 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 396 clk->set_next_event = 397 arch_timer_set_next_event_virt_mem; 398 } else { 399 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 400 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 401 clk->set_next_event = 402 arch_timer_set_next_event_phys_mem; 403 } 404 } 405 406 clk->set_state_shutdown(clk); 407 408 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 409 } 410 411 static void arch_timer_evtstrm_enable(int divider) 412 { 413 u32 cntkctl = arch_timer_get_cntkctl(); 414 415 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 416 /* Set the divider and enable virtual event stream */ 417 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 418 | ARCH_TIMER_VIRT_EVT_EN; 419 arch_timer_set_cntkctl(cntkctl); 420 elf_hwcap |= HWCAP_EVTSTRM; 421 #ifdef CONFIG_COMPAT 422 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 423 #endif 424 } 425 426 static void arch_timer_configure_evtstream(void) 427 { 428 int evt_stream_div, pos; 429 430 /* Find the closest power of two to the divisor */ 431 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 432 pos = fls(evt_stream_div); 433 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 434 pos--; 435 /* enable event stream */ 436 arch_timer_evtstrm_enable(min(pos, 15)); 437 } 438 439 static void arch_counter_set_user_access(void) 440 { 441 u32 cntkctl = arch_timer_get_cntkctl(); 442 443 /* Disable user access to the timers and the physical counter */ 444 /* Also disable virtual event stream */ 445 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 446 | ARCH_TIMER_USR_VT_ACCESS_EN 447 | ARCH_TIMER_VIRT_EVT_EN 448 | ARCH_TIMER_USR_PCT_ACCESS_EN); 449 450 /* Enable user access to the virtual counter */ 451 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 452 453 arch_timer_set_cntkctl(cntkctl); 454 } 455 456 static bool arch_timer_has_nonsecure_ppi(void) 457 { 458 return (arch_timer_uses_ppi == PHYS_SECURE_PPI && 459 arch_timer_ppi[PHYS_NONSECURE_PPI]); 460 } 461 462 static u32 check_ppi_trigger(int irq) 463 { 464 u32 flags = irq_get_trigger_type(irq); 465 466 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 467 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 468 pr_warn("WARNING: Please fix your firmware\n"); 469 flags = IRQF_TRIGGER_LOW; 470 } 471 472 return flags; 473 } 474 475 static int arch_timer_starting_cpu(unsigned int cpu) 476 { 477 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 478 u32 flags; 479 480 __arch_timer_setup(ARCH_CP15_TIMER, clk); 481 482 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 483 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 484 485 if (arch_timer_has_nonsecure_ppi()) { 486 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]); 487 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags); 488 } 489 490 arch_counter_set_user_access(); 491 if (evtstrm_enable) 492 arch_timer_configure_evtstream(); 493 494 return 0; 495 } 496 497 static void 498 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np) 499 { 500 /* Who has more than one independent system counter? */ 501 if (arch_timer_rate) 502 return; 503 504 /* 505 * Try to determine the frequency from the device tree or CNTFRQ, 506 * if ACPI is enabled, get the frequency from CNTFRQ ONLY. 507 */ 508 if (!acpi_disabled || 509 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) { 510 if (cntbase) 511 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ); 512 else 513 arch_timer_rate = arch_timer_get_cntfrq(); 514 } 515 516 /* Check the timer frequency. */ 517 if (arch_timer_rate == 0) 518 pr_warn("Architected timer frequency not available\n"); 519 } 520 521 static void arch_timer_banner(unsigned type) 522 { 523 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 524 type & ARCH_CP15_TIMER ? "cp15" : "", 525 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "", 526 type & ARCH_MEM_TIMER ? "mmio" : "", 527 (unsigned long)arch_timer_rate / 1000000, 528 (unsigned long)(arch_timer_rate / 10000) % 100, 529 type & ARCH_CP15_TIMER ? 530 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" : 531 "", 532 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "", 533 type & ARCH_MEM_TIMER ? 534 arch_timer_mem_use_virtual ? "virt" : "phys" : 535 ""); 536 } 537 538 u32 arch_timer_get_rate(void) 539 { 540 return arch_timer_rate; 541 } 542 543 static u64 arch_counter_get_cntvct_mem(void) 544 { 545 u32 vct_lo, vct_hi, tmp_hi; 546 547 do { 548 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 549 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 550 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 551 } while (vct_hi != tmp_hi); 552 553 return ((u64) vct_hi << 32) | vct_lo; 554 } 555 556 /* 557 * Default to cp15 based access because arm64 uses this function for 558 * sched_clock() before DT is probed and the cp15 method is guaranteed 559 * to exist on arm64. arm doesn't use this before DT is probed so even 560 * if we don't have the cp15 accessors we won't have a problem. 561 */ 562 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 563 564 static cycle_t arch_counter_read(struct clocksource *cs) 565 { 566 return arch_timer_read_counter(); 567 } 568 569 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) 570 { 571 return arch_timer_read_counter(); 572 } 573 574 static struct clocksource clocksource_counter = { 575 .name = "arch_sys_counter", 576 .rating = 400, 577 .read = arch_counter_read, 578 .mask = CLOCKSOURCE_MASK(56), 579 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, 580 }; 581 582 static struct cyclecounter cyclecounter = { 583 .read = arch_counter_read_cc, 584 .mask = CLOCKSOURCE_MASK(56), 585 }; 586 587 static struct arch_timer_kvm_info arch_timer_kvm_info; 588 589 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 590 { 591 return &arch_timer_kvm_info; 592 } 593 594 static void __init arch_counter_register(unsigned type) 595 { 596 u64 start_count; 597 598 /* Register the CP15 based counter if we have one */ 599 if (type & ARCH_CP15_TIMER) { 600 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI) 601 arch_timer_read_counter = arch_counter_get_cntvct; 602 else 603 arch_timer_read_counter = arch_counter_get_cntpct; 604 605 clocksource_counter.archdata.vdso_direct = true; 606 607 #ifdef CONFIG_FSL_ERRATUM_A008585 608 /* 609 * Don't use the vdso fastpath if errata require using 610 * the out-of-line counter accessor. 611 */ 612 if (static_branch_unlikely(&arch_timer_read_ool_enabled)) 613 clocksource_counter.archdata.vdso_direct = false; 614 #endif 615 } else { 616 arch_timer_read_counter = arch_counter_get_cntvct_mem; 617 } 618 619 start_count = arch_timer_read_counter(); 620 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 621 cyclecounter.mult = clocksource_counter.mult; 622 cyclecounter.shift = clocksource_counter.shift; 623 timecounter_init(&arch_timer_kvm_info.timecounter, 624 &cyclecounter, start_count); 625 626 /* 56 bits minimum, so we assume worst case rollover */ 627 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 628 } 629 630 static void arch_timer_stop(struct clock_event_device *clk) 631 { 632 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", 633 clk->irq, smp_processor_id()); 634 635 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 636 if (arch_timer_has_nonsecure_ppi()) 637 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); 638 639 clk->set_state_shutdown(clk); 640 } 641 642 static int arch_timer_dying_cpu(unsigned int cpu) 643 { 644 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 645 646 arch_timer_stop(clk); 647 return 0; 648 } 649 650 #ifdef CONFIG_CPU_PM 651 static unsigned int saved_cntkctl; 652 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 653 unsigned long action, void *hcpu) 654 { 655 if (action == CPU_PM_ENTER) 656 saved_cntkctl = arch_timer_get_cntkctl(); 657 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) 658 arch_timer_set_cntkctl(saved_cntkctl); 659 return NOTIFY_OK; 660 } 661 662 static struct notifier_block arch_timer_cpu_pm_notifier = { 663 .notifier_call = arch_timer_cpu_pm_notify, 664 }; 665 666 static int __init arch_timer_cpu_pm_init(void) 667 { 668 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 669 } 670 671 static void __init arch_timer_cpu_pm_deinit(void) 672 { 673 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 674 } 675 676 #else 677 static int __init arch_timer_cpu_pm_init(void) 678 { 679 return 0; 680 } 681 682 static void __init arch_timer_cpu_pm_deinit(void) 683 { 684 } 685 #endif 686 687 static int __init arch_timer_register(void) 688 { 689 int err; 690 int ppi; 691 692 arch_timer_evt = alloc_percpu(struct clock_event_device); 693 if (!arch_timer_evt) { 694 err = -ENOMEM; 695 goto out; 696 } 697 698 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 699 switch (arch_timer_uses_ppi) { 700 case VIRT_PPI: 701 err = request_percpu_irq(ppi, arch_timer_handler_virt, 702 "arch_timer", arch_timer_evt); 703 break; 704 case PHYS_SECURE_PPI: 705 case PHYS_NONSECURE_PPI: 706 err = request_percpu_irq(ppi, arch_timer_handler_phys, 707 "arch_timer", arch_timer_evt); 708 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { 709 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; 710 err = request_percpu_irq(ppi, arch_timer_handler_phys, 711 "arch_timer", arch_timer_evt); 712 if (err) 713 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 714 arch_timer_evt); 715 } 716 break; 717 case HYP_PPI: 718 err = request_percpu_irq(ppi, arch_timer_handler_phys, 719 "arch_timer", arch_timer_evt); 720 break; 721 default: 722 BUG(); 723 } 724 725 if (err) { 726 pr_err("arch_timer: can't register interrupt %d (%d)\n", 727 ppi, err); 728 goto out_free; 729 } 730 731 err = arch_timer_cpu_pm_init(); 732 if (err) 733 goto out_unreg_notify; 734 735 736 /* Register and immediately configure the timer on the boot CPU */ 737 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 738 "AP_ARM_ARCH_TIMER_STARTING", 739 arch_timer_starting_cpu, arch_timer_dying_cpu); 740 if (err) 741 goto out_unreg_cpupm; 742 return 0; 743 744 out_unreg_cpupm: 745 arch_timer_cpu_pm_deinit(); 746 747 out_unreg_notify: 748 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 749 if (arch_timer_has_nonsecure_ppi()) 750 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 751 arch_timer_evt); 752 753 out_free: 754 free_percpu(arch_timer_evt); 755 out: 756 return err; 757 } 758 759 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 760 { 761 int ret; 762 irq_handler_t func; 763 struct arch_timer *t; 764 765 t = kzalloc(sizeof(*t), GFP_KERNEL); 766 if (!t) 767 return -ENOMEM; 768 769 t->base = base; 770 t->evt.irq = irq; 771 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt); 772 773 if (arch_timer_mem_use_virtual) 774 func = arch_timer_handler_virt_mem; 775 else 776 func = arch_timer_handler_phys_mem; 777 778 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 779 if (ret) { 780 pr_err("arch_timer: Failed to request mem timer irq\n"); 781 kfree(t); 782 } 783 784 return ret; 785 } 786 787 static const struct of_device_id arch_timer_of_match[] __initconst = { 788 { .compatible = "arm,armv7-timer", }, 789 { .compatible = "arm,armv8-timer", }, 790 {}, 791 }; 792 793 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 794 { .compatible = "arm,armv7-timer-mem", }, 795 {}, 796 }; 797 798 static bool __init 799 arch_timer_needs_probing(int type, const struct of_device_id *matches) 800 { 801 struct device_node *dn; 802 bool needs_probing = false; 803 804 dn = of_find_matching_node(NULL, matches); 805 if (dn && of_device_is_available(dn) && !(arch_timers_present & type)) 806 needs_probing = true; 807 of_node_put(dn); 808 809 return needs_probing; 810 } 811 812 static int __init arch_timer_common_init(void) 813 { 814 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER; 815 816 /* Wait until both nodes are probed if we have two timers */ 817 if ((arch_timers_present & mask) != mask) { 818 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match)) 819 return 0; 820 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match)) 821 return 0; 822 } 823 824 arch_timer_banner(arch_timers_present); 825 arch_counter_register(arch_timers_present); 826 return arch_timer_arch_init(); 827 } 828 829 static int __init arch_timer_init(void) 830 { 831 int ret; 832 /* 833 * If HYP mode is available, we know that the physical timer 834 * has been configured to be accessible from PL1. Use it, so 835 * that a guest can use the virtual timer instead. 836 * 837 * If no interrupt provided for virtual timer, we'll have to 838 * stick to the physical timer. It'd better be accessible... 839 * 840 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 841 * accesses to CNTP_*_EL1 registers are silently redirected to 842 * their CNTHP_*_EL2 counterparts, and use a different PPI 843 * number. 844 */ 845 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { 846 bool has_ppi; 847 848 if (is_kernel_in_hyp_mode()) { 849 arch_timer_uses_ppi = HYP_PPI; 850 has_ppi = !!arch_timer_ppi[HYP_PPI]; 851 } else { 852 arch_timer_uses_ppi = PHYS_SECURE_PPI; 853 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] || 854 !!arch_timer_ppi[PHYS_NONSECURE_PPI]); 855 } 856 857 if (!has_ppi) { 858 pr_warn("arch_timer: No interrupt available, giving up\n"); 859 return -EINVAL; 860 } 861 } 862 863 ret = arch_timer_register(); 864 if (ret) 865 return ret; 866 867 ret = arch_timer_common_init(); 868 if (ret) 869 return ret; 870 871 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI]; 872 873 return 0; 874 } 875 876 static int __init arch_timer_of_init(struct device_node *np) 877 { 878 int i; 879 880 if (arch_timers_present & ARCH_CP15_TIMER) { 881 pr_warn("arch_timer: multiple nodes in dt, skipping\n"); 882 return 0; 883 } 884 885 arch_timers_present |= ARCH_CP15_TIMER; 886 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) 887 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 888 889 arch_timer_detect_rate(NULL, np); 890 891 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 892 893 #ifdef CONFIG_FSL_ERRATUM_A008585 894 if (fsl_a008585_enable < 0) 895 fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585"); 896 if (fsl_a008585_enable) { 897 static_branch_enable(&arch_timer_read_ool_enabled); 898 pr_info("Enabling workaround for FSL erratum A-008585\n"); 899 } 900 #endif 901 902 /* 903 * If we cannot rely on firmware initializing the timer registers then 904 * we should use the physical timers instead. 905 */ 906 if (IS_ENABLED(CONFIG_ARM) && 907 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 908 arch_timer_uses_ppi = PHYS_SECURE_PPI; 909 910 return arch_timer_init(); 911 } 912 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 913 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 914 915 static int __init arch_timer_mem_init(struct device_node *np) 916 { 917 struct device_node *frame, *best_frame = NULL; 918 void __iomem *cntctlbase, *base; 919 unsigned int irq, ret = -EINVAL; 920 u32 cnttidr; 921 922 arch_timers_present |= ARCH_MEM_TIMER; 923 cntctlbase = of_iomap(np, 0); 924 if (!cntctlbase) { 925 pr_err("arch_timer: Can't find CNTCTLBase\n"); 926 return -ENXIO; 927 } 928 929 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 930 931 /* 932 * Try to find a virtual capable frame. Otherwise fall back to a 933 * physical capable frame. 934 */ 935 for_each_available_child_of_node(np, frame) { 936 int n; 937 u32 cntacr; 938 939 if (of_property_read_u32(frame, "frame-number", &n)) { 940 pr_err("arch_timer: Missing frame-number\n"); 941 of_node_put(frame); 942 goto out; 943 } 944 945 /* Try enabling everything, and see what sticks */ 946 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 947 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 948 writel_relaxed(cntacr, cntctlbase + CNTACR(n)); 949 cntacr = readl_relaxed(cntctlbase + CNTACR(n)); 950 951 if ((cnttidr & CNTTIDR_VIRT(n)) && 952 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 953 of_node_put(best_frame); 954 best_frame = frame; 955 arch_timer_mem_use_virtual = true; 956 break; 957 } 958 959 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 960 continue; 961 962 of_node_put(best_frame); 963 best_frame = of_node_get(frame); 964 } 965 966 ret= -ENXIO; 967 base = arch_counter_base = of_iomap(best_frame, 0); 968 if (!base) { 969 pr_err("arch_timer: Can't map frame's registers\n"); 970 goto out; 971 } 972 973 if (arch_timer_mem_use_virtual) 974 irq = irq_of_parse_and_map(best_frame, 1); 975 else 976 irq = irq_of_parse_and_map(best_frame, 0); 977 978 ret = -EINVAL; 979 if (!irq) { 980 pr_err("arch_timer: Frame missing %s irq", 981 arch_timer_mem_use_virtual ? "virt" : "phys"); 982 goto out; 983 } 984 985 arch_timer_detect_rate(base, np); 986 ret = arch_timer_mem_register(base, irq); 987 if (ret) 988 goto out; 989 990 return arch_timer_common_init(); 991 out: 992 iounmap(cntctlbase); 993 of_node_put(best_frame); 994 return ret; 995 } 996 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 997 arch_timer_mem_init); 998 999 #ifdef CONFIG_ACPI 1000 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags) 1001 { 1002 int trigger, polarity; 1003 1004 if (!interrupt) 1005 return 0; 1006 1007 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE 1008 : ACPI_LEVEL_SENSITIVE; 1009 1010 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW 1011 : ACPI_ACTIVE_HIGH; 1012 1013 return acpi_register_gsi(NULL, interrupt, trigger, polarity); 1014 } 1015 1016 /* Initialize per-processor generic timer */ 1017 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1018 { 1019 struct acpi_table_gtdt *gtdt; 1020 1021 if (arch_timers_present & ARCH_CP15_TIMER) { 1022 pr_warn("arch_timer: already initialized, skipping\n"); 1023 return -EINVAL; 1024 } 1025 1026 gtdt = container_of(table, struct acpi_table_gtdt, header); 1027 1028 arch_timers_present |= ARCH_CP15_TIMER; 1029 1030 arch_timer_ppi[PHYS_SECURE_PPI] = 1031 map_generic_timer_interrupt(gtdt->secure_el1_interrupt, 1032 gtdt->secure_el1_flags); 1033 1034 arch_timer_ppi[PHYS_NONSECURE_PPI] = 1035 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt, 1036 gtdt->non_secure_el1_flags); 1037 1038 arch_timer_ppi[VIRT_PPI] = 1039 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt, 1040 gtdt->virtual_timer_flags); 1041 1042 arch_timer_ppi[HYP_PPI] = 1043 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt, 1044 gtdt->non_secure_el2_flags); 1045 1046 /* Get the frequency from CNTFRQ */ 1047 arch_timer_detect_rate(NULL, NULL); 1048 1049 /* Always-on capability */ 1050 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON); 1051 1052 arch_timer_init(); 1053 return 0; 1054 } 1055 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1056 #endif 1057