xref: /linux/drivers/clocksource/arm_arch_timer.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27 
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30 
31 #include <clocksource/arm_arch_timer.h>
32 
33 #define CNTTIDR		0x08
34 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
35 
36 #define CNTACR(n)	(0x40 + ((n) * 4))
37 #define CNTACR_RPCT	BIT(0)
38 #define CNTACR_RVCT	BIT(1)
39 #define CNTACR_RFRQ	BIT(2)
40 #define CNTACR_RVOFF	BIT(3)
41 #define CNTACR_RWVT	BIT(4)
42 #define CNTACR_RWPT	BIT(5)
43 
44 #define CNTVCT_LO	0x08
45 #define CNTVCT_HI	0x0c
46 #define CNTFRQ		0x10
47 #define CNTP_TVAL	0x28
48 #define CNTP_CTL	0x2c
49 #define CNTV_TVAL	0x38
50 #define CNTV_CTL	0x3c
51 
52 static unsigned arch_timers_present __initdata;
53 
54 static void __iomem *arch_counter_base __ro_after_init;
55 
56 struct arch_timer {
57 	void __iomem *base;
58 	struct clock_event_device evt;
59 };
60 
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62 
63 static u32 arch_timer_rate __ro_after_init;
64 u32 arch_timer_rate1 __ro_after_init;
65 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
66 
67 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
68 	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
69 	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
70 	[ARCH_TIMER_VIRT_PPI]		= "virt",
71 	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
72 	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
73 };
74 
75 static struct clock_event_device __percpu *arch_timer_evt;
76 
77 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
78 static bool arch_timer_c3stop __ro_after_init;
79 static bool arch_timer_mem_use_virtual __ro_after_init;
80 static bool arch_counter_suspend_stop __ro_after_init;
81 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
82 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
83 #else
84 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
85 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
86 
87 static cpumask_t evtstrm_available = CPU_MASK_NONE;
88 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
89 
90 static int __init early_evtstrm_cfg(char *buf)
91 {
92 	return strtobool(buf, &evtstrm_enable);
93 }
94 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
95 
96 /*
97  * Architected system timer support.
98  */
99 
100 static __always_inline
101 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
102 			  struct clock_event_device *clk)
103 {
104 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
105 		struct arch_timer *timer = to_arch_timer(clk);
106 		switch (reg) {
107 		case ARCH_TIMER_REG_CTRL:
108 			writel_relaxed(val, timer->base + CNTP_CTL);
109 			break;
110 		case ARCH_TIMER_REG_TVAL:
111 			writel_relaxed(val, timer->base + CNTP_TVAL);
112 			break;
113 		}
114 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
115 		struct arch_timer *timer = to_arch_timer(clk);
116 		switch (reg) {
117 		case ARCH_TIMER_REG_CTRL:
118 			writel_relaxed(val, timer->base + CNTV_CTL);
119 			break;
120 		case ARCH_TIMER_REG_TVAL:
121 			writel_relaxed(val, timer->base + CNTV_TVAL);
122 			break;
123 		}
124 	} else {
125 		arch_timer_reg_write_cp15(access, reg, val);
126 	}
127 }
128 
129 static __always_inline
130 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
131 			struct clock_event_device *clk)
132 {
133 	u32 val;
134 
135 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
136 		struct arch_timer *timer = to_arch_timer(clk);
137 		switch (reg) {
138 		case ARCH_TIMER_REG_CTRL:
139 			val = readl_relaxed(timer->base + CNTP_CTL);
140 			break;
141 		case ARCH_TIMER_REG_TVAL:
142 			val = readl_relaxed(timer->base + CNTP_TVAL);
143 			break;
144 		}
145 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
146 		struct arch_timer *timer = to_arch_timer(clk);
147 		switch (reg) {
148 		case ARCH_TIMER_REG_CTRL:
149 			val = readl_relaxed(timer->base + CNTV_CTL);
150 			break;
151 		case ARCH_TIMER_REG_TVAL:
152 			val = readl_relaxed(timer->base + CNTV_TVAL);
153 			break;
154 		}
155 	} else {
156 		val = arch_timer_reg_read_cp15(access, reg);
157 	}
158 
159 	return val;
160 }
161 
162 static notrace u64 arch_counter_get_cntpct_stable(void)
163 {
164 	return __arch_counter_get_cntpct_stable();
165 }
166 
167 static notrace u64 arch_counter_get_cntpct(void)
168 {
169 	return __arch_counter_get_cntpct();
170 }
171 
172 static notrace u64 arch_counter_get_cntvct_stable(void)
173 {
174 	return __arch_counter_get_cntvct_stable();
175 }
176 
177 static notrace u64 arch_counter_get_cntvct(void)
178 {
179 	return __arch_counter_get_cntvct();
180 }
181 
182 /*
183  * Default to cp15 based access because arm64 uses this function for
184  * sched_clock() before DT is probed and the cp15 method is guaranteed
185  * to exist on arm64. arm doesn't use this before DT is probed so even
186  * if we don't have the cp15 accessors we won't have a problem.
187  */
188 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
189 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
190 
191 static u64 arch_counter_read(struct clocksource *cs)
192 {
193 	return arch_timer_read_counter();
194 }
195 
196 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
197 {
198 	return arch_timer_read_counter();
199 }
200 
201 static struct clocksource clocksource_counter = {
202 	.name	= "arch_sys_counter",
203 	.rating	= 400,
204 	.read	= arch_counter_read,
205 	.mask	= CLOCKSOURCE_MASK(56),
206 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
207 };
208 
209 static struct cyclecounter cyclecounter __ro_after_init = {
210 	.read	= arch_counter_read_cc,
211 	.mask	= CLOCKSOURCE_MASK(56),
212 };
213 
214 struct ate_acpi_oem_info {
215 	char oem_id[ACPI_OEM_ID_SIZE + 1];
216 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
217 	u32 oem_revision;
218 };
219 
220 #ifdef CONFIG_FSL_ERRATUM_A008585
221 /*
222  * The number of retries is an arbitrary value well beyond the highest number
223  * of iterations the loop has been observed to take.
224  */
225 #define __fsl_a008585_read_reg(reg) ({			\
226 	u64 _old, _new;					\
227 	int _retries = 200;				\
228 							\
229 	do {						\
230 		_old = read_sysreg(reg);		\
231 		_new = read_sysreg(reg);		\
232 		_retries--;				\
233 	} while (unlikely(_old != _new) && _retries);	\
234 							\
235 	WARN_ON_ONCE(!_retries);			\
236 	_new;						\
237 })
238 
239 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
240 {
241 	return __fsl_a008585_read_reg(cntp_tval_el0);
242 }
243 
244 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
245 {
246 	return __fsl_a008585_read_reg(cntv_tval_el0);
247 }
248 
249 static u64 notrace fsl_a008585_read_cntpct_el0(void)
250 {
251 	return __fsl_a008585_read_reg(cntpct_el0);
252 }
253 
254 static u64 notrace fsl_a008585_read_cntvct_el0(void)
255 {
256 	return __fsl_a008585_read_reg(cntvct_el0);
257 }
258 #endif
259 
260 #ifdef CONFIG_HISILICON_ERRATUM_161010101
261 /*
262  * Verify whether the value of the second read is larger than the first by
263  * less than 32 is the only way to confirm the value is correct, so clear the
264  * lower 5 bits to check whether the difference is greater than 32 or not.
265  * Theoretically the erratum should not occur more than twice in succession
266  * when reading the system counter, but it is possible that some interrupts
267  * may lead to more than twice read errors, triggering the warning, so setting
268  * the number of retries far beyond the number of iterations the loop has been
269  * observed to take.
270  */
271 #define __hisi_161010101_read_reg(reg) ({				\
272 	u64 _old, _new;						\
273 	int _retries = 50;					\
274 								\
275 	do {							\
276 		_old = read_sysreg(reg);			\
277 		_new = read_sysreg(reg);			\
278 		_retries--;					\
279 	} while (unlikely((_new - _old) >> 5) && _retries);	\
280 								\
281 	WARN_ON_ONCE(!_retries);				\
282 	_new;							\
283 })
284 
285 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
286 {
287 	return __hisi_161010101_read_reg(cntp_tval_el0);
288 }
289 
290 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
291 {
292 	return __hisi_161010101_read_reg(cntv_tval_el0);
293 }
294 
295 static u64 notrace hisi_161010101_read_cntpct_el0(void)
296 {
297 	return __hisi_161010101_read_reg(cntpct_el0);
298 }
299 
300 static u64 notrace hisi_161010101_read_cntvct_el0(void)
301 {
302 	return __hisi_161010101_read_reg(cntvct_el0);
303 }
304 
305 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
306 	/*
307 	 * Note that trailing spaces are required to properly match
308 	 * the OEM table information.
309 	 */
310 	{
311 		.oem_id		= "HISI  ",
312 		.oem_table_id	= "HIP05   ",
313 		.oem_revision	= 0,
314 	},
315 	{
316 		.oem_id		= "HISI  ",
317 		.oem_table_id	= "HIP06   ",
318 		.oem_revision	= 0,
319 	},
320 	{
321 		.oem_id		= "HISI  ",
322 		.oem_table_id	= "HIP07   ",
323 		.oem_revision	= 0,
324 	},
325 	{ /* Sentinel indicating the end of the OEM array */ },
326 };
327 #endif
328 
329 #ifdef CONFIG_ARM64_ERRATUM_858921
330 static u64 notrace arm64_858921_read_cntpct_el0(void)
331 {
332 	u64 old, new;
333 
334 	old = read_sysreg(cntpct_el0);
335 	new = read_sysreg(cntpct_el0);
336 	return (((old ^ new) >> 32) & 1) ? old : new;
337 }
338 
339 static u64 notrace arm64_858921_read_cntvct_el0(void)
340 {
341 	u64 old, new;
342 
343 	old = read_sysreg(cntvct_el0);
344 	new = read_sysreg(cntvct_el0);
345 	return (((old ^ new) >> 32) & 1) ? old : new;
346 }
347 #endif
348 
349 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
350 /*
351  * The low bits of the counter registers are indeterminate while bit 10 or
352  * greater is rolling over. Since the counter value can jump both backward
353  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
354  * with all ones or all zeros in the low bits. Bound the loop by the maximum
355  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
356  */
357 #define __sun50i_a64_read_reg(reg) ({					\
358 	u64 _val;							\
359 	int _retries = 150;						\
360 									\
361 	do {								\
362 		_val = read_sysreg(reg);				\
363 		_retries--;						\
364 	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
365 									\
366 	WARN_ON_ONCE(!_retries);					\
367 	_val;								\
368 })
369 
370 static u64 notrace sun50i_a64_read_cntpct_el0(void)
371 {
372 	return __sun50i_a64_read_reg(cntpct_el0);
373 }
374 
375 static u64 notrace sun50i_a64_read_cntvct_el0(void)
376 {
377 	return __sun50i_a64_read_reg(cntvct_el0);
378 }
379 
380 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
381 {
382 	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
383 }
384 
385 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
386 {
387 	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
388 }
389 #endif
390 
391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
394 
395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
396 
397 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
398 						struct clock_event_device *clk)
399 {
400 	unsigned long ctrl;
401 	u64 cval;
402 
403 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
404 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
405 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
406 
407 	if (access == ARCH_TIMER_PHYS_ACCESS) {
408 		cval = evt + arch_counter_get_cntpct_stable();
409 		write_sysreg(cval, cntp_cval_el0);
410 	} else {
411 		cval = evt + arch_counter_get_cntvct_stable();
412 		write_sysreg(cval, cntv_cval_el0);
413 	}
414 
415 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
416 }
417 
418 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
419 					    struct clock_event_device *clk)
420 {
421 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
422 	return 0;
423 }
424 
425 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
426 					    struct clock_event_device *clk)
427 {
428 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
429 	return 0;
430 }
431 
432 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
433 #ifdef CONFIG_FSL_ERRATUM_A008585
434 	{
435 		.match_type = ate_match_dt,
436 		.id = "fsl,erratum-a008585",
437 		.desc = "Freescale erratum a005858",
438 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
439 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
440 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
441 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
442 		.set_next_event_phys = erratum_set_next_event_tval_phys,
443 		.set_next_event_virt = erratum_set_next_event_tval_virt,
444 	},
445 #endif
446 #ifdef CONFIG_HISILICON_ERRATUM_161010101
447 	{
448 		.match_type = ate_match_dt,
449 		.id = "hisilicon,erratum-161010101",
450 		.desc = "HiSilicon erratum 161010101",
451 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
452 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
453 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
454 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
455 		.set_next_event_phys = erratum_set_next_event_tval_phys,
456 		.set_next_event_virt = erratum_set_next_event_tval_virt,
457 	},
458 	{
459 		.match_type = ate_match_acpi_oem_info,
460 		.id = hisi_161010101_oem_info,
461 		.desc = "HiSilicon erratum 161010101",
462 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
463 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
464 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
465 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
466 		.set_next_event_phys = erratum_set_next_event_tval_phys,
467 		.set_next_event_virt = erratum_set_next_event_tval_virt,
468 	},
469 #endif
470 #ifdef CONFIG_ARM64_ERRATUM_858921
471 	{
472 		.match_type = ate_match_local_cap_id,
473 		.id = (void *)ARM64_WORKAROUND_858921,
474 		.desc = "ARM erratum 858921",
475 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
476 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
477 	},
478 #endif
479 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
480 	{
481 		.match_type = ate_match_dt,
482 		.id = "allwinner,erratum-unknown1",
483 		.desc = "Allwinner erratum UNKNOWN1",
484 		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
485 		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
486 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
487 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
488 		.set_next_event_phys = erratum_set_next_event_tval_phys,
489 		.set_next_event_virt = erratum_set_next_event_tval_virt,
490 	},
491 #endif
492 #ifdef CONFIG_ARM64_ERRATUM_1418040
493 	{
494 		.match_type = ate_match_local_cap_id,
495 		.id = (void *)ARM64_WORKAROUND_1418040,
496 		.desc = "ARM erratum 1418040",
497 		.disable_compat_vdso = true,
498 	},
499 #endif
500 };
501 
502 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
503 			       const void *);
504 
505 static
506 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
507 				 const void *arg)
508 {
509 	const struct device_node *np = arg;
510 
511 	return of_property_read_bool(np, wa->id);
512 }
513 
514 static
515 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
516 					const void *arg)
517 {
518 	return this_cpu_has_cap((uintptr_t)wa->id);
519 }
520 
521 
522 static
523 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
524 				       const void *arg)
525 {
526 	static const struct ate_acpi_oem_info empty_oem_info = {};
527 	const struct ate_acpi_oem_info *info = wa->id;
528 	const struct acpi_table_header *table = arg;
529 
530 	/* Iterate over the ACPI OEM info array, looking for a match */
531 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
532 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
533 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
534 		    info->oem_revision == table->oem_revision)
535 			return true;
536 
537 		info++;
538 	}
539 
540 	return false;
541 }
542 
543 static const struct arch_timer_erratum_workaround *
544 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
545 			  ate_match_fn_t match_fn,
546 			  void *arg)
547 {
548 	int i;
549 
550 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
551 		if (ool_workarounds[i].match_type != type)
552 			continue;
553 
554 		if (match_fn(&ool_workarounds[i], arg))
555 			return &ool_workarounds[i];
556 	}
557 
558 	return NULL;
559 }
560 
561 static
562 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
563 				  bool local)
564 {
565 	int i;
566 
567 	if (local) {
568 		__this_cpu_write(timer_unstable_counter_workaround, wa);
569 	} else {
570 		for_each_possible_cpu(i)
571 			per_cpu(timer_unstable_counter_workaround, i) = wa;
572 	}
573 
574 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
575 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
576 
577 	/*
578 	 * Don't use the vdso fastpath if errata require using the
579 	 * out-of-line counter accessor. We may change our mind pretty
580 	 * late in the game (with a per-CPU erratum, for example), so
581 	 * change both the default value and the vdso itself.
582 	 */
583 	if (wa->read_cntvct_el0) {
584 		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
585 		vdso_default = VDSO_CLOCKMODE_NONE;
586 	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
587 		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
588 		clocksource_counter.vdso_clock_mode = vdso_default;
589 	}
590 }
591 
592 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
593 					    void *arg)
594 {
595 	const struct arch_timer_erratum_workaround *wa, *__wa;
596 	ate_match_fn_t match_fn = NULL;
597 	bool local = false;
598 
599 	switch (type) {
600 	case ate_match_dt:
601 		match_fn = arch_timer_check_dt_erratum;
602 		break;
603 	case ate_match_local_cap_id:
604 		match_fn = arch_timer_check_local_cap_erratum;
605 		local = true;
606 		break;
607 	case ate_match_acpi_oem_info:
608 		match_fn = arch_timer_check_acpi_oem_erratum;
609 		break;
610 	default:
611 		WARN_ON(1);
612 		return;
613 	}
614 
615 	wa = arch_timer_iterate_errata(type, match_fn, arg);
616 	if (!wa)
617 		return;
618 
619 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
620 	if (__wa && wa != __wa)
621 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
622 			wa->desc, __wa->desc);
623 
624 	if (__wa)
625 		return;
626 
627 	arch_timer_enable_workaround(wa, local);
628 	pr_info("Enabling %s workaround for %s\n",
629 		local ? "local" : "global", wa->desc);
630 }
631 
632 static bool arch_timer_this_cpu_has_cntvct_wa(void)
633 {
634 	return has_erratum_handler(read_cntvct_el0);
635 }
636 
637 static bool arch_timer_counter_has_wa(void)
638 {
639 	return atomic_read(&timer_unstable_counter_workaround_in_use);
640 }
641 #else
642 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
643 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
644 #define arch_timer_counter_has_wa()			({false;})
645 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
646 
647 static __always_inline irqreturn_t timer_handler(const int access,
648 					struct clock_event_device *evt)
649 {
650 	unsigned long ctrl;
651 
652 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
653 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
654 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
655 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
656 		evt->event_handler(evt);
657 		return IRQ_HANDLED;
658 	}
659 
660 	return IRQ_NONE;
661 }
662 
663 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
664 {
665 	struct clock_event_device *evt = dev_id;
666 
667 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
668 }
669 
670 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
671 {
672 	struct clock_event_device *evt = dev_id;
673 
674 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
675 }
676 
677 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
678 {
679 	struct clock_event_device *evt = dev_id;
680 
681 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
682 }
683 
684 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
685 {
686 	struct clock_event_device *evt = dev_id;
687 
688 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
689 }
690 
691 static __always_inline int timer_shutdown(const int access,
692 					  struct clock_event_device *clk)
693 {
694 	unsigned long ctrl;
695 
696 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
697 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
698 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
699 
700 	return 0;
701 }
702 
703 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
704 {
705 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
706 }
707 
708 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
709 {
710 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
711 }
712 
713 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
714 {
715 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
716 }
717 
718 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
719 {
720 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
721 }
722 
723 static __always_inline void set_next_event(const int access, unsigned long evt,
724 					   struct clock_event_device *clk)
725 {
726 	unsigned long ctrl;
727 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
728 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
729 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
730 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
731 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
732 }
733 
734 static int arch_timer_set_next_event_virt(unsigned long evt,
735 					  struct clock_event_device *clk)
736 {
737 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
738 	return 0;
739 }
740 
741 static int arch_timer_set_next_event_phys(unsigned long evt,
742 					  struct clock_event_device *clk)
743 {
744 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
745 	return 0;
746 }
747 
748 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
749 					      struct clock_event_device *clk)
750 {
751 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
752 	return 0;
753 }
754 
755 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
756 					      struct clock_event_device *clk)
757 {
758 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
759 	return 0;
760 }
761 
762 static void __arch_timer_setup(unsigned type,
763 			       struct clock_event_device *clk)
764 {
765 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
766 
767 	if (type == ARCH_TIMER_TYPE_CP15) {
768 		typeof(clk->set_next_event) sne;
769 
770 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
771 
772 		if (arch_timer_c3stop)
773 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
774 		clk->name = "arch_sys_timer";
775 		clk->rating = 450;
776 		clk->cpumask = cpumask_of(smp_processor_id());
777 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
778 		switch (arch_timer_uses_ppi) {
779 		case ARCH_TIMER_VIRT_PPI:
780 			clk->set_state_shutdown = arch_timer_shutdown_virt;
781 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
782 			sne = erratum_handler(set_next_event_virt);
783 			break;
784 		case ARCH_TIMER_PHYS_SECURE_PPI:
785 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
786 		case ARCH_TIMER_HYP_PPI:
787 			clk->set_state_shutdown = arch_timer_shutdown_phys;
788 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
789 			sne = erratum_handler(set_next_event_phys);
790 			break;
791 		default:
792 			BUG();
793 		}
794 
795 		clk->set_next_event = sne;
796 	} else {
797 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
798 		clk->name = "arch_mem_timer";
799 		clk->rating = 400;
800 		clk->cpumask = cpu_possible_mask;
801 		if (arch_timer_mem_use_virtual) {
802 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
803 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
804 			clk->set_next_event =
805 				arch_timer_set_next_event_virt_mem;
806 		} else {
807 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
808 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
809 			clk->set_next_event =
810 				arch_timer_set_next_event_phys_mem;
811 		}
812 	}
813 
814 	clk->set_state_shutdown(clk);
815 
816 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
817 }
818 
819 static void arch_timer_evtstrm_enable(int divider)
820 {
821 	u32 cntkctl = arch_timer_get_cntkctl();
822 
823 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
824 	/* Set the divider and enable virtual event stream */
825 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
826 			| ARCH_TIMER_VIRT_EVT_EN;
827 	arch_timer_set_cntkctl(cntkctl);
828 	arch_timer_set_evtstrm_feature();
829 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
830 }
831 
832 static void arch_timer_configure_evtstream(void)
833 {
834 	int evt_stream_div, lsb;
835 
836 	/*
837 	 * As the event stream can at most be generated at half the frequency
838 	 * of the counter, use half the frequency when computing the divider.
839 	 */
840 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
841 
842 	/*
843 	 * Find the closest power of two to the divisor. If the adjacent bit
844 	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
845 	 */
846 	lsb = fls(evt_stream_div) - 1;
847 	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
848 		lsb++;
849 
850 	/* enable event stream */
851 	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
852 }
853 
854 static void arch_counter_set_user_access(void)
855 {
856 	u32 cntkctl = arch_timer_get_cntkctl();
857 
858 	/* Disable user access to the timers and both counters */
859 	/* Also disable virtual event stream */
860 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
861 			| ARCH_TIMER_USR_VT_ACCESS_EN
862 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
863 			| ARCH_TIMER_VIRT_EVT_EN
864 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
865 
866 	/*
867 	 * Enable user access to the virtual counter if it doesn't
868 	 * need to be workaround. The vdso may have been already
869 	 * disabled though.
870 	 */
871 	if (arch_timer_this_cpu_has_cntvct_wa())
872 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
873 	else
874 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
875 
876 	arch_timer_set_cntkctl(cntkctl);
877 }
878 
879 static bool arch_timer_has_nonsecure_ppi(void)
880 {
881 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
882 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
883 }
884 
885 static u32 check_ppi_trigger(int irq)
886 {
887 	u32 flags = irq_get_trigger_type(irq);
888 
889 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
890 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
891 		pr_warn("WARNING: Please fix your firmware\n");
892 		flags = IRQF_TRIGGER_LOW;
893 	}
894 
895 	return flags;
896 }
897 
898 static int arch_timer_starting_cpu(unsigned int cpu)
899 {
900 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
901 	u32 flags;
902 
903 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
904 
905 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
906 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
907 
908 	if (arch_timer_has_nonsecure_ppi()) {
909 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
910 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
911 				  flags);
912 	}
913 
914 	arch_counter_set_user_access();
915 	if (evtstrm_enable)
916 		arch_timer_configure_evtstream();
917 
918 	return 0;
919 }
920 
921 static int validate_timer_rate(void)
922 {
923 	if (!arch_timer_rate)
924 		return -EINVAL;
925 
926 	/* Arch timer frequency < 1MHz can cause trouble */
927 	WARN_ON(arch_timer_rate < 1000000);
928 
929 	return 0;
930 }
931 
932 /*
933  * For historical reasons, when probing with DT we use whichever (non-zero)
934  * rate was probed first, and don't verify that others match. If the first node
935  * probed has a clock-frequency property, this overrides the HW register.
936  */
937 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
938 {
939 	/* Who has more than one independent system counter? */
940 	if (arch_timer_rate)
941 		return;
942 
943 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
944 		arch_timer_rate = rate;
945 
946 	/* Check the timer frequency. */
947 	if (validate_timer_rate())
948 		pr_warn("frequency not available\n");
949 }
950 
951 static void __init arch_timer_banner(unsigned type)
952 {
953 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
954 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
955 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
956 			" and " : "",
957 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
958 		(unsigned long)arch_timer_rate / 1000000,
959 		(unsigned long)(arch_timer_rate / 10000) % 100,
960 		type & ARCH_TIMER_TYPE_CP15 ?
961 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
962 			"",
963 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
964 		type & ARCH_TIMER_TYPE_MEM ?
965 			arch_timer_mem_use_virtual ? "virt" : "phys" :
966 			"");
967 }
968 
969 u32 arch_timer_get_rate(void)
970 {
971 	return arch_timer_rate;
972 }
973 
974 bool arch_timer_evtstrm_available(void)
975 {
976 	/*
977 	 * We might get called from a preemptible context. This is fine
978 	 * because availability of the event stream should be always the same
979 	 * for a preemptible context and context where we might resume a task.
980 	 */
981 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
982 }
983 
984 static u64 arch_counter_get_cntvct_mem(void)
985 {
986 	u32 vct_lo, vct_hi, tmp_hi;
987 
988 	do {
989 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
990 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
991 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
992 	} while (vct_hi != tmp_hi);
993 
994 	return ((u64) vct_hi << 32) | vct_lo;
995 }
996 
997 static struct arch_timer_kvm_info arch_timer_kvm_info;
998 
999 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1000 {
1001 	return &arch_timer_kvm_info;
1002 }
1003 
1004 static void __init arch_counter_register(unsigned type)
1005 {
1006 	u64 start_count;
1007 
1008 	/* Register the CP15 based counter if we have one */
1009 	if (type & ARCH_TIMER_TYPE_CP15) {
1010 		u64 (*rd)(void);
1011 
1012 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1013 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1014 			if (arch_timer_counter_has_wa())
1015 				rd = arch_counter_get_cntvct_stable;
1016 			else
1017 				rd = arch_counter_get_cntvct;
1018 		} else {
1019 			if (arch_timer_counter_has_wa())
1020 				rd = arch_counter_get_cntpct_stable;
1021 			else
1022 				rd = arch_counter_get_cntpct;
1023 		}
1024 
1025 		arch_timer_read_counter = rd;
1026 		clocksource_counter.vdso_clock_mode = vdso_default;
1027 	} else {
1028 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1029 	}
1030 
1031 	if (!arch_counter_suspend_stop)
1032 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1033 	start_count = arch_timer_read_counter();
1034 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1035 	cyclecounter.mult = clocksource_counter.mult;
1036 	cyclecounter.shift = clocksource_counter.shift;
1037 	timecounter_init(&arch_timer_kvm_info.timecounter,
1038 			 &cyclecounter, start_count);
1039 
1040 	/* 56 bits minimum, so we assume worst case rollover */
1041 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1042 }
1043 
1044 static void arch_timer_stop(struct clock_event_device *clk)
1045 {
1046 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1047 
1048 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1049 	if (arch_timer_has_nonsecure_ppi())
1050 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1051 
1052 	clk->set_state_shutdown(clk);
1053 }
1054 
1055 static int arch_timer_dying_cpu(unsigned int cpu)
1056 {
1057 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1058 
1059 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1060 
1061 	arch_timer_stop(clk);
1062 	return 0;
1063 }
1064 
1065 #ifdef CONFIG_CPU_PM
1066 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1067 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1068 				    unsigned long action, void *hcpu)
1069 {
1070 	if (action == CPU_PM_ENTER) {
1071 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1072 
1073 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1074 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1075 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1076 
1077 		if (arch_timer_have_evtstrm_feature())
1078 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1079 	}
1080 	return NOTIFY_OK;
1081 }
1082 
1083 static struct notifier_block arch_timer_cpu_pm_notifier = {
1084 	.notifier_call = arch_timer_cpu_pm_notify,
1085 };
1086 
1087 static int __init arch_timer_cpu_pm_init(void)
1088 {
1089 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1090 }
1091 
1092 static void __init arch_timer_cpu_pm_deinit(void)
1093 {
1094 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1095 }
1096 
1097 #else
1098 static int __init arch_timer_cpu_pm_init(void)
1099 {
1100 	return 0;
1101 }
1102 
1103 static void __init arch_timer_cpu_pm_deinit(void)
1104 {
1105 }
1106 #endif
1107 
1108 static int __init arch_timer_register(void)
1109 {
1110 	int err;
1111 	int ppi;
1112 
1113 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1114 	if (!arch_timer_evt) {
1115 		err = -ENOMEM;
1116 		goto out;
1117 	}
1118 
1119 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1120 	switch (arch_timer_uses_ppi) {
1121 	case ARCH_TIMER_VIRT_PPI:
1122 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1123 					 "arch_timer", arch_timer_evt);
1124 		break;
1125 	case ARCH_TIMER_PHYS_SECURE_PPI:
1126 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1127 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1128 					 "arch_timer", arch_timer_evt);
1129 		if (!err && arch_timer_has_nonsecure_ppi()) {
1130 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1131 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1132 						 "arch_timer", arch_timer_evt);
1133 			if (err)
1134 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1135 						arch_timer_evt);
1136 		}
1137 		break;
1138 	case ARCH_TIMER_HYP_PPI:
1139 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1140 					 "arch_timer", arch_timer_evt);
1141 		break;
1142 	default:
1143 		BUG();
1144 	}
1145 
1146 	if (err) {
1147 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1148 		goto out_free;
1149 	}
1150 
1151 	err = arch_timer_cpu_pm_init();
1152 	if (err)
1153 		goto out_unreg_notify;
1154 
1155 	/* Register and immediately configure the timer on the boot CPU */
1156 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1157 				"clockevents/arm/arch_timer:starting",
1158 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1159 	if (err)
1160 		goto out_unreg_cpupm;
1161 	return 0;
1162 
1163 out_unreg_cpupm:
1164 	arch_timer_cpu_pm_deinit();
1165 
1166 out_unreg_notify:
1167 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1168 	if (arch_timer_has_nonsecure_ppi())
1169 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1170 				arch_timer_evt);
1171 
1172 out_free:
1173 	free_percpu(arch_timer_evt);
1174 out:
1175 	return err;
1176 }
1177 
1178 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1179 {
1180 	int ret;
1181 	irq_handler_t func;
1182 	struct arch_timer *t;
1183 
1184 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1185 	if (!t)
1186 		return -ENOMEM;
1187 
1188 	t->base = base;
1189 	t->evt.irq = irq;
1190 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1191 
1192 	if (arch_timer_mem_use_virtual)
1193 		func = arch_timer_handler_virt_mem;
1194 	else
1195 		func = arch_timer_handler_phys_mem;
1196 
1197 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1198 	if (ret) {
1199 		pr_err("Failed to request mem timer irq\n");
1200 		kfree(t);
1201 	}
1202 
1203 	return ret;
1204 }
1205 
1206 static const struct of_device_id arch_timer_of_match[] __initconst = {
1207 	{ .compatible   = "arm,armv7-timer",    },
1208 	{ .compatible   = "arm,armv8-timer",    },
1209 	{},
1210 };
1211 
1212 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1213 	{ .compatible   = "arm,armv7-timer-mem", },
1214 	{},
1215 };
1216 
1217 static bool __init arch_timer_needs_of_probing(void)
1218 {
1219 	struct device_node *dn;
1220 	bool needs_probing = false;
1221 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1222 
1223 	/* We have two timers, and both device-tree nodes are probed. */
1224 	if ((arch_timers_present & mask) == mask)
1225 		return false;
1226 
1227 	/*
1228 	 * Only one type of timer is probed,
1229 	 * check if we have another type of timer node in device-tree.
1230 	 */
1231 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1232 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1233 	else
1234 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1235 
1236 	if (dn && of_device_is_available(dn))
1237 		needs_probing = true;
1238 
1239 	of_node_put(dn);
1240 
1241 	return needs_probing;
1242 }
1243 
1244 static int __init arch_timer_common_init(void)
1245 {
1246 	arch_timer_banner(arch_timers_present);
1247 	arch_counter_register(arch_timers_present);
1248 	return arch_timer_arch_init();
1249 }
1250 
1251 /**
1252  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1253  *
1254  * If HYP mode is available, we know that the physical timer
1255  * has been configured to be accessible from PL1. Use it, so
1256  * that a guest can use the virtual timer instead.
1257  *
1258  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1259  * accesses to CNTP_*_EL1 registers are silently redirected to
1260  * their CNTHP_*_EL2 counterparts, and use a different PPI
1261  * number.
1262  *
1263  * If no interrupt provided for virtual timer, we'll have to
1264  * stick to the physical timer. It'd better be accessible...
1265  * For arm64 we never use the secure interrupt.
1266  *
1267  * Return: a suitable PPI type for the current system.
1268  */
1269 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1270 {
1271 	if (is_kernel_in_hyp_mode())
1272 		return ARCH_TIMER_HYP_PPI;
1273 
1274 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1275 		return ARCH_TIMER_VIRT_PPI;
1276 
1277 	if (IS_ENABLED(CONFIG_ARM64))
1278 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1279 
1280 	return ARCH_TIMER_PHYS_SECURE_PPI;
1281 }
1282 
1283 static void __init arch_timer_populate_kvm_info(void)
1284 {
1285 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1286 	if (is_kernel_in_hyp_mode())
1287 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1288 }
1289 
1290 static int __init arch_timer_of_init(struct device_node *np)
1291 {
1292 	int i, irq, ret;
1293 	u32 rate;
1294 	bool has_names;
1295 
1296 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1297 		pr_warn("multiple nodes in dt, skipping\n");
1298 		return 0;
1299 	}
1300 
1301 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1302 
1303 	has_names = of_property_read_bool(np, "interrupt-names");
1304 
1305 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1306 		if (has_names)
1307 			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1308 		else
1309 			irq = of_irq_get(np, i);
1310 		if (irq > 0)
1311 			arch_timer_ppi[i] = irq;
1312 	}
1313 
1314 	arch_timer_populate_kvm_info();
1315 
1316 	rate = arch_timer_get_cntfrq();
1317 	arch_timer_of_configure_rate(rate, np);
1318 
1319 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1320 
1321 	/* Check for globally applicable workarounds */
1322 	arch_timer_check_ool_workaround(ate_match_dt, np);
1323 
1324 	/*
1325 	 * If we cannot rely on firmware initializing the timer registers then
1326 	 * we should use the physical timers instead.
1327 	 */
1328 	if (IS_ENABLED(CONFIG_ARM) &&
1329 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1330 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1331 	else
1332 		arch_timer_uses_ppi = arch_timer_select_ppi();
1333 
1334 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1335 		pr_err("No interrupt available, giving up\n");
1336 		return -EINVAL;
1337 	}
1338 
1339 	/* On some systems, the counter stops ticking when in suspend. */
1340 	arch_counter_suspend_stop = of_property_read_bool(np,
1341 							 "arm,no-tick-in-suspend");
1342 
1343 	ret = arch_timer_register();
1344 	if (ret)
1345 		return ret;
1346 
1347 	if (arch_timer_needs_of_probing())
1348 		return 0;
1349 
1350 	return arch_timer_common_init();
1351 }
1352 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1353 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1354 
1355 static u32 __init
1356 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1357 {
1358 	void __iomem *base;
1359 	u32 rate;
1360 
1361 	base = ioremap(frame->cntbase, frame->size);
1362 	if (!base) {
1363 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1364 		return 0;
1365 	}
1366 
1367 	rate = readl_relaxed(base + CNTFRQ);
1368 
1369 	iounmap(base);
1370 
1371 	return rate;
1372 }
1373 
1374 static struct arch_timer_mem_frame * __init
1375 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1376 {
1377 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1378 	void __iomem *cntctlbase;
1379 	u32 cnttidr;
1380 	int i;
1381 
1382 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1383 	if (!cntctlbase) {
1384 		pr_err("Can't map CNTCTLBase @ %pa\n",
1385 			&timer_mem->cntctlbase);
1386 		return NULL;
1387 	}
1388 
1389 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1390 
1391 	/*
1392 	 * Try to find a virtual capable frame. Otherwise fall back to a
1393 	 * physical capable frame.
1394 	 */
1395 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1396 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1397 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1398 
1399 		frame = &timer_mem->frame[i];
1400 		if (!frame->valid)
1401 			continue;
1402 
1403 		/* Try enabling everything, and see what sticks */
1404 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1405 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1406 
1407 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1408 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1409 			best_frame = frame;
1410 			arch_timer_mem_use_virtual = true;
1411 			break;
1412 		}
1413 
1414 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1415 			continue;
1416 
1417 		best_frame = frame;
1418 	}
1419 
1420 	iounmap(cntctlbase);
1421 
1422 	return best_frame;
1423 }
1424 
1425 static int __init
1426 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1427 {
1428 	void __iomem *base;
1429 	int ret, irq = 0;
1430 
1431 	if (arch_timer_mem_use_virtual)
1432 		irq = frame->virt_irq;
1433 	else
1434 		irq = frame->phys_irq;
1435 
1436 	if (!irq) {
1437 		pr_err("Frame missing %s irq.\n",
1438 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1439 		return -EINVAL;
1440 	}
1441 
1442 	if (!request_mem_region(frame->cntbase, frame->size,
1443 				"arch_mem_timer"))
1444 		return -EBUSY;
1445 
1446 	base = ioremap(frame->cntbase, frame->size);
1447 	if (!base) {
1448 		pr_err("Can't map frame's registers\n");
1449 		return -ENXIO;
1450 	}
1451 
1452 	ret = arch_timer_mem_register(base, irq);
1453 	if (ret) {
1454 		iounmap(base);
1455 		return ret;
1456 	}
1457 
1458 	arch_counter_base = base;
1459 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1460 
1461 	return 0;
1462 }
1463 
1464 static int __init arch_timer_mem_of_init(struct device_node *np)
1465 {
1466 	struct arch_timer_mem *timer_mem;
1467 	struct arch_timer_mem_frame *frame;
1468 	struct device_node *frame_node;
1469 	struct resource res;
1470 	int ret = -EINVAL;
1471 	u32 rate;
1472 
1473 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1474 	if (!timer_mem)
1475 		return -ENOMEM;
1476 
1477 	if (of_address_to_resource(np, 0, &res))
1478 		goto out;
1479 	timer_mem->cntctlbase = res.start;
1480 	timer_mem->size = resource_size(&res);
1481 
1482 	for_each_available_child_of_node(np, frame_node) {
1483 		u32 n;
1484 		struct arch_timer_mem_frame *frame;
1485 
1486 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1487 			pr_err(FW_BUG "Missing frame-number.\n");
1488 			of_node_put(frame_node);
1489 			goto out;
1490 		}
1491 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1492 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1493 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1494 			of_node_put(frame_node);
1495 			goto out;
1496 		}
1497 		frame = &timer_mem->frame[n];
1498 
1499 		if (frame->valid) {
1500 			pr_err(FW_BUG "Duplicated frame-number.\n");
1501 			of_node_put(frame_node);
1502 			goto out;
1503 		}
1504 
1505 		if (of_address_to_resource(frame_node, 0, &res)) {
1506 			of_node_put(frame_node);
1507 			goto out;
1508 		}
1509 		frame->cntbase = res.start;
1510 		frame->size = resource_size(&res);
1511 
1512 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1513 						       ARCH_TIMER_VIRT_SPI);
1514 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1515 						       ARCH_TIMER_PHYS_SPI);
1516 
1517 		frame->valid = true;
1518 	}
1519 
1520 	frame = arch_timer_mem_find_best_frame(timer_mem);
1521 	if (!frame) {
1522 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1523 			&timer_mem->cntctlbase);
1524 		ret = -EINVAL;
1525 		goto out;
1526 	}
1527 
1528 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1529 	arch_timer_of_configure_rate(rate, np);
1530 
1531 	ret = arch_timer_mem_frame_register(frame);
1532 	if (!ret && !arch_timer_needs_of_probing())
1533 		ret = arch_timer_common_init();
1534 out:
1535 	kfree(timer_mem);
1536 	return ret;
1537 }
1538 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1539 		       arch_timer_mem_of_init);
1540 
1541 #ifdef CONFIG_ACPI_GTDT
1542 static int __init
1543 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1544 {
1545 	struct arch_timer_mem_frame *frame;
1546 	u32 rate;
1547 	int i;
1548 
1549 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1550 		frame = &timer_mem->frame[i];
1551 
1552 		if (!frame->valid)
1553 			continue;
1554 
1555 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1556 		if (rate == arch_timer_rate)
1557 			continue;
1558 
1559 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1560 			&frame->cntbase,
1561 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1562 
1563 		return -EINVAL;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1570 {
1571 	struct arch_timer_mem *timers, *timer;
1572 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1573 	int timer_count, i, ret = 0;
1574 
1575 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1576 			    GFP_KERNEL);
1577 	if (!timers)
1578 		return -ENOMEM;
1579 
1580 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1581 	if (ret || !timer_count)
1582 		goto out;
1583 
1584 	/*
1585 	 * While unlikely, it's theoretically possible that none of the frames
1586 	 * in a timer expose the combination of feature we want.
1587 	 */
1588 	for (i = 0; i < timer_count; i++) {
1589 		timer = &timers[i];
1590 
1591 		frame = arch_timer_mem_find_best_frame(timer);
1592 		if (!best_frame)
1593 			best_frame = frame;
1594 
1595 		ret = arch_timer_mem_verify_cntfrq(timer);
1596 		if (ret) {
1597 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1598 			goto out;
1599 		}
1600 
1601 		if (!best_frame) /* implies !frame */
1602 			/*
1603 			 * Only complain about missing suitable frames if we
1604 			 * haven't already found one in a previous iteration.
1605 			 */
1606 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1607 				&timer->cntctlbase);
1608 	}
1609 
1610 	if (best_frame)
1611 		ret = arch_timer_mem_frame_register(best_frame);
1612 out:
1613 	kfree(timers);
1614 	return ret;
1615 }
1616 
1617 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1618 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1619 {
1620 	int ret, platform_timer_count;
1621 
1622 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1623 		pr_warn("already initialized, skipping\n");
1624 		return -EINVAL;
1625 	}
1626 
1627 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1628 
1629 	ret = acpi_gtdt_init(table, &platform_timer_count);
1630 	if (ret)
1631 		return ret;
1632 
1633 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1634 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1635 
1636 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1637 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1638 
1639 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1640 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1641 
1642 	arch_timer_populate_kvm_info();
1643 
1644 	/*
1645 	 * When probing via ACPI, we have no mechanism to override the sysreg
1646 	 * CNTFRQ value. This *must* be correct.
1647 	 */
1648 	arch_timer_rate = arch_timer_get_cntfrq();
1649 	ret = validate_timer_rate();
1650 	if (ret) {
1651 		pr_err(FW_BUG "frequency not available.\n");
1652 		return ret;
1653 	}
1654 
1655 	arch_timer_uses_ppi = arch_timer_select_ppi();
1656 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1657 		pr_err("No interrupt available, giving up\n");
1658 		return -EINVAL;
1659 	}
1660 
1661 	/* Always-on capability */
1662 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1663 
1664 	/* Check for globally applicable workarounds */
1665 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1666 
1667 	ret = arch_timer_register();
1668 	if (ret)
1669 		return ret;
1670 
1671 	if (platform_timer_count &&
1672 	    arch_timer_mem_acpi_init(platform_timer_count))
1673 		pr_err("Failed to initialize memory-mapped timer.\n");
1674 
1675 	return arch_timer_common_init();
1676 }
1677 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1678 #endif
1679