1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/clocksource/arm_arch_timer.c 4 * 5 * Copyright (C) 2011 ARM Ltd. 6 * All Rights Reserved 7 */ 8 9 #define pr_fmt(fmt) "arch_timer: " fmt 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/interrupt.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_address.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <linux/sched/clock.h> 25 #include <linux/sched_clock.h> 26 #include <linux/acpi.h> 27 28 #include <asm/arch_timer.h> 29 #include <asm/virt.h> 30 31 #include <clocksource/arm_arch_timer.h> 32 33 #define CNTTIDR 0x08 34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 35 36 #define CNTACR(n) (0x40 + ((n) * 4)) 37 #define CNTACR_RPCT BIT(0) 38 #define CNTACR_RVCT BIT(1) 39 #define CNTACR_RFRQ BIT(2) 40 #define CNTACR_RVOFF BIT(3) 41 #define CNTACR_RWVT BIT(4) 42 #define CNTACR_RWPT BIT(5) 43 44 #define CNTVCT_LO 0x08 45 #define CNTVCT_HI 0x0c 46 #define CNTFRQ 0x10 47 #define CNTP_TVAL 0x28 48 #define CNTP_CTL 0x2c 49 #define CNTV_TVAL 0x38 50 #define CNTV_CTL 0x3c 51 52 static unsigned arch_timers_present __initdata; 53 54 static void __iomem *arch_counter_base __ro_after_init; 55 56 struct arch_timer { 57 void __iomem *base; 58 struct clock_event_device evt; 59 }; 60 61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 62 63 static u32 arch_timer_rate __ro_after_init; 64 u32 arch_timer_rate1 __ro_after_init; 65 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; 66 67 static struct clock_event_device __percpu *arch_timer_evt; 68 69 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; 70 static bool arch_timer_c3stop __ro_after_init; 71 static bool arch_timer_mem_use_virtual __ro_after_init; 72 static bool arch_counter_suspend_stop __ro_after_init; 73 #ifdef CONFIG_GENERIC_GETTIMEOFDAY 74 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; 75 #else 76 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; 77 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */ 78 79 static cpumask_t evtstrm_available = CPU_MASK_NONE; 80 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 81 82 static int __init early_evtstrm_cfg(char *buf) 83 { 84 return strtobool(buf, &evtstrm_enable); 85 } 86 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 87 88 /* 89 * Architected system timer support. 90 */ 91 92 static __always_inline 93 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 94 struct clock_event_device *clk) 95 { 96 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 97 struct arch_timer *timer = to_arch_timer(clk); 98 switch (reg) { 99 case ARCH_TIMER_REG_CTRL: 100 writel_relaxed(val, timer->base + CNTP_CTL); 101 break; 102 case ARCH_TIMER_REG_TVAL: 103 writel_relaxed(val, timer->base + CNTP_TVAL); 104 break; 105 } 106 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 107 struct arch_timer *timer = to_arch_timer(clk); 108 switch (reg) { 109 case ARCH_TIMER_REG_CTRL: 110 writel_relaxed(val, timer->base + CNTV_CTL); 111 break; 112 case ARCH_TIMER_REG_TVAL: 113 writel_relaxed(val, timer->base + CNTV_TVAL); 114 break; 115 } 116 } else { 117 arch_timer_reg_write_cp15(access, reg, val); 118 } 119 } 120 121 static __always_inline 122 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 123 struct clock_event_device *clk) 124 { 125 u32 val; 126 127 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 128 struct arch_timer *timer = to_arch_timer(clk); 129 switch (reg) { 130 case ARCH_TIMER_REG_CTRL: 131 val = readl_relaxed(timer->base + CNTP_CTL); 132 break; 133 case ARCH_TIMER_REG_TVAL: 134 val = readl_relaxed(timer->base + CNTP_TVAL); 135 break; 136 } 137 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 138 struct arch_timer *timer = to_arch_timer(clk); 139 switch (reg) { 140 case ARCH_TIMER_REG_CTRL: 141 val = readl_relaxed(timer->base + CNTV_CTL); 142 break; 143 case ARCH_TIMER_REG_TVAL: 144 val = readl_relaxed(timer->base + CNTV_TVAL); 145 break; 146 } 147 } else { 148 val = arch_timer_reg_read_cp15(access, reg); 149 } 150 151 return val; 152 } 153 154 static notrace u64 arch_counter_get_cntpct_stable(void) 155 { 156 return __arch_counter_get_cntpct_stable(); 157 } 158 159 static notrace u64 arch_counter_get_cntpct(void) 160 { 161 return __arch_counter_get_cntpct(); 162 } 163 164 static notrace u64 arch_counter_get_cntvct_stable(void) 165 { 166 return __arch_counter_get_cntvct_stable(); 167 } 168 169 static notrace u64 arch_counter_get_cntvct(void) 170 { 171 return __arch_counter_get_cntvct(); 172 } 173 174 /* 175 * Default to cp15 based access because arm64 uses this function for 176 * sched_clock() before DT is probed and the cp15 method is guaranteed 177 * to exist on arm64. arm doesn't use this before DT is probed so even 178 * if we don't have the cp15 accessors we won't have a problem. 179 */ 180 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct; 181 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 182 183 static u64 arch_counter_read(struct clocksource *cs) 184 { 185 return arch_timer_read_counter(); 186 } 187 188 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 189 { 190 return arch_timer_read_counter(); 191 } 192 193 static struct clocksource clocksource_counter = { 194 .name = "arch_sys_counter", 195 .rating = 400, 196 .read = arch_counter_read, 197 .mask = CLOCKSOURCE_MASK(56), 198 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 199 }; 200 201 static struct cyclecounter cyclecounter __ro_after_init = { 202 .read = arch_counter_read_cc, 203 .mask = CLOCKSOURCE_MASK(56), 204 }; 205 206 struct ate_acpi_oem_info { 207 char oem_id[ACPI_OEM_ID_SIZE + 1]; 208 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 209 u32 oem_revision; 210 }; 211 212 #ifdef CONFIG_FSL_ERRATUM_A008585 213 /* 214 * The number of retries is an arbitrary value well beyond the highest number 215 * of iterations the loop has been observed to take. 216 */ 217 #define __fsl_a008585_read_reg(reg) ({ \ 218 u64 _old, _new; \ 219 int _retries = 200; \ 220 \ 221 do { \ 222 _old = read_sysreg(reg); \ 223 _new = read_sysreg(reg); \ 224 _retries--; \ 225 } while (unlikely(_old != _new) && _retries); \ 226 \ 227 WARN_ON_ONCE(!_retries); \ 228 _new; \ 229 }) 230 231 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 232 { 233 return __fsl_a008585_read_reg(cntp_tval_el0); 234 } 235 236 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 237 { 238 return __fsl_a008585_read_reg(cntv_tval_el0); 239 } 240 241 static u64 notrace fsl_a008585_read_cntpct_el0(void) 242 { 243 return __fsl_a008585_read_reg(cntpct_el0); 244 } 245 246 static u64 notrace fsl_a008585_read_cntvct_el0(void) 247 { 248 return __fsl_a008585_read_reg(cntvct_el0); 249 } 250 #endif 251 252 #ifdef CONFIG_HISILICON_ERRATUM_161010101 253 /* 254 * Verify whether the value of the second read is larger than the first by 255 * less than 32 is the only way to confirm the value is correct, so clear the 256 * lower 5 bits to check whether the difference is greater than 32 or not. 257 * Theoretically the erratum should not occur more than twice in succession 258 * when reading the system counter, but it is possible that some interrupts 259 * may lead to more than twice read errors, triggering the warning, so setting 260 * the number of retries far beyond the number of iterations the loop has been 261 * observed to take. 262 */ 263 #define __hisi_161010101_read_reg(reg) ({ \ 264 u64 _old, _new; \ 265 int _retries = 50; \ 266 \ 267 do { \ 268 _old = read_sysreg(reg); \ 269 _new = read_sysreg(reg); \ 270 _retries--; \ 271 } while (unlikely((_new - _old) >> 5) && _retries); \ 272 \ 273 WARN_ON_ONCE(!_retries); \ 274 _new; \ 275 }) 276 277 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 278 { 279 return __hisi_161010101_read_reg(cntp_tval_el0); 280 } 281 282 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 283 { 284 return __hisi_161010101_read_reg(cntv_tval_el0); 285 } 286 287 static u64 notrace hisi_161010101_read_cntpct_el0(void) 288 { 289 return __hisi_161010101_read_reg(cntpct_el0); 290 } 291 292 static u64 notrace hisi_161010101_read_cntvct_el0(void) 293 { 294 return __hisi_161010101_read_reg(cntvct_el0); 295 } 296 297 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 298 /* 299 * Note that trailing spaces are required to properly match 300 * the OEM table information. 301 */ 302 { 303 .oem_id = "HISI ", 304 .oem_table_id = "HIP05 ", 305 .oem_revision = 0, 306 }, 307 { 308 .oem_id = "HISI ", 309 .oem_table_id = "HIP06 ", 310 .oem_revision = 0, 311 }, 312 { 313 .oem_id = "HISI ", 314 .oem_table_id = "HIP07 ", 315 .oem_revision = 0, 316 }, 317 { /* Sentinel indicating the end of the OEM array */ }, 318 }; 319 #endif 320 321 #ifdef CONFIG_ARM64_ERRATUM_858921 322 static u64 notrace arm64_858921_read_cntpct_el0(void) 323 { 324 u64 old, new; 325 326 old = read_sysreg(cntpct_el0); 327 new = read_sysreg(cntpct_el0); 328 return (((old ^ new) >> 32) & 1) ? old : new; 329 } 330 331 static u64 notrace arm64_858921_read_cntvct_el0(void) 332 { 333 u64 old, new; 334 335 old = read_sysreg(cntvct_el0); 336 new = read_sysreg(cntvct_el0); 337 return (((old ^ new) >> 32) & 1) ? old : new; 338 } 339 #endif 340 341 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 342 /* 343 * The low bits of the counter registers are indeterminate while bit 10 or 344 * greater is rolling over. Since the counter value can jump both backward 345 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 346 * with all ones or all zeros in the low bits. Bound the loop by the maximum 347 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 348 */ 349 #define __sun50i_a64_read_reg(reg) ({ \ 350 u64 _val; \ 351 int _retries = 150; \ 352 \ 353 do { \ 354 _val = read_sysreg(reg); \ 355 _retries--; \ 356 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \ 357 \ 358 WARN_ON_ONCE(!_retries); \ 359 _val; \ 360 }) 361 362 static u64 notrace sun50i_a64_read_cntpct_el0(void) 363 { 364 return __sun50i_a64_read_reg(cntpct_el0); 365 } 366 367 static u64 notrace sun50i_a64_read_cntvct_el0(void) 368 { 369 return __sun50i_a64_read_reg(cntvct_el0); 370 } 371 372 static u32 notrace sun50i_a64_read_cntp_tval_el0(void) 373 { 374 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0(); 375 } 376 377 static u32 notrace sun50i_a64_read_cntv_tval_el0(void) 378 { 379 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0(); 380 } 381 #endif 382 383 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 384 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 385 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 386 387 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); 388 389 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 390 struct clock_event_device *clk) 391 { 392 unsigned long ctrl; 393 u64 cval; 394 395 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 396 ctrl |= ARCH_TIMER_CTRL_ENABLE; 397 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 398 399 if (access == ARCH_TIMER_PHYS_ACCESS) { 400 cval = evt + arch_counter_get_cntpct_stable(); 401 write_sysreg(cval, cntp_cval_el0); 402 } else { 403 cval = evt + arch_counter_get_cntvct_stable(); 404 write_sysreg(cval, cntv_cval_el0); 405 } 406 407 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 408 } 409 410 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 411 struct clock_event_device *clk) 412 { 413 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 414 return 0; 415 } 416 417 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 418 struct clock_event_device *clk) 419 { 420 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 421 return 0; 422 } 423 424 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 425 #ifdef CONFIG_FSL_ERRATUM_A008585 426 { 427 .match_type = ate_match_dt, 428 .id = "fsl,erratum-a008585", 429 .desc = "Freescale erratum a005858", 430 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 431 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 432 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 433 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 434 .set_next_event_phys = erratum_set_next_event_tval_phys, 435 .set_next_event_virt = erratum_set_next_event_tval_virt, 436 }, 437 #endif 438 #ifdef CONFIG_HISILICON_ERRATUM_161010101 439 { 440 .match_type = ate_match_dt, 441 .id = "hisilicon,erratum-161010101", 442 .desc = "HiSilicon erratum 161010101", 443 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 444 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 445 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 446 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 447 .set_next_event_phys = erratum_set_next_event_tval_phys, 448 .set_next_event_virt = erratum_set_next_event_tval_virt, 449 }, 450 { 451 .match_type = ate_match_acpi_oem_info, 452 .id = hisi_161010101_oem_info, 453 .desc = "HiSilicon erratum 161010101", 454 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 455 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 456 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 457 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 458 .set_next_event_phys = erratum_set_next_event_tval_phys, 459 .set_next_event_virt = erratum_set_next_event_tval_virt, 460 }, 461 #endif 462 #ifdef CONFIG_ARM64_ERRATUM_858921 463 { 464 .match_type = ate_match_local_cap_id, 465 .id = (void *)ARM64_WORKAROUND_858921, 466 .desc = "ARM erratum 858921", 467 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 468 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 469 }, 470 #endif 471 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 472 { 473 .match_type = ate_match_dt, 474 .id = "allwinner,erratum-unknown1", 475 .desc = "Allwinner erratum UNKNOWN1", 476 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0, 477 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0, 478 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 479 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 480 .set_next_event_phys = erratum_set_next_event_tval_phys, 481 .set_next_event_virt = erratum_set_next_event_tval_virt, 482 }, 483 #endif 484 #ifdef CONFIG_ARM64_ERRATUM_1418040 485 { 486 .match_type = ate_match_local_cap_id, 487 .id = (void *)ARM64_WORKAROUND_1418040, 488 .desc = "ARM erratum 1418040", 489 .disable_compat_vdso = true, 490 }, 491 #endif 492 }; 493 494 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 495 const void *); 496 497 static 498 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 499 const void *arg) 500 { 501 const struct device_node *np = arg; 502 503 return of_property_read_bool(np, wa->id); 504 } 505 506 static 507 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 508 const void *arg) 509 { 510 return this_cpu_has_cap((uintptr_t)wa->id); 511 } 512 513 514 static 515 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 516 const void *arg) 517 { 518 static const struct ate_acpi_oem_info empty_oem_info = {}; 519 const struct ate_acpi_oem_info *info = wa->id; 520 const struct acpi_table_header *table = arg; 521 522 /* Iterate over the ACPI OEM info array, looking for a match */ 523 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 524 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 525 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 526 info->oem_revision == table->oem_revision) 527 return true; 528 529 info++; 530 } 531 532 return false; 533 } 534 535 static const struct arch_timer_erratum_workaround * 536 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 537 ate_match_fn_t match_fn, 538 void *arg) 539 { 540 int i; 541 542 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 543 if (ool_workarounds[i].match_type != type) 544 continue; 545 546 if (match_fn(&ool_workarounds[i], arg)) 547 return &ool_workarounds[i]; 548 } 549 550 return NULL; 551 } 552 553 static 554 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 555 bool local) 556 { 557 int i; 558 559 if (local) { 560 __this_cpu_write(timer_unstable_counter_workaround, wa); 561 } else { 562 for_each_possible_cpu(i) 563 per_cpu(timer_unstable_counter_workaround, i) = wa; 564 } 565 566 if (wa->read_cntvct_el0 || wa->read_cntpct_el0) 567 atomic_set(&timer_unstable_counter_workaround_in_use, 1); 568 569 /* 570 * Don't use the vdso fastpath if errata require using the 571 * out-of-line counter accessor. We may change our mind pretty 572 * late in the game (with a per-CPU erratum, for example), so 573 * change both the default value and the vdso itself. 574 */ 575 if (wa->read_cntvct_el0) { 576 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; 577 vdso_default = VDSO_CLOCKMODE_NONE; 578 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) { 579 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT; 580 clocksource_counter.vdso_clock_mode = vdso_default; 581 } 582 } 583 584 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 585 void *arg) 586 { 587 const struct arch_timer_erratum_workaround *wa, *__wa; 588 ate_match_fn_t match_fn = NULL; 589 bool local = false; 590 591 switch (type) { 592 case ate_match_dt: 593 match_fn = arch_timer_check_dt_erratum; 594 break; 595 case ate_match_local_cap_id: 596 match_fn = arch_timer_check_local_cap_erratum; 597 local = true; 598 break; 599 case ate_match_acpi_oem_info: 600 match_fn = arch_timer_check_acpi_oem_erratum; 601 break; 602 default: 603 WARN_ON(1); 604 return; 605 } 606 607 wa = arch_timer_iterate_errata(type, match_fn, arg); 608 if (!wa) 609 return; 610 611 __wa = __this_cpu_read(timer_unstable_counter_workaround); 612 if (__wa && wa != __wa) 613 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 614 wa->desc, __wa->desc); 615 616 if (__wa) 617 return; 618 619 arch_timer_enable_workaround(wa, local); 620 pr_info("Enabling %s workaround for %s\n", 621 local ? "local" : "global", wa->desc); 622 } 623 624 static bool arch_timer_this_cpu_has_cntvct_wa(void) 625 { 626 return has_erratum_handler(read_cntvct_el0); 627 } 628 629 static bool arch_timer_counter_has_wa(void) 630 { 631 return atomic_read(&timer_unstable_counter_workaround_in_use); 632 } 633 #else 634 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 635 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 636 #define arch_timer_counter_has_wa() ({false;}) 637 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 638 639 static __always_inline irqreturn_t timer_handler(const int access, 640 struct clock_event_device *evt) 641 { 642 unsigned long ctrl; 643 644 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 645 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 646 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 647 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 648 evt->event_handler(evt); 649 return IRQ_HANDLED; 650 } 651 652 return IRQ_NONE; 653 } 654 655 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 656 { 657 struct clock_event_device *evt = dev_id; 658 659 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 660 } 661 662 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 663 { 664 struct clock_event_device *evt = dev_id; 665 666 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 667 } 668 669 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 670 { 671 struct clock_event_device *evt = dev_id; 672 673 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 674 } 675 676 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 677 { 678 struct clock_event_device *evt = dev_id; 679 680 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 681 } 682 683 static __always_inline int timer_shutdown(const int access, 684 struct clock_event_device *clk) 685 { 686 unsigned long ctrl; 687 688 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 689 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 690 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 691 692 return 0; 693 } 694 695 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 696 { 697 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 698 } 699 700 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 701 { 702 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 703 } 704 705 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 706 { 707 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 708 } 709 710 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 711 { 712 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 713 } 714 715 static __always_inline void set_next_event(const int access, unsigned long evt, 716 struct clock_event_device *clk) 717 { 718 unsigned long ctrl; 719 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 720 ctrl |= ARCH_TIMER_CTRL_ENABLE; 721 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 722 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 723 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 724 } 725 726 static int arch_timer_set_next_event_virt(unsigned long evt, 727 struct clock_event_device *clk) 728 { 729 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 730 return 0; 731 } 732 733 static int arch_timer_set_next_event_phys(unsigned long evt, 734 struct clock_event_device *clk) 735 { 736 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 737 return 0; 738 } 739 740 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 741 struct clock_event_device *clk) 742 { 743 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 744 return 0; 745 } 746 747 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 748 struct clock_event_device *clk) 749 { 750 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 751 return 0; 752 } 753 754 static void __arch_timer_setup(unsigned type, 755 struct clock_event_device *clk) 756 { 757 clk->features = CLOCK_EVT_FEAT_ONESHOT; 758 759 if (type == ARCH_TIMER_TYPE_CP15) { 760 typeof(clk->set_next_event) sne; 761 762 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 763 764 if (arch_timer_c3stop) 765 clk->features |= CLOCK_EVT_FEAT_C3STOP; 766 clk->name = "arch_sys_timer"; 767 clk->rating = 450; 768 clk->cpumask = cpumask_of(smp_processor_id()); 769 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 770 switch (arch_timer_uses_ppi) { 771 case ARCH_TIMER_VIRT_PPI: 772 clk->set_state_shutdown = arch_timer_shutdown_virt; 773 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 774 sne = erratum_handler(set_next_event_virt); 775 break; 776 case ARCH_TIMER_PHYS_SECURE_PPI: 777 case ARCH_TIMER_PHYS_NONSECURE_PPI: 778 case ARCH_TIMER_HYP_PPI: 779 clk->set_state_shutdown = arch_timer_shutdown_phys; 780 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 781 sne = erratum_handler(set_next_event_phys); 782 break; 783 default: 784 BUG(); 785 } 786 787 clk->set_next_event = sne; 788 } else { 789 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 790 clk->name = "arch_mem_timer"; 791 clk->rating = 400; 792 clk->cpumask = cpu_possible_mask; 793 if (arch_timer_mem_use_virtual) { 794 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 795 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 796 clk->set_next_event = 797 arch_timer_set_next_event_virt_mem; 798 } else { 799 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 800 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 801 clk->set_next_event = 802 arch_timer_set_next_event_phys_mem; 803 } 804 } 805 806 clk->set_state_shutdown(clk); 807 808 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 809 } 810 811 static void arch_timer_evtstrm_enable(int divider) 812 { 813 u32 cntkctl = arch_timer_get_cntkctl(); 814 815 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 816 /* Set the divider and enable virtual event stream */ 817 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 818 | ARCH_TIMER_VIRT_EVT_EN; 819 arch_timer_set_cntkctl(cntkctl); 820 arch_timer_set_evtstrm_feature(); 821 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 822 } 823 824 static void arch_timer_configure_evtstream(void) 825 { 826 int evt_stream_div, lsb; 827 828 /* 829 * As the event stream can at most be generated at half the frequency 830 * of the counter, use half the frequency when computing the divider. 831 */ 832 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2; 833 834 /* 835 * Find the closest power of two to the divisor. If the adjacent bit 836 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1). 837 */ 838 lsb = fls(evt_stream_div) - 1; 839 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1))) 840 lsb++; 841 842 /* enable event stream */ 843 arch_timer_evtstrm_enable(max(0, min(lsb, 15))); 844 } 845 846 static void arch_counter_set_user_access(void) 847 { 848 u32 cntkctl = arch_timer_get_cntkctl(); 849 850 /* Disable user access to the timers and both counters */ 851 /* Also disable virtual event stream */ 852 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 853 | ARCH_TIMER_USR_VT_ACCESS_EN 854 | ARCH_TIMER_USR_VCT_ACCESS_EN 855 | ARCH_TIMER_VIRT_EVT_EN 856 | ARCH_TIMER_USR_PCT_ACCESS_EN); 857 858 /* 859 * Enable user access to the virtual counter if it doesn't 860 * need to be workaround. The vdso may have been already 861 * disabled though. 862 */ 863 if (arch_timer_this_cpu_has_cntvct_wa()) 864 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 865 else 866 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 867 868 arch_timer_set_cntkctl(cntkctl); 869 } 870 871 static bool arch_timer_has_nonsecure_ppi(void) 872 { 873 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 874 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 875 } 876 877 static u32 check_ppi_trigger(int irq) 878 { 879 u32 flags = irq_get_trigger_type(irq); 880 881 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 882 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 883 pr_warn("WARNING: Please fix your firmware\n"); 884 flags = IRQF_TRIGGER_LOW; 885 } 886 887 return flags; 888 } 889 890 static int arch_timer_starting_cpu(unsigned int cpu) 891 { 892 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 893 u32 flags; 894 895 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 896 897 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 898 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 899 900 if (arch_timer_has_nonsecure_ppi()) { 901 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 902 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 903 flags); 904 } 905 906 arch_counter_set_user_access(); 907 if (evtstrm_enable) 908 arch_timer_configure_evtstream(); 909 910 return 0; 911 } 912 913 static int validate_timer_rate(void) 914 { 915 if (!arch_timer_rate) 916 return -EINVAL; 917 918 /* Arch timer frequency < 1MHz can cause trouble */ 919 WARN_ON(arch_timer_rate < 1000000); 920 921 return 0; 922 } 923 924 /* 925 * For historical reasons, when probing with DT we use whichever (non-zero) 926 * rate was probed first, and don't verify that others match. If the first node 927 * probed has a clock-frequency property, this overrides the HW register. 928 */ 929 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np) 930 { 931 /* Who has more than one independent system counter? */ 932 if (arch_timer_rate) 933 return; 934 935 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 936 arch_timer_rate = rate; 937 938 /* Check the timer frequency. */ 939 if (validate_timer_rate()) 940 pr_warn("frequency not available\n"); 941 } 942 943 static void __init arch_timer_banner(unsigned type) 944 { 945 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 946 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 947 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 948 " and " : "", 949 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 950 (unsigned long)arch_timer_rate / 1000000, 951 (unsigned long)(arch_timer_rate / 10000) % 100, 952 type & ARCH_TIMER_TYPE_CP15 ? 953 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 954 "", 955 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 956 type & ARCH_TIMER_TYPE_MEM ? 957 arch_timer_mem_use_virtual ? "virt" : "phys" : 958 ""); 959 } 960 961 u32 arch_timer_get_rate(void) 962 { 963 return arch_timer_rate; 964 } 965 966 bool arch_timer_evtstrm_available(void) 967 { 968 /* 969 * We might get called from a preemptible context. This is fine 970 * because availability of the event stream should be always the same 971 * for a preemptible context and context where we might resume a task. 972 */ 973 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 974 } 975 976 static u64 arch_counter_get_cntvct_mem(void) 977 { 978 u32 vct_lo, vct_hi, tmp_hi; 979 980 do { 981 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 982 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 983 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 984 } while (vct_hi != tmp_hi); 985 986 return ((u64) vct_hi << 32) | vct_lo; 987 } 988 989 static struct arch_timer_kvm_info arch_timer_kvm_info; 990 991 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 992 { 993 return &arch_timer_kvm_info; 994 } 995 996 static void __init arch_counter_register(unsigned type) 997 { 998 u64 start_count; 999 1000 /* Register the CP15 based counter if we have one */ 1001 if (type & ARCH_TIMER_TYPE_CP15) { 1002 u64 (*rd)(void); 1003 1004 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 1005 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { 1006 if (arch_timer_counter_has_wa()) 1007 rd = arch_counter_get_cntvct_stable; 1008 else 1009 rd = arch_counter_get_cntvct; 1010 } else { 1011 if (arch_timer_counter_has_wa()) 1012 rd = arch_counter_get_cntpct_stable; 1013 else 1014 rd = arch_counter_get_cntpct; 1015 } 1016 1017 arch_timer_read_counter = rd; 1018 clocksource_counter.vdso_clock_mode = vdso_default; 1019 } else { 1020 arch_timer_read_counter = arch_counter_get_cntvct_mem; 1021 } 1022 1023 if (!arch_counter_suspend_stop) 1024 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1025 start_count = arch_timer_read_counter(); 1026 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 1027 cyclecounter.mult = clocksource_counter.mult; 1028 cyclecounter.shift = clocksource_counter.shift; 1029 timecounter_init(&arch_timer_kvm_info.timecounter, 1030 &cyclecounter, start_count); 1031 1032 /* 56 bits minimum, so we assume worst case rollover */ 1033 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 1034 } 1035 1036 static void arch_timer_stop(struct clock_event_device *clk) 1037 { 1038 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1039 1040 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1041 if (arch_timer_has_nonsecure_ppi()) 1042 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1043 1044 clk->set_state_shutdown(clk); 1045 } 1046 1047 static int arch_timer_dying_cpu(unsigned int cpu) 1048 { 1049 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1050 1051 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1052 1053 arch_timer_stop(clk); 1054 return 0; 1055 } 1056 1057 #ifdef CONFIG_CPU_PM 1058 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1059 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1060 unsigned long action, void *hcpu) 1061 { 1062 if (action == CPU_PM_ENTER) { 1063 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1064 1065 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1066 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1067 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1068 1069 if (arch_timer_have_evtstrm_feature()) 1070 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1071 } 1072 return NOTIFY_OK; 1073 } 1074 1075 static struct notifier_block arch_timer_cpu_pm_notifier = { 1076 .notifier_call = arch_timer_cpu_pm_notify, 1077 }; 1078 1079 static int __init arch_timer_cpu_pm_init(void) 1080 { 1081 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1082 } 1083 1084 static void __init arch_timer_cpu_pm_deinit(void) 1085 { 1086 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1087 } 1088 1089 #else 1090 static int __init arch_timer_cpu_pm_init(void) 1091 { 1092 return 0; 1093 } 1094 1095 static void __init arch_timer_cpu_pm_deinit(void) 1096 { 1097 } 1098 #endif 1099 1100 static int __init arch_timer_register(void) 1101 { 1102 int err; 1103 int ppi; 1104 1105 arch_timer_evt = alloc_percpu(struct clock_event_device); 1106 if (!arch_timer_evt) { 1107 err = -ENOMEM; 1108 goto out; 1109 } 1110 1111 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1112 switch (arch_timer_uses_ppi) { 1113 case ARCH_TIMER_VIRT_PPI: 1114 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1115 "arch_timer", arch_timer_evt); 1116 break; 1117 case ARCH_TIMER_PHYS_SECURE_PPI: 1118 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1119 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1120 "arch_timer", arch_timer_evt); 1121 if (!err && arch_timer_has_nonsecure_ppi()) { 1122 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1123 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1124 "arch_timer", arch_timer_evt); 1125 if (err) 1126 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1127 arch_timer_evt); 1128 } 1129 break; 1130 case ARCH_TIMER_HYP_PPI: 1131 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1132 "arch_timer", arch_timer_evt); 1133 break; 1134 default: 1135 BUG(); 1136 } 1137 1138 if (err) { 1139 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1140 goto out_free; 1141 } 1142 1143 err = arch_timer_cpu_pm_init(); 1144 if (err) 1145 goto out_unreg_notify; 1146 1147 /* Register and immediately configure the timer on the boot CPU */ 1148 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1149 "clockevents/arm/arch_timer:starting", 1150 arch_timer_starting_cpu, arch_timer_dying_cpu); 1151 if (err) 1152 goto out_unreg_cpupm; 1153 return 0; 1154 1155 out_unreg_cpupm: 1156 arch_timer_cpu_pm_deinit(); 1157 1158 out_unreg_notify: 1159 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1160 if (arch_timer_has_nonsecure_ppi()) 1161 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1162 arch_timer_evt); 1163 1164 out_free: 1165 free_percpu(arch_timer_evt); 1166 out: 1167 return err; 1168 } 1169 1170 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1171 { 1172 int ret; 1173 irq_handler_t func; 1174 struct arch_timer *t; 1175 1176 t = kzalloc(sizeof(*t), GFP_KERNEL); 1177 if (!t) 1178 return -ENOMEM; 1179 1180 t->base = base; 1181 t->evt.irq = irq; 1182 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1183 1184 if (arch_timer_mem_use_virtual) 1185 func = arch_timer_handler_virt_mem; 1186 else 1187 func = arch_timer_handler_phys_mem; 1188 1189 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1190 if (ret) { 1191 pr_err("Failed to request mem timer irq\n"); 1192 kfree(t); 1193 } 1194 1195 return ret; 1196 } 1197 1198 static const struct of_device_id arch_timer_of_match[] __initconst = { 1199 { .compatible = "arm,armv7-timer", }, 1200 { .compatible = "arm,armv8-timer", }, 1201 {}, 1202 }; 1203 1204 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1205 { .compatible = "arm,armv7-timer-mem", }, 1206 {}, 1207 }; 1208 1209 static bool __init arch_timer_needs_of_probing(void) 1210 { 1211 struct device_node *dn; 1212 bool needs_probing = false; 1213 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1214 1215 /* We have two timers, and both device-tree nodes are probed. */ 1216 if ((arch_timers_present & mask) == mask) 1217 return false; 1218 1219 /* 1220 * Only one type of timer is probed, 1221 * check if we have another type of timer node in device-tree. 1222 */ 1223 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1224 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1225 else 1226 dn = of_find_matching_node(NULL, arch_timer_of_match); 1227 1228 if (dn && of_device_is_available(dn)) 1229 needs_probing = true; 1230 1231 of_node_put(dn); 1232 1233 return needs_probing; 1234 } 1235 1236 static int __init arch_timer_common_init(void) 1237 { 1238 arch_timer_banner(arch_timers_present); 1239 arch_counter_register(arch_timers_present); 1240 return arch_timer_arch_init(); 1241 } 1242 1243 /** 1244 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1245 * 1246 * If HYP mode is available, we know that the physical timer 1247 * has been configured to be accessible from PL1. Use it, so 1248 * that a guest can use the virtual timer instead. 1249 * 1250 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1251 * accesses to CNTP_*_EL1 registers are silently redirected to 1252 * their CNTHP_*_EL2 counterparts, and use a different PPI 1253 * number. 1254 * 1255 * If no interrupt provided for virtual timer, we'll have to 1256 * stick to the physical timer. It'd better be accessible... 1257 * For arm64 we never use the secure interrupt. 1258 * 1259 * Return: a suitable PPI type for the current system. 1260 */ 1261 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1262 { 1263 if (is_kernel_in_hyp_mode()) 1264 return ARCH_TIMER_HYP_PPI; 1265 1266 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1267 return ARCH_TIMER_VIRT_PPI; 1268 1269 if (IS_ENABLED(CONFIG_ARM64)) 1270 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1271 1272 return ARCH_TIMER_PHYS_SECURE_PPI; 1273 } 1274 1275 static void __init arch_timer_populate_kvm_info(void) 1276 { 1277 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1278 if (is_kernel_in_hyp_mode()) 1279 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1280 } 1281 1282 static int __init arch_timer_of_init(struct device_node *np) 1283 { 1284 int i, ret; 1285 u32 rate; 1286 1287 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1288 pr_warn("multiple nodes in dt, skipping\n"); 1289 return 0; 1290 } 1291 1292 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1293 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) 1294 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 1295 1296 arch_timer_populate_kvm_info(); 1297 1298 rate = arch_timer_get_cntfrq(); 1299 arch_timer_of_configure_rate(rate, np); 1300 1301 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1302 1303 /* Check for globally applicable workarounds */ 1304 arch_timer_check_ool_workaround(ate_match_dt, np); 1305 1306 /* 1307 * If we cannot rely on firmware initializing the timer registers then 1308 * we should use the physical timers instead. 1309 */ 1310 if (IS_ENABLED(CONFIG_ARM) && 1311 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1312 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1313 else 1314 arch_timer_uses_ppi = arch_timer_select_ppi(); 1315 1316 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1317 pr_err("No interrupt available, giving up\n"); 1318 return -EINVAL; 1319 } 1320 1321 /* On some systems, the counter stops ticking when in suspend. */ 1322 arch_counter_suspend_stop = of_property_read_bool(np, 1323 "arm,no-tick-in-suspend"); 1324 1325 ret = arch_timer_register(); 1326 if (ret) 1327 return ret; 1328 1329 if (arch_timer_needs_of_probing()) 1330 return 0; 1331 1332 return arch_timer_common_init(); 1333 } 1334 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1335 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1336 1337 static u32 __init 1338 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1339 { 1340 void __iomem *base; 1341 u32 rate; 1342 1343 base = ioremap(frame->cntbase, frame->size); 1344 if (!base) { 1345 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1346 return 0; 1347 } 1348 1349 rate = readl_relaxed(base + CNTFRQ); 1350 1351 iounmap(base); 1352 1353 return rate; 1354 } 1355 1356 static struct arch_timer_mem_frame * __init 1357 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1358 { 1359 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1360 void __iomem *cntctlbase; 1361 u32 cnttidr; 1362 int i; 1363 1364 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1365 if (!cntctlbase) { 1366 pr_err("Can't map CNTCTLBase @ %pa\n", 1367 &timer_mem->cntctlbase); 1368 return NULL; 1369 } 1370 1371 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1372 1373 /* 1374 * Try to find a virtual capable frame. Otherwise fall back to a 1375 * physical capable frame. 1376 */ 1377 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1378 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1379 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1380 1381 frame = &timer_mem->frame[i]; 1382 if (!frame->valid) 1383 continue; 1384 1385 /* Try enabling everything, and see what sticks */ 1386 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1387 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1388 1389 if ((cnttidr & CNTTIDR_VIRT(i)) && 1390 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1391 best_frame = frame; 1392 arch_timer_mem_use_virtual = true; 1393 break; 1394 } 1395 1396 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1397 continue; 1398 1399 best_frame = frame; 1400 } 1401 1402 iounmap(cntctlbase); 1403 1404 return best_frame; 1405 } 1406 1407 static int __init 1408 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1409 { 1410 void __iomem *base; 1411 int ret, irq = 0; 1412 1413 if (arch_timer_mem_use_virtual) 1414 irq = frame->virt_irq; 1415 else 1416 irq = frame->phys_irq; 1417 1418 if (!irq) { 1419 pr_err("Frame missing %s irq.\n", 1420 arch_timer_mem_use_virtual ? "virt" : "phys"); 1421 return -EINVAL; 1422 } 1423 1424 if (!request_mem_region(frame->cntbase, frame->size, 1425 "arch_mem_timer")) 1426 return -EBUSY; 1427 1428 base = ioremap(frame->cntbase, frame->size); 1429 if (!base) { 1430 pr_err("Can't map frame's registers\n"); 1431 return -ENXIO; 1432 } 1433 1434 ret = arch_timer_mem_register(base, irq); 1435 if (ret) { 1436 iounmap(base); 1437 return ret; 1438 } 1439 1440 arch_counter_base = base; 1441 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1442 1443 return 0; 1444 } 1445 1446 static int __init arch_timer_mem_of_init(struct device_node *np) 1447 { 1448 struct arch_timer_mem *timer_mem; 1449 struct arch_timer_mem_frame *frame; 1450 struct device_node *frame_node; 1451 struct resource res; 1452 int ret = -EINVAL; 1453 u32 rate; 1454 1455 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1456 if (!timer_mem) 1457 return -ENOMEM; 1458 1459 if (of_address_to_resource(np, 0, &res)) 1460 goto out; 1461 timer_mem->cntctlbase = res.start; 1462 timer_mem->size = resource_size(&res); 1463 1464 for_each_available_child_of_node(np, frame_node) { 1465 u32 n; 1466 struct arch_timer_mem_frame *frame; 1467 1468 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1469 pr_err(FW_BUG "Missing frame-number.\n"); 1470 of_node_put(frame_node); 1471 goto out; 1472 } 1473 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1474 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1475 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1476 of_node_put(frame_node); 1477 goto out; 1478 } 1479 frame = &timer_mem->frame[n]; 1480 1481 if (frame->valid) { 1482 pr_err(FW_BUG "Duplicated frame-number.\n"); 1483 of_node_put(frame_node); 1484 goto out; 1485 } 1486 1487 if (of_address_to_resource(frame_node, 0, &res)) { 1488 of_node_put(frame_node); 1489 goto out; 1490 } 1491 frame->cntbase = res.start; 1492 frame->size = resource_size(&res); 1493 1494 frame->virt_irq = irq_of_parse_and_map(frame_node, 1495 ARCH_TIMER_VIRT_SPI); 1496 frame->phys_irq = irq_of_parse_and_map(frame_node, 1497 ARCH_TIMER_PHYS_SPI); 1498 1499 frame->valid = true; 1500 } 1501 1502 frame = arch_timer_mem_find_best_frame(timer_mem); 1503 if (!frame) { 1504 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1505 &timer_mem->cntctlbase); 1506 ret = -EINVAL; 1507 goto out; 1508 } 1509 1510 rate = arch_timer_mem_frame_get_cntfrq(frame); 1511 arch_timer_of_configure_rate(rate, np); 1512 1513 ret = arch_timer_mem_frame_register(frame); 1514 if (!ret && !arch_timer_needs_of_probing()) 1515 ret = arch_timer_common_init(); 1516 out: 1517 kfree(timer_mem); 1518 return ret; 1519 } 1520 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1521 arch_timer_mem_of_init); 1522 1523 #ifdef CONFIG_ACPI_GTDT 1524 static int __init 1525 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1526 { 1527 struct arch_timer_mem_frame *frame; 1528 u32 rate; 1529 int i; 1530 1531 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1532 frame = &timer_mem->frame[i]; 1533 1534 if (!frame->valid) 1535 continue; 1536 1537 rate = arch_timer_mem_frame_get_cntfrq(frame); 1538 if (rate == arch_timer_rate) 1539 continue; 1540 1541 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1542 &frame->cntbase, 1543 (unsigned long)rate, (unsigned long)arch_timer_rate); 1544 1545 return -EINVAL; 1546 } 1547 1548 return 0; 1549 } 1550 1551 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1552 { 1553 struct arch_timer_mem *timers, *timer; 1554 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1555 int timer_count, i, ret = 0; 1556 1557 timers = kcalloc(platform_timer_count, sizeof(*timers), 1558 GFP_KERNEL); 1559 if (!timers) 1560 return -ENOMEM; 1561 1562 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1563 if (ret || !timer_count) 1564 goto out; 1565 1566 /* 1567 * While unlikely, it's theoretically possible that none of the frames 1568 * in a timer expose the combination of feature we want. 1569 */ 1570 for (i = 0; i < timer_count; i++) { 1571 timer = &timers[i]; 1572 1573 frame = arch_timer_mem_find_best_frame(timer); 1574 if (!best_frame) 1575 best_frame = frame; 1576 1577 ret = arch_timer_mem_verify_cntfrq(timer); 1578 if (ret) { 1579 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1580 goto out; 1581 } 1582 1583 if (!best_frame) /* implies !frame */ 1584 /* 1585 * Only complain about missing suitable frames if we 1586 * haven't already found one in a previous iteration. 1587 */ 1588 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1589 &timer->cntctlbase); 1590 } 1591 1592 if (best_frame) 1593 ret = arch_timer_mem_frame_register(best_frame); 1594 out: 1595 kfree(timers); 1596 return ret; 1597 } 1598 1599 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1600 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1601 { 1602 int ret, platform_timer_count; 1603 1604 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1605 pr_warn("already initialized, skipping\n"); 1606 return -EINVAL; 1607 } 1608 1609 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1610 1611 ret = acpi_gtdt_init(table, &platform_timer_count); 1612 if (ret) 1613 return ret; 1614 1615 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1616 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1617 1618 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1619 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1620 1621 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1622 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1623 1624 arch_timer_populate_kvm_info(); 1625 1626 /* 1627 * When probing via ACPI, we have no mechanism to override the sysreg 1628 * CNTFRQ value. This *must* be correct. 1629 */ 1630 arch_timer_rate = arch_timer_get_cntfrq(); 1631 ret = validate_timer_rate(); 1632 if (ret) { 1633 pr_err(FW_BUG "frequency not available.\n"); 1634 return ret; 1635 } 1636 1637 arch_timer_uses_ppi = arch_timer_select_ppi(); 1638 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1639 pr_err("No interrupt available, giving up\n"); 1640 return -EINVAL; 1641 } 1642 1643 /* Always-on capability */ 1644 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1645 1646 /* Check for globally applicable workarounds */ 1647 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1648 1649 ret = arch_timer_register(); 1650 if (ret) 1651 return ret; 1652 1653 if (platform_timer_count && 1654 arch_timer_mem_acpi_init(platform_timer_count)) 1655 pr_err("Failed to initialize memory-mapped timer.\n"); 1656 1657 return arch_timer_common_init(); 1658 } 1659 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1660 #endif 1661