1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/interrupt.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_address.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <linux/sched_clock.h> 25 #include <linux/acpi.h> 26 27 #include <asm/arch_timer.h> 28 #include <asm/virt.h> 29 30 #include <clocksource/arm_arch_timer.h> 31 32 #define CNTTIDR 0x08 33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 34 35 #define CNTACR(n) (0x40 + ((n) * 4)) 36 #define CNTACR_RPCT BIT(0) 37 #define CNTACR_RVCT BIT(1) 38 #define CNTACR_RFRQ BIT(2) 39 #define CNTACR_RVOFF BIT(3) 40 #define CNTACR_RWVT BIT(4) 41 #define CNTACR_RWPT BIT(5) 42 43 #define CNTVCT_LO 0x08 44 #define CNTVCT_HI 0x0c 45 #define CNTFRQ 0x10 46 #define CNTP_TVAL 0x28 47 #define CNTP_CTL 0x2c 48 #define CNTV_TVAL 0x38 49 #define CNTV_CTL 0x3c 50 51 #define ARCH_CP15_TIMER BIT(0) 52 #define ARCH_MEM_TIMER BIT(1) 53 static unsigned arch_timers_present __initdata; 54 55 static void __iomem *arch_counter_base; 56 57 struct arch_timer { 58 void __iomem *base; 59 struct clock_event_device evt; 60 }; 61 62 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 63 64 static u32 arch_timer_rate; 65 66 enum ppi_nr { 67 PHYS_SECURE_PPI, 68 PHYS_NONSECURE_PPI, 69 VIRT_PPI, 70 HYP_PPI, 71 MAX_TIMER_PPI 72 }; 73 74 static int arch_timer_ppi[MAX_TIMER_PPI]; 75 76 static struct clock_event_device __percpu *arch_timer_evt; 77 78 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI; 79 static bool arch_timer_c3stop; 80 static bool arch_timer_mem_use_virtual; 81 82 /* 83 * Architected system timer support. 84 */ 85 86 static __always_inline 87 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 88 struct clock_event_device *clk) 89 { 90 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 91 struct arch_timer *timer = to_arch_timer(clk); 92 switch (reg) { 93 case ARCH_TIMER_REG_CTRL: 94 writel_relaxed(val, timer->base + CNTP_CTL); 95 break; 96 case ARCH_TIMER_REG_TVAL: 97 writel_relaxed(val, timer->base + CNTP_TVAL); 98 break; 99 } 100 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 101 struct arch_timer *timer = to_arch_timer(clk); 102 switch (reg) { 103 case ARCH_TIMER_REG_CTRL: 104 writel_relaxed(val, timer->base + CNTV_CTL); 105 break; 106 case ARCH_TIMER_REG_TVAL: 107 writel_relaxed(val, timer->base + CNTV_TVAL); 108 break; 109 } 110 } else { 111 arch_timer_reg_write_cp15(access, reg, val); 112 } 113 } 114 115 static __always_inline 116 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 117 struct clock_event_device *clk) 118 { 119 u32 val; 120 121 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 122 struct arch_timer *timer = to_arch_timer(clk); 123 switch (reg) { 124 case ARCH_TIMER_REG_CTRL: 125 val = readl_relaxed(timer->base + CNTP_CTL); 126 break; 127 case ARCH_TIMER_REG_TVAL: 128 val = readl_relaxed(timer->base + CNTP_TVAL); 129 break; 130 } 131 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 132 struct arch_timer *timer = to_arch_timer(clk); 133 switch (reg) { 134 case ARCH_TIMER_REG_CTRL: 135 val = readl_relaxed(timer->base + CNTV_CTL); 136 break; 137 case ARCH_TIMER_REG_TVAL: 138 val = readl_relaxed(timer->base + CNTV_TVAL); 139 break; 140 } 141 } else { 142 val = arch_timer_reg_read_cp15(access, reg); 143 } 144 145 return val; 146 } 147 148 static __always_inline irqreturn_t timer_handler(const int access, 149 struct clock_event_device *evt) 150 { 151 unsigned long ctrl; 152 153 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 154 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 155 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 156 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 157 evt->event_handler(evt); 158 return IRQ_HANDLED; 159 } 160 161 return IRQ_NONE; 162 } 163 164 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 165 { 166 struct clock_event_device *evt = dev_id; 167 168 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 169 } 170 171 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 172 { 173 struct clock_event_device *evt = dev_id; 174 175 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 176 } 177 178 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 179 { 180 struct clock_event_device *evt = dev_id; 181 182 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 183 } 184 185 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 186 { 187 struct clock_event_device *evt = dev_id; 188 189 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 190 } 191 192 static __always_inline int timer_shutdown(const int access, 193 struct clock_event_device *clk) 194 { 195 unsigned long ctrl; 196 197 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 198 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 199 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 200 201 return 0; 202 } 203 204 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 205 { 206 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 207 } 208 209 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 210 { 211 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 212 } 213 214 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 215 { 216 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 217 } 218 219 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 220 { 221 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 222 } 223 224 static __always_inline void set_next_event(const int access, unsigned long evt, 225 struct clock_event_device *clk) 226 { 227 unsigned long ctrl; 228 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 229 ctrl |= ARCH_TIMER_CTRL_ENABLE; 230 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 231 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 232 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 233 } 234 235 static int arch_timer_set_next_event_virt(unsigned long evt, 236 struct clock_event_device *clk) 237 { 238 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 239 return 0; 240 } 241 242 static int arch_timer_set_next_event_phys(unsigned long evt, 243 struct clock_event_device *clk) 244 { 245 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 246 return 0; 247 } 248 249 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 250 struct clock_event_device *clk) 251 { 252 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 253 return 0; 254 } 255 256 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 257 struct clock_event_device *clk) 258 { 259 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 260 return 0; 261 } 262 263 static void __arch_timer_setup(unsigned type, 264 struct clock_event_device *clk) 265 { 266 clk->features = CLOCK_EVT_FEAT_ONESHOT; 267 268 if (type == ARCH_CP15_TIMER) { 269 if (arch_timer_c3stop) 270 clk->features |= CLOCK_EVT_FEAT_C3STOP; 271 clk->name = "arch_sys_timer"; 272 clk->rating = 450; 273 clk->cpumask = cpumask_of(smp_processor_id()); 274 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 275 switch (arch_timer_uses_ppi) { 276 case VIRT_PPI: 277 clk->set_state_shutdown = arch_timer_shutdown_virt; 278 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 279 clk->set_next_event = arch_timer_set_next_event_virt; 280 break; 281 case PHYS_SECURE_PPI: 282 case PHYS_NONSECURE_PPI: 283 case HYP_PPI: 284 clk->set_state_shutdown = arch_timer_shutdown_phys; 285 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 286 clk->set_next_event = arch_timer_set_next_event_phys; 287 break; 288 default: 289 BUG(); 290 } 291 } else { 292 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 293 clk->name = "arch_mem_timer"; 294 clk->rating = 400; 295 clk->cpumask = cpu_all_mask; 296 if (arch_timer_mem_use_virtual) { 297 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 298 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 299 clk->set_next_event = 300 arch_timer_set_next_event_virt_mem; 301 } else { 302 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 303 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 304 clk->set_next_event = 305 arch_timer_set_next_event_phys_mem; 306 } 307 } 308 309 clk->set_state_shutdown(clk); 310 311 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 312 } 313 314 static void arch_timer_evtstrm_enable(int divider) 315 { 316 u32 cntkctl = arch_timer_get_cntkctl(); 317 318 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 319 /* Set the divider and enable virtual event stream */ 320 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 321 | ARCH_TIMER_VIRT_EVT_EN; 322 arch_timer_set_cntkctl(cntkctl); 323 elf_hwcap |= HWCAP_EVTSTRM; 324 #ifdef CONFIG_COMPAT 325 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 326 #endif 327 } 328 329 static void arch_timer_configure_evtstream(void) 330 { 331 int evt_stream_div, pos; 332 333 /* Find the closest power of two to the divisor */ 334 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 335 pos = fls(evt_stream_div); 336 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 337 pos--; 338 /* enable event stream */ 339 arch_timer_evtstrm_enable(min(pos, 15)); 340 } 341 342 static void arch_counter_set_user_access(void) 343 { 344 u32 cntkctl = arch_timer_get_cntkctl(); 345 346 /* Disable user access to the timers and the physical counter */ 347 /* Also disable virtual event stream */ 348 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 349 | ARCH_TIMER_USR_VT_ACCESS_EN 350 | ARCH_TIMER_VIRT_EVT_EN 351 | ARCH_TIMER_USR_PCT_ACCESS_EN); 352 353 /* Enable user access to the virtual counter */ 354 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 355 356 arch_timer_set_cntkctl(cntkctl); 357 } 358 359 static bool arch_timer_has_nonsecure_ppi(void) 360 { 361 return (arch_timer_uses_ppi == PHYS_SECURE_PPI && 362 arch_timer_ppi[PHYS_NONSECURE_PPI]); 363 } 364 365 static int arch_timer_setup(struct clock_event_device *clk) 366 { 367 __arch_timer_setup(ARCH_CP15_TIMER, clk); 368 369 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0); 370 371 if (arch_timer_has_nonsecure_ppi()) 372 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); 373 374 arch_counter_set_user_access(); 375 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM)) 376 arch_timer_configure_evtstream(); 377 378 return 0; 379 } 380 381 static void 382 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np) 383 { 384 /* Who has more than one independent system counter? */ 385 if (arch_timer_rate) 386 return; 387 388 /* 389 * Try to determine the frequency from the device tree or CNTFRQ, 390 * if ACPI is enabled, get the frequency from CNTFRQ ONLY. 391 */ 392 if (!acpi_disabled || 393 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) { 394 if (cntbase) 395 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ); 396 else 397 arch_timer_rate = arch_timer_get_cntfrq(); 398 } 399 400 /* Check the timer frequency. */ 401 if (arch_timer_rate == 0) 402 pr_warn("Architected timer frequency not available\n"); 403 } 404 405 static void arch_timer_banner(unsigned type) 406 { 407 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 408 type & ARCH_CP15_TIMER ? "cp15" : "", 409 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "", 410 type & ARCH_MEM_TIMER ? "mmio" : "", 411 (unsigned long)arch_timer_rate / 1000000, 412 (unsigned long)(arch_timer_rate / 10000) % 100, 413 type & ARCH_CP15_TIMER ? 414 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" : 415 "", 416 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "", 417 type & ARCH_MEM_TIMER ? 418 arch_timer_mem_use_virtual ? "virt" : "phys" : 419 ""); 420 } 421 422 u32 arch_timer_get_rate(void) 423 { 424 return arch_timer_rate; 425 } 426 427 static u64 arch_counter_get_cntvct_mem(void) 428 { 429 u32 vct_lo, vct_hi, tmp_hi; 430 431 do { 432 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 433 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 434 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 435 } while (vct_hi != tmp_hi); 436 437 return ((u64) vct_hi << 32) | vct_lo; 438 } 439 440 /* 441 * Default to cp15 based access because arm64 uses this function for 442 * sched_clock() before DT is probed and the cp15 method is guaranteed 443 * to exist on arm64. arm doesn't use this before DT is probed so even 444 * if we don't have the cp15 accessors we won't have a problem. 445 */ 446 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 447 448 static cycle_t arch_counter_read(struct clocksource *cs) 449 { 450 return arch_timer_read_counter(); 451 } 452 453 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) 454 { 455 return arch_timer_read_counter(); 456 } 457 458 static struct clocksource clocksource_counter = { 459 .name = "arch_sys_counter", 460 .rating = 400, 461 .read = arch_counter_read, 462 .mask = CLOCKSOURCE_MASK(56), 463 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, 464 }; 465 466 static struct cyclecounter cyclecounter = { 467 .read = arch_counter_read_cc, 468 .mask = CLOCKSOURCE_MASK(56), 469 }; 470 471 static struct arch_timer_kvm_info arch_timer_kvm_info; 472 473 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 474 { 475 return &arch_timer_kvm_info; 476 } 477 478 static void __init arch_counter_register(unsigned type) 479 { 480 u64 start_count; 481 482 /* Register the CP15 based counter if we have one */ 483 if (type & ARCH_CP15_TIMER) { 484 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI) 485 arch_timer_read_counter = arch_counter_get_cntvct; 486 else 487 arch_timer_read_counter = arch_counter_get_cntpct; 488 } else { 489 arch_timer_read_counter = arch_counter_get_cntvct_mem; 490 491 /* If the clocksource name is "arch_sys_counter" the 492 * VDSO will attempt to read the CP15-based counter. 493 * Ensure this does not happen when CP15-based 494 * counter is not available. 495 */ 496 clocksource_counter.name = "arch_mem_counter"; 497 } 498 499 start_count = arch_timer_read_counter(); 500 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 501 cyclecounter.mult = clocksource_counter.mult; 502 cyclecounter.shift = clocksource_counter.shift; 503 timecounter_init(&arch_timer_kvm_info.timecounter, 504 &cyclecounter, start_count); 505 506 /* 56 bits minimum, so we assume worst case rollover */ 507 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 508 } 509 510 static void arch_timer_stop(struct clock_event_device *clk) 511 { 512 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", 513 clk->irq, smp_processor_id()); 514 515 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 516 if (arch_timer_has_nonsecure_ppi()) 517 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); 518 519 clk->set_state_shutdown(clk); 520 } 521 522 static int arch_timer_cpu_notify(struct notifier_block *self, 523 unsigned long action, void *hcpu) 524 { 525 /* 526 * Grab cpu pointer in each case to avoid spurious 527 * preemptible warnings 528 */ 529 switch (action & ~CPU_TASKS_FROZEN) { 530 case CPU_STARTING: 531 arch_timer_setup(this_cpu_ptr(arch_timer_evt)); 532 break; 533 case CPU_DYING: 534 arch_timer_stop(this_cpu_ptr(arch_timer_evt)); 535 break; 536 } 537 538 return NOTIFY_OK; 539 } 540 541 static struct notifier_block arch_timer_cpu_nb = { 542 .notifier_call = arch_timer_cpu_notify, 543 }; 544 545 #ifdef CONFIG_CPU_PM 546 static unsigned int saved_cntkctl; 547 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 548 unsigned long action, void *hcpu) 549 { 550 if (action == CPU_PM_ENTER) 551 saved_cntkctl = arch_timer_get_cntkctl(); 552 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) 553 arch_timer_set_cntkctl(saved_cntkctl); 554 return NOTIFY_OK; 555 } 556 557 static struct notifier_block arch_timer_cpu_pm_notifier = { 558 .notifier_call = arch_timer_cpu_pm_notify, 559 }; 560 561 static int __init arch_timer_cpu_pm_init(void) 562 { 563 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 564 } 565 #else 566 static int __init arch_timer_cpu_pm_init(void) 567 { 568 return 0; 569 } 570 #endif 571 572 static int __init arch_timer_register(void) 573 { 574 int err; 575 int ppi; 576 577 arch_timer_evt = alloc_percpu(struct clock_event_device); 578 if (!arch_timer_evt) { 579 err = -ENOMEM; 580 goto out; 581 } 582 583 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 584 switch (arch_timer_uses_ppi) { 585 case VIRT_PPI: 586 err = request_percpu_irq(ppi, arch_timer_handler_virt, 587 "arch_timer", arch_timer_evt); 588 break; 589 case PHYS_SECURE_PPI: 590 case PHYS_NONSECURE_PPI: 591 err = request_percpu_irq(ppi, arch_timer_handler_phys, 592 "arch_timer", arch_timer_evt); 593 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { 594 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; 595 err = request_percpu_irq(ppi, arch_timer_handler_phys, 596 "arch_timer", arch_timer_evt); 597 if (err) 598 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 599 arch_timer_evt); 600 } 601 break; 602 case HYP_PPI: 603 err = request_percpu_irq(ppi, arch_timer_handler_phys, 604 "arch_timer", arch_timer_evt); 605 break; 606 default: 607 BUG(); 608 } 609 610 if (err) { 611 pr_err("arch_timer: can't register interrupt %d (%d)\n", 612 ppi, err); 613 goto out_free; 614 } 615 616 err = register_cpu_notifier(&arch_timer_cpu_nb); 617 if (err) 618 goto out_free_irq; 619 620 err = arch_timer_cpu_pm_init(); 621 if (err) 622 goto out_unreg_notify; 623 624 /* Immediately configure the timer on the boot CPU */ 625 arch_timer_setup(this_cpu_ptr(arch_timer_evt)); 626 627 return 0; 628 629 out_unreg_notify: 630 unregister_cpu_notifier(&arch_timer_cpu_nb); 631 out_free_irq: 632 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 633 if (arch_timer_has_nonsecure_ppi()) 634 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 635 arch_timer_evt); 636 637 out_free: 638 free_percpu(arch_timer_evt); 639 out: 640 return err; 641 } 642 643 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 644 { 645 int ret; 646 irq_handler_t func; 647 struct arch_timer *t; 648 649 t = kzalloc(sizeof(*t), GFP_KERNEL); 650 if (!t) 651 return -ENOMEM; 652 653 t->base = base; 654 t->evt.irq = irq; 655 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt); 656 657 if (arch_timer_mem_use_virtual) 658 func = arch_timer_handler_virt_mem; 659 else 660 func = arch_timer_handler_phys_mem; 661 662 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 663 if (ret) { 664 pr_err("arch_timer: Failed to request mem timer irq\n"); 665 kfree(t); 666 } 667 668 return ret; 669 } 670 671 static const struct of_device_id arch_timer_of_match[] __initconst = { 672 { .compatible = "arm,armv7-timer", }, 673 { .compatible = "arm,armv8-timer", }, 674 {}, 675 }; 676 677 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 678 { .compatible = "arm,armv7-timer-mem", }, 679 {}, 680 }; 681 682 static bool __init 683 arch_timer_needs_probing(int type, const struct of_device_id *matches) 684 { 685 struct device_node *dn; 686 bool needs_probing = false; 687 688 dn = of_find_matching_node(NULL, matches); 689 if (dn && of_device_is_available(dn) && !(arch_timers_present & type)) 690 needs_probing = true; 691 of_node_put(dn); 692 693 return needs_probing; 694 } 695 696 static void __init arch_timer_common_init(void) 697 { 698 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER; 699 700 /* Wait until both nodes are probed if we have two timers */ 701 if ((arch_timers_present & mask) != mask) { 702 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match)) 703 return; 704 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match)) 705 return; 706 } 707 708 arch_timer_banner(arch_timers_present); 709 arch_counter_register(arch_timers_present); 710 arch_timer_arch_init(); 711 } 712 713 static void __init arch_timer_init(void) 714 { 715 /* 716 * If HYP mode is available, we know that the physical timer 717 * has been configured to be accessible from PL1. Use it, so 718 * that a guest can use the virtual timer instead. 719 * 720 * If no interrupt provided for virtual timer, we'll have to 721 * stick to the physical timer. It'd better be accessible... 722 * 723 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 724 * accesses to CNTP_*_EL1 registers are silently redirected to 725 * their CNTHP_*_EL2 counterparts, and use a different PPI 726 * number. 727 */ 728 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { 729 bool has_ppi; 730 731 if (is_kernel_in_hyp_mode()) { 732 arch_timer_uses_ppi = HYP_PPI; 733 has_ppi = !!arch_timer_ppi[HYP_PPI]; 734 } else { 735 arch_timer_uses_ppi = PHYS_SECURE_PPI; 736 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] || 737 !!arch_timer_ppi[PHYS_NONSECURE_PPI]); 738 } 739 740 if (!has_ppi) { 741 pr_warn("arch_timer: No interrupt available, giving up\n"); 742 return; 743 } 744 } 745 746 arch_timer_register(); 747 arch_timer_common_init(); 748 749 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI]; 750 } 751 752 static void __init arch_timer_of_init(struct device_node *np) 753 { 754 int i; 755 756 if (arch_timers_present & ARCH_CP15_TIMER) { 757 pr_warn("arch_timer: multiple nodes in dt, skipping\n"); 758 return; 759 } 760 761 arch_timers_present |= ARCH_CP15_TIMER; 762 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) 763 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 764 765 arch_timer_detect_rate(NULL, np); 766 767 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 768 769 /* 770 * If we cannot rely on firmware initializing the timer registers then 771 * we should use the physical timers instead. 772 */ 773 if (IS_ENABLED(CONFIG_ARM) && 774 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 775 arch_timer_uses_ppi = PHYS_SECURE_PPI; 776 777 arch_timer_init(); 778 } 779 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 780 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 781 782 static void __init arch_timer_mem_init(struct device_node *np) 783 { 784 struct device_node *frame, *best_frame = NULL; 785 void __iomem *cntctlbase, *base; 786 unsigned int irq; 787 u32 cnttidr; 788 789 arch_timers_present |= ARCH_MEM_TIMER; 790 cntctlbase = of_iomap(np, 0); 791 if (!cntctlbase) { 792 pr_err("arch_timer: Can't find CNTCTLBase\n"); 793 return; 794 } 795 796 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 797 798 /* 799 * Try to find a virtual capable frame. Otherwise fall back to a 800 * physical capable frame. 801 */ 802 for_each_available_child_of_node(np, frame) { 803 int n; 804 u32 cntacr; 805 806 if (of_property_read_u32(frame, "frame-number", &n)) { 807 pr_err("arch_timer: Missing frame-number\n"); 808 of_node_put(frame); 809 goto out; 810 } 811 812 /* Try enabling everything, and see what sticks */ 813 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 814 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 815 writel_relaxed(cntacr, cntctlbase + CNTACR(n)); 816 cntacr = readl_relaxed(cntctlbase + CNTACR(n)); 817 818 if ((cnttidr & CNTTIDR_VIRT(n)) && 819 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 820 of_node_put(best_frame); 821 best_frame = frame; 822 arch_timer_mem_use_virtual = true; 823 break; 824 } 825 826 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 827 continue; 828 829 of_node_put(best_frame); 830 best_frame = of_node_get(frame); 831 } 832 833 base = arch_counter_base = of_iomap(best_frame, 0); 834 if (!base) { 835 pr_err("arch_timer: Can't map frame's registers\n"); 836 goto out; 837 } 838 839 if (arch_timer_mem_use_virtual) 840 irq = irq_of_parse_and_map(best_frame, 1); 841 else 842 irq = irq_of_parse_and_map(best_frame, 0); 843 844 if (!irq) { 845 pr_err("arch_timer: Frame missing %s irq", 846 arch_timer_mem_use_virtual ? "virt" : "phys"); 847 goto out; 848 } 849 850 arch_timer_detect_rate(base, np); 851 arch_timer_mem_register(base, irq); 852 arch_timer_common_init(); 853 out: 854 iounmap(cntctlbase); 855 of_node_put(best_frame); 856 } 857 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 858 arch_timer_mem_init); 859 860 #ifdef CONFIG_ACPI 861 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags) 862 { 863 int trigger, polarity; 864 865 if (!interrupt) 866 return 0; 867 868 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE 869 : ACPI_LEVEL_SENSITIVE; 870 871 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW 872 : ACPI_ACTIVE_HIGH; 873 874 return acpi_register_gsi(NULL, interrupt, trigger, polarity); 875 } 876 877 /* Initialize per-processor generic timer */ 878 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 879 { 880 struct acpi_table_gtdt *gtdt; 881 882 if (arch_timers_present & ARCH_CP15_TIMER) { 883 pr_warn("arch_timer: already initialized, skipping\n"); 884 return -EINVAL; 885 } 886 887 gtdt = container_of(table, struct acpi_table_gtdt, header); 888 889 arch_timers_present |= ARCH_CP15_TIMER; 890 891 arch_timer_ppi[PHYS_SECURE_PPI] = 892 map_generic_timer_interrupt(gtdt->secure_el1_interrupt, 893 gtdt->secure_el1_flags); 894 895 arch_timer_ppi[PHYS_NONSECURE_PPI] = 896 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt, 897 gtdt->non_secure_el1_flags); 898 899 arch_timer_ppi[VIRT_PPI] = 900 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt, 901 gtdt->virtual_timer_flags); 902 903 arch_timer_ppi[HYP_PPI] = 904 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt, 905 gtdt->non_secure_el2_flags); 906 907 /* Get the frequency from CNTFRQ */ 908 arch_timer_detect_rate(NULL, NULL); 909 910 /* Always-on capability */ 911 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON); 912 913 arch_timer_init(); 914 return 0; 915 } 916 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 917 #endif 918