xref: /linux/drivers/clocksource/arm_arch_timer.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26 
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29 
30 #include <clocksource/arm_arch_timer.h>
31 
32 #define CNTTIDR		0x08
33 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
34 
35 #define CNTACR(n)	(0x40 + ((n) * 4))
36 #define CNTACR_RPCT	BIT(0)
37 #define CNTACR_RVCT	BIT(1)
38 #define CNTACR_RFRQ	BIT(2)
39 #define CNTACR_RVOFF	BIT(3)
40 #define CNTACR_RWVT	BIT(4)
41 #define CNTACR_RWPT	BIT(5)
42 
43 #define CNTVCT_LO	0x08
44 #define CNTVCT_HI	0x0c
45 #define CNTFRQ		0x10
46 #define CNTP_TVAL	0x28
47 #define CNTP_CTL	0x2c
48 #define CNTV_TVAL	0x38
49 #define CNTV_CTL	0x3c
50 
51 #define ARCH_CP15_TIMER	BIT(0)
52 #define ARCH_MEM_TIMER	BIT(1)
53 static unsigned arch_timers_present __initdata;
54 
55 static void __iomem *arch_counter_base;
56 
57 struct arch_timer {
58 	void __iomem *base;
59 	struct clock_event_device evt;
60 };
61 
62 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63 
64 static u32 arch_timer_rate;
65 
66 enum ppi_nr {
67 	PHYS_SECURE_PPI,
68 	PHYS_NONSECURE_PPI,
69 	VIRT_PPI,
70 	HYP_PPI,
71 	MAX_TIMER_PPI
72 };
73 
74 static int arch_timer_ppi[MAX_TIMER_PPI];
75 
76 static struct clock_event_device __percpu *arch_timer_evt;
77 
78 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
79 static bool arch_timer_c3stop;
80 static bool arch_timer_mem_use_virtual;
81 
82 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
83 
84 static int __init early_evtstrm_cfg(char *buf)
85 {
86 	return strtobool(buf, &evtstrm_enable);
87 }
88 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
89 
90 /*
91  * Architected system timer support.
92  */
93 
94 static __always_inline
95 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
96 			  struct clock_event_device *clk)
97 {
98 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
99 		struct arch_timer *timer = to_arch_timer(clk);
100 		switch (reg) {
101 		case ARCH_TIMER_REG_CTRL:
102 			writel_relaxed(val, timer->base + CNTP_CTL);
103 			break;
104 		case ARCH_TIMER_REG_TVAL:
105 			writel_relaxed(val, timer->base + CNTP_TVAL);
106 			break;
107 		}
108 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
109 		struct arch_timer *timer = to_arch_timer(clk);
110 		switch (reg) {
111 		case ARCH_TIMER_REG_CTRL:
112 			writel_relaxed(val, timer->base + CNTV_CTL);
113 			break;
114 		case ARCH_TIMER_REG_TVAL:
115 			writel_relaxed(val, timer->base + CNTV_TVAL);
116 			break;
117 		}
118 	} else {
119 		arch_timer_reg_write_cp15(access, reg, val);
120 	}
121 }
122 
123 static __always_inline
124 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
125 			struct clock_event_device *clk)
126 {
127 	u32 val;
128 
129 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130 		struct arch_timer *timer = to_arch_timer(clk);
131 		switch (reg) {
132 		case ARCH_TIMER_REG_CTRL:
133 			val = readl_relaxed(timer->base + CNTP_CTL);
134 			break;
135 		case ARCH_TIMER_REG_TVAL:
136 			val = readl_relaxed(timer->base + CNTP_TVAL);
137 			break;
138 		}
139 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
140 		struct arch_timer *timer = to_arch_timer(clk);
141 		switch (reg) {
142 		case ARCH_TIMER_REG_CTRL:
143 			val = readl_relaxed(timer->base + CNTV_CTL);
144 			break;
145 		case ARCH_TIMER_REG_TVAL:
146 			val = readl_relaxed(timer->base + CNTV_TVAL);
147 			break;
148 		}
149 	} else {
150 		val = arch_timer_reg_read_cp15(access, reg);
151 	}
152 
153 	return val;
154 }
155 
156 static __always_inline irqreturn_t timer_handler(const int access,
157 					struct clock_event_device *evt)
158 {
159 	unsigned long ctrl;
160 
161 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
162 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
163 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
164 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
165 		evt->event_handler(evt);
166 		return IRQ_HANDLED;
167 	}
168 
169 	return IRQ_NONE;
170 }
171 
172 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
173 {
174 	struct clock_event_device *evt = dev_id;
175 
176 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
177 }
178 
179 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
180 {
181 	struct clock_event_device *evt = dev_id;
182 
183 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
184 }
185 
186 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
187 {
188 	struct clock_event_device *evt = dev_id;
189 
190 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
191 }
192 
193 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
194 {
195 	struct clock_event_device *evt = dev_id;
196 
197 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
198 }
199 
200 static __always_inline int timer_shutdown(const int access,
201 					  struct clock_event_device *clk)
202 {
203 	unsigned long ctrl;
204 
205 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
206 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
207 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
208 
209 	return 0;
210 }
211 
212 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
213 {
214 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
215 }
216 
217 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
218 {
219 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
220 }
221 
222 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
223 {
224 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
225 }
226 
227 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
228 {
229 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
230 }
231 
232 static __always_inline void set_next_event(const int access, unsigned long evt,
233 					   struct clock_event_device *clk)
234 {
235 	unsigned long ctrl;
236 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
237 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
238 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
239 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
240 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
241 }
242 
243 static int arch_timer_set_next_event_virt(unsigned long evt,
244 					  struct clock_event_device *clk)
245 {
246 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
247 	return 0;
248 }
249 
250 static int arch_timer_set_next_event_phys(unsigned long evt,
251 					  struct clock_event_device *clk)
252 {
253 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
254 	return 0;
255 }
256 
257 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
258 					      struct clock_event_device *clk)
259 {
260 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
261 	return 0;
262 }
263 
264 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
265 					      struct clock_event_device *clk)
266 {
267 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
268 	return 0;
269 }
270 
271 static void __arch_timer_setup(unsigned type,
272 			       struct clock_event_device *clk)
273 {
274 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
275 
276 	if (type == ARCH_CP15_TIMER) {
277 		if (arch_timer_c3stop)
278 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
279 		clk->name = "arch_sys_timer";
280 		clk->rating = 450;
281 		clk->cpumask = cpumask_of(smp_processor_id());
282 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
283 		switch (arch_timer_uses_ppi) {
284 		case VIRT_PPI:
285 			clk->set_state_shutdown = arch_timer_shutdown_virt;
286 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
287 			clk->set_next_event = arch_timer_set_next_event_virt;
288 			break;
289 		case PHYS_SECURE_PPI:
290 		case PHYS_NONSECURE_PPI:
291 		case HYP_PPI:
292 			clk->set_state_shutdown = arch_timer_shutdown_phys;
293 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
294 			clk->set_next_event = arch_timer_set_next_event_phys;
295 			break;
296 		default:
297 			BUG();
298 		}
299 	} else {
300 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
301 		clk->name = "arch_mem_timer";
302 		clk->rating = 400;
303 		clk->cpumask = cpu_all_mask;
304 		if (arch_timer_mem_use_virtual) {
305 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
306 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
307 			clk->set_next_event =
308 				arch_timer_set_next_event_virt_mem;
309 		} else {
310 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
311 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
312 			clk->set_next_event =
313 				arch_timer_set_next_event_phys_mem;
314 		}
315 	}
316 
317 	clk->set_state_shutdown(clk);
318 
319 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
320 }
321 
322 static void arch_timer_evtstrm_enable(int divider)
323 {
324 	u32 cntkctl = arch_timer_get_cntkctl();
325 
326 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
327 	/* Set the divider and enable virtual event stream */
328 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
329 			| ARCH_TIMER_VIRT_EVT_EN;
330 	arch_timer_set_cntkctl(cntkctl);
331 	elf_hwcap |= HWCAP_EVTSTRM;
332 #ifdef CONFIG_COMPAT
333 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
334 #endif
335 }
336 
337 static void arch_timer_configure_evtstream(void)
338 {
339 	int evt_stream_div, pos;
340 
341 	/* Find the closest power of two to the divisor */
342 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
343 	pos = fls(evt_stream_div);
344 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
345 		pos--;
346 	/* enable event stream */
347 	arch_timer_evtstrm_enable(min(pos, 15));
348 }
349 
350 static void arch_counter_set_user_access(void)
351 {
352 	u32 cntkctl = arch_timer_get_cntkctl();
353 
354 	/* Disable user access to the timers and the physical counter */
355 	/* Also disable virtual event stream */
356 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
357 			| ARCH_TIMER_USR_VT_ACCESS_EN
358 			| ARCH_TIMER_VIRT_EVT_EN
359 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
360 
361 	/* Enable user access to the virtual counter */
362 	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
363 
364 	arch_timer_set_cntkctl(cntkctl);
365 }
366 
367 static bool arch_timer_has_nonsecure_ppi(void)
368 {
369 	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
370 		arch_timer_ppi[PHYS_NONSECURE_PPI]);
371 }
372 
373 static int arch_timer_starting_cpu(unsigned int cpu)
374 {
375 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
376 
377 	__arch_timer_setup(ARCH_CP15_TIMER, clk);
378 
379 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0);
380 
381 	if (arch_timer_has_nonsecure_ppi())
382 		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
383 
384 	arch_counter_set_user_access();
385 	if (evtstrm_enable)
386 		arch_timer_configure_evtstream();
387 
388 	return 0;
389 }
390 
391 static void
392 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
393 {
394 	/* Who has more than one independent system counter? */
395 	if (arch_timer_rate)
396 		return;
397 
398 	/*
399 	 * Try to determine the frequency from the device tree or CNTFRQ,
400 	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
401 	 */
402 	if (!acpi_disabled ||
403 	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
404 		if (cntbase)
405 			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
406 		else
407 			arch_timer_rate = arch_timer_get_cntfrq();
408 	}
409 
410 	/* Check the timer frequency. */
411 	if (arch_timer_rate == 0)
412 		pr_warn("Architected timer frequency not available\n");
413 }
414 
415 static void arch_timer_banner(unsigned type)
416 {
417 	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
418 		     type & ARCH_CP15_TIMER ? "cp15" : "",
419 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
420 		     type & ARCH_MEM_TIMER ? "mmio" : "",
421 		     (unsigned long)arch_timer_rate / 1000000,
422 		     (unsigned long)(arch_timer_rate / 10000) % 100,
423 		     type & ARCH_CP15_TIMER ?
424 		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
425 			"",
426 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
427 		     type & ARCH_MEM_TIMER ?
428 			arch_timer_mem_use_virtual ? "virt" : "phys" :
429 			"");
430 }
431 
432 u32 arch_timer_get_rate(void)
433 {
434 	return arch_timer_rate;
435 }
436 
437 static u64 arch_counter_get_cntvct_mem(void)
438 {
439 	u32 vct_lo, vct_hi, tmp_hi;
440 
441 	do {
442 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
443 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
444 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
445 	} while (vct_hi != tmp_hi);
446 
447 	return ((u64) vct_hi << 32) | vct_lo;
448 }
449 
450 /*
451  * Default to cp15 based access because arm64 uses this function for
452  * sched_clock() before DT is probed and the cp15 method is guaranteed
453  * to exist on arm64. arm doesn't use this before DT is probed so even
454  * if we don't have the cp15 accessors we won't have a problem.
455  */
456 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
457 
458 static cycle_t arch_counter_read(struct clocksource *cs)
459 {
460 	return arch_timer_read_counter();
461 }
462 
463 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
464 {
465 	return arch_timer_read_counter();
466 }
467 
468 static struct clocksource clocksource_counter = {
469 	.name	= "arch_sys_counter",
470 	.rating	= 400,
471 	.read	= arch_counter_read,
472 	.mask	= CLOCKSOURCE_MASK(56),
473 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
474 };
475 
476 static struct cyclecounter cyclecounter = {
477 	.read	= arch_counter_read_cc,
478 	.mask	= CLOCKSOURCE_MASK(56),
479 };
480 
481 static struct arch_timer_kvm_info arch_timer_kvm_info;
482 
483 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
484 {
485 	return &arch_timer_kvm_info;
486 }
487 
488 static void __init arch_counter_register(unsigned type)
489 {
490 	u64 start_count;
491 
492 	/* Register the CP15 based counter if we have one */
493 	if (type & ARCH_CP15_TIMER) {
494 		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
495 			arch_timer_read_counter = arch_counter_get_cntvct;
496 		else
497 			arch_timer_read_counter = arch_counter_get_cntpct;
498 	} else {
499 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
500 
501 		/* If the clocksource name is "arch_sys_counter" the
502 		 * VDSO will attempt to read the CP15-based counter.
503 		 * Ensure this does not happen when CP15-based
504 		 * counter is not available.
505 		 */
506 		clocksource_counter.name = "arch_mem_counter";
507 	}
508 
509 	start_count = arch_timer_read_counter();
510 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
511 	cyclecounter.mult = clocksource_counter.mult;
512 	cyclecounter.shift = clocksource_counter.shift;
513 	timecounter_init(&arch_timer_kvm_info.timecounter,
514 			 &cyclecounter, start_count);
515 
516 	/* 56 bits minimum, so we assume worst case rollover */
517 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
518 }
519 
520 static void arch_timer_stop(struct clock_event_device *clk)
521 {
522 	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
523 		 clk->irq, smp_processor_id());
524 
525 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
526 	if (arch_timer_has_nonsecure_ppi())
527 		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
528 
529 	clk->set_state_shutdown(clk);
530 }
531 
532 static int arch_timer_dying_cpu(unsigned int cpu)
533 {
534 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
535 
536 	arch_timer_stop(clk);
537 	return 0;
538 }
539 
540 #ifdef CONFIG_CPU_PM
541 static unsigned int saved_cntkctl;
542 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
543 				    unsigned long action, void *hcpu)
544 {
545 	if (action == CPU_PM_ENTER)
546 		saved_cntkctl = arch_timer_get_cntkctl();
547 	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
548 		arch_timer_set_cntkctl(saved_cntkctl);
549 	return NOTIFY_OK;
550 }
551 
552 static struct notifier_block arch_timer_cpu_pm_notifier = {
553 	.notifier_call = arch_timer_cpu_pm_notify,
554 };
555 
556 static int __init arch_timer_cpu_pm_init(void)
557 {
558 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
559 }
560 
561 static void __init arch_timer_cpu_pm_deinit(void)
562 {
563 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
564 }
565 
566 #else
567 static int __init arch_timer_cpu_pm_init(void)
568 {
569 	return 0;
570 }
571 
572 static void __init arch_timer_cpu_pm_deinit(void)
573 {
574 }
575 #endif
576 
577 static int __init arch_timer_register(void)
578 {
579 	int err;
580 	int ppi;
581 
582 	arch_timer_evt = alloc_percpu(struct clock_event_device);
583 	if (!arch_timer_evt) {
584 		err = -ENOMEM;
585 		goto out;
586 	}
587 
588 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
589 	switch (arch_timer_uses_ppi) {
590 	case VIRT_PPI:
591 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
592 					 "arch_timer", arch_timer_evt);
593 		break;
594 	case PHYS_SECURE_PPI:
595 	case PHYS_NONSECURE_PPI:
596 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
597 					 "arch_timer", arch_timer_evt);
598 		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
599 			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
600 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
601 						 "arch_timer", arch_timer_evt);
602 			if (err)
603 				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
604 						arch_timer_evt);
605 		}
606 		break;
607 	case HYP_PPI:
608 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
609 					 "arch_timer", arch_timer_evt);
610 		break;
611 	default:
612 		BUG();
613 	}
614 
615 	if (err) {
616 		pr_err("arch_timer: can't register interrupt %d (%d)\n",
617 		       ppi, err);
618 		goto out_free;
619 	}
620 
621 	err = arch_timer_cpu_pm_init();
622 	if (err)
623 		goto out_unreg_notify;
624 
625 
626 	/* Register and immediately configure the timer on the boot CPU */
627 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
628 				"AP_ARM_ARCH_TIMER_STARTING",
629 				arch_timer_starting_cpu, arch_timer_dying_cpu);
630 	if (err)
631 		goto out_unreg_cpupm;
632 	return 0;
633 
634 out_unreg_cpupm:
635 	arch_timer_cpu_pm_deinit();
636 
637 out_unreg_notify:
638 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
639 	if (arch_timer_has_nonsecure_ppi())
640 		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
641 				arch_timer_evt);
642 
643 out_free:
644 	free_percpu(arch_timer_evt);
645 out:
646 	return err;
647 }
648 
649 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
650 {
651 	int ret;
652 	irq_handler_t func;
653 	struct arch_timer *t;
654 
655 	t = kzalloc(sizeof(*t), GFP_KERNEL);
656 	if (!t)
657 		return -ENOMEM;
658 
659 	t->base = base;
660 	t->evt.irq = irq;
661 	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
662 
663 	if (arch_timer_mem_use_virtual)
664 		func = arch_timer_handler_virt_mem;
665 	else
666 		func = arch_timer_handler_phys_mem;
667 
668 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
669 	if (ret) {
670 		pr_err("arch_timer: Failed to request mem timer irq\n");
671 		kfree(t);
672 	}
673 
674 	return ret;
675 }
676 
677 static const struct of_device_id arch_timer_of_match[] __initconst = {
678 	{ .compatible   = "arm,armv7-timer",    },
679 	{ .compatible   = "arm,armv8-timer",    },
680 	{},
681 };
682 
683 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
684 	{ .compatible   = "arm,armv7-timer-mem", },
685 	{},
686 };
687 
688 static bool __init
689 arch_timer_needs_probing(int type, const struct of_device_id *matches)
690 {
691 	struct device_node *dn;
692 	bool needs_probing = false;
693 
694 	dn = of_find_matching_node(NULL, matches);
695 	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
696 		needs_probing = true;
697 	of_node_put(dn);
698 
699 	return needs_probing;
700 }
701 
702 static int __init arch_timer_common_init(void)
703 {
704 	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
705 
706 	/* Wait until both nodes are probed if we have two timers */
707 	if ((arch_timers_present & mask) != mask) {
708 		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
709 			return 0;
710 		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
711 			return 0;
712 	}
713 
714 	arch_timer_banner(arch_timers_present);
715 	arch_counter_register(arch_timers_present);
716 	return arch_timer_arch_init();
717 }
718 
719 static int __init arch_timer_init(void)
720 {
721 	int ret;
722 	/*
723 	 * If HYP mode is available, we know that the physical timer
724 	 * has been configured to be accessible from PL1. Use it, so
725 	 * that a guest can use the virtual timer instead.
726 	 *
727 	 * If no interrupt provided for virtual timer, we'll have to
728 	 * stick to the physical timer. It'd better be accessible...
729 	 *
730 	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
731 	 * accesses to CNTP_*_EL1 registers are silently redirected to
732 	 * their CNTHP_*_EL2 counterparts, and use a different PPI
733 	 * number.
734 	 */
735 	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
736 		bool has_ppi;
737 
738 		if (is_kernel_in_hyp_mode()) {
739 			arch_timer_uses_ppi = HYP_PPI;
740 			has_ppi = !!arch_timer_ppi[HYP_PPI];
741 		} else {
742 			arch_timer_uses_ppi = PHYS_SECURE_PPI;
743 			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
744 				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
745 		}
746 
747 		if (!has_ppi) {
748 			pr_warn("arch_timer: No interrupt available, giving up\n");
749 			return -EINVAL;
750 		}
751 	}
752 
753 	ret = arch_timer_register();
754 	if (ret)
755 		return ret;
756 
757 	ret = arch_timer_common_init();
758 	if (ret)
759 		return ret;
760 
761 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
762 
763 	return 0;
764 }
765 
766 static int __init arch_timer_of_init(struct device_node *np)
767 {
768 	int i;
769 
770 	if (arch_timers_present & ARCH_CP15_TIMER) {
771 		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
772 		return 0;
773 	}
774 
775 	arch_timers_present |= ARCH_CP15_TIMER;
776 	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
777 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
778 
779 	arch_timer_detect_rate(NULL, np);
780 
781 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
782 
783 	/*
784 	 * If we cannot rely on firmware initializing the timer registers then
785 	 * we should use the physical timers instead.
786 	 */
787 	if (IS_ENABLED(CONFIG_ARM) &&
788 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
789 		arch_timer_uses_ppi = PHYS_SECURE_PPI;
790 
791 	return arch_timer_init();
792 }
793 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
794 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
795 
796 static int __init arch_timer_mem_init(struct device_node *np)
797 {
798 	struct device_node *frame, *best_frame = NULL;
799 	void __iomem *cntctlbase, *base;
800 	unsigned int irq, ret = -EINVAL;
801 	u32 cnttidr;
802 
803 	arch_timers_present |= ARCH_MEM_TIMER;
804 	cntctlbase = of_iomap(np, 0);
805 	if (!cntctlbase) {
806 		pr_err("arch_timer: Can't find CNTCTLBase\n");
807 		return -ENXIO;
808 	}
809 
810 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
811 
812 	/*
813 	 * Try to find a virtual capable frame. Otherwise fall back to a
814 	 * physical capable frame.
815 	 */
816 	for_each_available_child_of_node(np, frame) {
817 		int n;
818 		u32 cntacr;
819 
820 		if (of_property_read_u32(frame, "frame-number", &n)) {
821 			pr_err("arch_timer: Missing frame-number\n");
822 			of_node_put(frame);
823 			goto out;
824 		}
825 
826 		/* Try enabling everything, and see what sticks */
827 		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
828 			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
829 		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
830 		cntacr = readl_relaxed(cntctlbase + CNTACR(n));
831 
832 		if ((cnttidr & CNTTIDR_VIRT(n)) &&
833 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
834 			of_node_put(best_frame);
835 			best_frame = frame;
836 			arch_timer_mem_use_virtual = true;
837 			break;
838 		}
839 
840 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
841 			continue;
842 
843 		of_node_put(best_frame);
844 		best_frame = of_node_get(frame);
845 	}
846 
847 	ret= -ENXIO;
848 	base = arch_counter_base = of_iomap(best_frame, 0);
849 	if (!base) {
850 		pr_err("arch_timer: Can't map frame's registers\n");
851 		goto out;
852 	}
853 
854 	if (arch_timer_mem_use_virtual)
855 		irq = irq_of_parse_and_map(best_frame, 1);
856 	else
857 		irq = irq_of_parse_and_map(best_frame, 0);
858 
859 	ret = -EINVAL;
860 	if (!irq) {
861 		pr_err("arch_timer: Frame missing %s irq",
862 		       arch_timer_mem_use_virtual ? "virt" : "phys");
863 		goto out;
864 	}
865 
866 	arch_timer_detect_rate(base, np);
867 	ret = arch_timer_mem_register(base, irq);
868 	if (ret)
869 		goto out;
870 
871 	return arch_timer_common_init();
872 out:
873 	iounmap(cntctlbase);
874 	of_node_put(best_frame);
875 	return ret;
876 }
877 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
878 		       arch_timer_mem_init);
879 
880 #ifdef CONFIG_ACPI
881 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
882 {
883 	int trigger, polarity;
884 
885 	if (!interrupt)
886 		return 0;
887 
888 	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
889 			: ACPI_LEVEL_SENSITIVE;
890 
891 	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
892 			: ACPI_ACTIVE_HIGH;
893 
894 	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
895 }
896 
897 /* Initialize per-processor generic timer */
898 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
899 {
900 	struct acpi_table_gtdt *gtdt;
901 
902 	if (arch_timers_present & ARCH_CP15_TIMER) {
903 		pr_warn("arch_timer: already initialized, skipping\n");
904 		return -EINVAL;
905 	}
906 
907 	gtdt = container_of(table, struct acpi_table_gtdt, header);
908 
909 	arch_timers_present |= ARCH_CP15_TIMER;
910 
911 	arch_timer_ppi[PHYS_SECURE_PPI] =
912 		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
913 		gtdt->secure_el1_flags);
914 
915 	arch_timer_ppi[PHYS_NONSECURE_PPI] =
916 		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
917 		gtdt->non_secure_el1_flags);
918 
919 	arch_timer_ppi[VIRT_PPI] =
920 		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
921 		gtdt->virtual_timer_flags);
922 
923 	arch_timer_ppi[HYP_PPI] =
924 		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
925 		gtdt->non_secure_el2_flags);
926 
927 	/* Get the frequency from CNTFRQ */
928 	arch_timer_detect_rate(NULL, NULL);
929 
930 	/* Always-on capability */
931 	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
932 
933 	arch_timer_init();
934 	return 0;
935 }
936 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
937 #endif
938