xref: /linux/drivers/clocksource/arc_timer.c (revision 8083f3d78825c0ea1948339613914b46105bfd0b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
4  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5  */
6 
7 /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
8  * programmed to go from @count to @limit and optionally interrupt.
9  * We've designated TIMER0 for clockevents and TIMER1 for clocksource
10  *
11  * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
12  * which are suitable for UP and SMP based clocksources respectively
13  */
14 
15 #include <linux/interrupt.h>
16 #include <linux/clk.h>
17 #include <linux/clk-provider.h>
18 #include <linux/clocksource.h>
19 #include <linux/clockchips.h>
20 #include <linux/cpu.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/sched_clock.h>
24 
25 #include <soc/arc/timers.h>
26 #include <soc/arc/mcip.h>
27 
28 
29 static unsigned long arc_timer_freq;
30 
31 static int noinline arc_get_timer_clk(struct device_node *node)
32 {
33 	struct clk *clk;
34 	int ret;
35 
36 	clk = of_clk_get(node, 0);
37 	if (IS_ERR(clk)) {
38 		pr_err("timer missing clk\n");
39 		return PTR_ERR(clk);
40 	}
41 
42 	ret = clk_prepare_enable(clk);
43 	if (ret) {
44 		pr_err("Couldn't enable parent clk\n");
45 		return ret;
46 	}
47 
48 	arc_timer_freq = clk_get_rate(clk);
49 
50 	return 0;
51 }
52 
53 /********** Clock Source Device *********/
54 
55 #ifdef CONFIG_ARC_TIMERS_64BIT
56 
57 static u64 arc_read_gfrc(struct clocksource *cs)
58 {
59 	unsigned long flags;
60 	u32 l, h;
61 
62 	/*
63 	 * From a programming model pov, there seems to be just one instance of
64 	 * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
65 	 * an instance PER ARC CORE (not per cluster), and there are dedicated
66 	 * hardware decode logic (per core) inside ARConnect to handle
67 	 * simultaneous read/write accesses from cores via those two registers.
68 	 * So several concurrent commands to ARConnect are OK if they are
69 	 * trying to access two different sub-components (like GFRC,
70 	 * inter-core interrupt, etc...). HW also supports simultaneously
71 	 * accessing GFRC by multiple cores.
72 	 * That's why it is safe to disable hard interrupts on the local CPU
73 	 * before access to GFRC instead of taking global MCIP spinlock
74 	 * defined in arch/arc/kernel/mcip.c
75 	 */
76 	local_irq_save(flags);
77 
78 	__mcip_cmd(CMD_GFRC_READ_LO, 0);
79 	l = read_aux_reg(ARC_REG_MCIP_READBACK);
80 
81 	__mcip_cmd(CMD_GFRC_READ_HI, 0);
82 	h = read_aux_reg(ARC_REG_MCIP_READBACK);
83 
84 	local_irq_restore(flags);
85 
86 	return (((u64)h) << 32) | l;
87 }
88 
89 static notrace u64 arc_gfrc_clock_read(void)
90 {
91 	return arc_read_gfrc(NULL);
92 }
93 
94 static struct clocksource arc_counter_gfrc = {
95 	.name   = "ARConnect GFRC",
96 	.rating = 400,
97 	.read   = arc_read_gfrc,
98 	.mask   = CLOCKSOURCE_MASK(64),
99 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
100 };
101 
102 static int __init arc_cs_setup_gfrc(struct device_node *node)
103 {
104 	struct mcip_bcr mp;
105 	int ret;
106 
107 	READ_BCR(ARC_REG_MCIP_BCR, mp);
108 	if (!mp.gfrc) {
109 		pr_warn("Global-64-bit-Ctr clocksource not detected\n");
110 		return -ENXIO;
111 	}
112 
113 	ret = arc_get_timer_clk(node);
114 	if (ret)
115 		return ret;
116 
117 	sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
118 
119 	return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
120 }
121 TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
122 
123 #define AUX_RTC_CTRL	0x103
124 #define AUX_RTC_LOW	0x104
125 #define AUX_RTC_HIGH	0x105
126 
127 static u64 arc_read_rtc(struct clocksource *cs)
128 {
129 	unsigned long status;
130 	u32 l, h;
131 
132 	/*
133 	 * hardware has an internal state machine which tracks readout of
134 	 * low/high and updates the CTRL.status if
135 	 *  - interrupt/exception taken between the two reads
136 	 *  - high increments after low has been read
137 	 */
138 	do {
139 		l = read_aux_reg(AUX_RTC_LOW);
140 		h = read_aux_reg(AUX_RTC_HIGH);
141 		status = read_aux_reg(AUX_RTC_CTRL);
142 	} while (!(status & _BITUL(31)));
143 
144 	return (((u64)h) << 32) | l;
145 }
146 
147 static notrace u64 arc_rtc_clock_read(void)
148 {
149 	return arc_read_rtc(NULL);
150 }
151 
152 static struct clocksource arc_counter_rtc = {
153 	.name   = "ARCv2 RTC",
154 	.rating = 350,
155 	.read   = arc_read_rtc,
156 	.mask   = CLOCKSOURCE_MASK(64),
157 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
158 };
159 
160 static int __init arc_cs_setup_rtc(struct device_node *node)
161 {
162 	struct bcr_timer timer;
163 	int ret;
164 
165 	READ_BCR(ARC_REG_TIMERS_BCR, timer);
166 	if (!timer.rtc) {
167 		pr_warn("Local-64-bit-Ctr clocksource not detected\n");
168 		return -ENXIO;
169 	}
170 
171 	/* Local to CPU hence not usable in SMP */
172 	if (IS_ENABLED(CONFIG_SMP)) {
173 		pr_warn("Local-64-bit-Ctr not usable in SMP\n");
174 		return -EINVAL;
175 	}
176 
177 	ret = arc_get_timer_clk(node);
178 	if (ret)
179 		return ret;
180 
181 	write_aux_reg(AUX_RTC_CTRL, 1);
182 
183 	sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
184 
185 	return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
186 }
187 TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
188 
189 #endif
190 
191 /*
192  * 32bit TIMER1 to keep counting monotonically and wraparound
193  */
194 
195 static u64 arc_read_timer1(struct clocksource *cs)
196 {
197 	return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
198 }
199 
200 static notrace u64 arc_timer1_clock_read(void)
201 {
202 	return arc_read_timer1(NULL);
203 }
204 
205 static struct clocksource arc_counter_timer1 = {
206 	.name   = "ARC Timer1",
207 	.rating = 300,
208 	.read   = arc_read_timer1,
209 	.mask   = CLOCKSOURCE_MASK(32),
210 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
211 };
212 
213 static int __init arc_cs_setup_timer1(struct device_node *node)
214 {
215 	int ret;
216 
217 	/* Local to CPU hence not usable in SMP */
218 	if (IS_ENABLED(CONFIG_SMP))
219 		return -EINVAL;
220 
221 	ret = arc_get_timer_clk(node);
222 	if (ret)
223 		return ret;
224 
225 	write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
226 	write_aux_reg(ARC_REG_TIMER1_CNT, 0);
227 	write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
228 
229 	sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
230 
231 	return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
232 }
233 
234 /********** Clock Event Device *********/
235 
236 static int arc_timer_irq;
237 
238 /*
239  * Arm the timer to interrupt after @cycles
240  * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
241  */
242 static void arc_timer_event_setup(unsigned int cycles)
243 {
244 	write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
245 	write_aux_reg(ARC_REG_TIMER0_CNT, 0);	/* start from 0 */
246 
247 	write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
248 }
249 
250 
251 static int arc_clkevent_set_next_event(unsigned long delta,
252 				       struct clock_event_device *dev)
253 {
254 	arc_timer_event_setup(delta);
255 	return 0;
256 }
257 
258 static int arc_clkevent_set_periodic(struct clock_event_device *dev)
259 {
260 	/*
261 	 * At X Hz, 1 sec = 1000ms -> X cycles;
262 	 *		      10ms -> X / 100 cycles
263 	 */
264 	arc_timer_event_setup(arc_timer_freq / HZ);
265 	return 0;
266 }
267 
268 static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
269 	.name			= "ARC Timer0",
270 	.features		= CLOCK_EVT_FEAT_ONESHOT |
271 				  CLOCK_EVT_FEAT_PERIODIC,
272 	.rating			= 300,
273 	.set_next_event		= arc_clkevent_set_next_event,
274 	.set_state_periodic	= arc_clkevent_set_periodic,
275 };
276 
277 static irqreturn_t timer_irq_handler(int irq, void *dev_id)
278 {
279 	/*
280 	 * Note that generic IRQ core could have passed @evt for @dev_id if
281 	 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
282 	 */
283 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
284 	int irq_reenable = clockevent_state_periodic(evt);
285 
286 	/*
287 	 * 1. ACK the interrupt
288 	 *    - For ARC700, any write to CTRL reg ACKs it, so just rewrite
289 	 *      Count when [N]ot [H]alted bit.
290 	 *    - For HS3x, it is a bit subtle. On taken count-down interrupt,
291 	 *      IP bit [3] is set, which needs to be cleared for ACK'ing.
292 	 *      The write below can only update the other two bits, hence
293 	 *      explicitly clears IP bit
294 	 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
295 	 */
296 	write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
297 
298 	evt->event_handler(evt);
299 
300 	return IRQ_HANDLED;
301 }
302 
303 
304 static int arc_timer_starting_cpu(unsigned int cpu)
305 {
306 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
307 
308 	evt->cpumask = cpumask_of(smp_processor_id());
309 
310 	clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
311 	enable_percpu_irq(arc_timer_irq, 0);
312 	return 0;
313 }
314 
315 static int arc_timer_dying_cpu(unsigned int cpu)
316 {
317 	disable_percpu_irq(arc_timer_irq);
318 	return 0;
319 }
320 
321 /*
322  * clockevent setup for boot CPU
323  */
324 static int __init arc_clockevent_setup(struct device_node *node)
325 {
326 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
327 	int ret;
328 
329 	arc_timer_irq = irq_of_parse_and_map(node, 0);
330 	if (arc_timer_irq <= 0) {
331 		pr_err("clockevent: missing irq\n");
332 		return -EINVAL;
333 	}
334 
335 	ret = arc_get_timer_clk(node);
336 	if (ret) {
337 		pr_err("clockevent: missing clk\n");
338 		return ret;
339 	}
340 
341 	/* Needs apriori irq_set_percpu_devid() done in intc map function */
342 	ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
343 				 "Timer0 (per-cpu-tick)", evt);
344 	if (ret) {
345 		pr_err("clockevent: unable to request irq\n");
346 		return ret;
347 	}
348 
349 	ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
350 				"clockevents/arc/timer:starting",
351 				arc_timer_starting_cpu,
352 				arc_timer_dying_cpu);
353 	if (ret) {
354 		pr_err("Failed to setup hotplug state\n");
355 		return ret;
356 	}
357 	return 0;
358 }
359 
360 static int __init arc_of_timer_init(struct device_node *np)
361 {
362 	static int init_count = 0;
363 	int ret;
364 
365 	if (!init_count) {
366 		init_count = 1;
367 		ret = arc_clockevent_setup(np);
368 	} else {
369 		ret = arc_cs_setup_timer1(np);
370 	}
371 
372 	return ret;
373 }
374 TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
375