xref: /linux/drivers/clocksource/arc_timer.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
3  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
11  * programmed to go from @count to @limit and optionally interrupt.
12  * We've designated TIMER0 for clockevents and TIMER1 for clocksource
13  *
14  * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
15  * which are suitable for UP and SMP based clocksources respectively
16  */
17 
18 #include <linux/interrupt.h>
19 #include <linux/clk.h>
20 #include <linux/clk-provider.h>
21 #include <linux/clocksource.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/of.h>
25 #include <linux/of_irq.h>
26 #include <linux/sched_clock.h>
27 
28 #include <soc/arc/timers.h>
29 #include <soc/arc/mcip.h>
30 
31 
32 static unsigned long arc_timer_freq;
33 
34 static int noinline arc_get_timer_clk(struct device_node *node)
35 {
36 	struct clk *clk;
37 	int ret;
38 
39 	clk = of_clk_get(node, 0);
40 	if (IS_ERR(clk)) {
41 		pr_err("timer missing clk\n");
42 		return PTR_ERR(clk);
43 	}
44 
45 	ret = clk_prepare_enable(clk);
46 	if (ret) {
47 		pr_err("Couldn't enable parent clk\n");
48 		return ret;
49 	}
50 
51 	arc_timer_freq = clk_get_rate(clk);
52 
53 	return 0;
54 }
55 
56 /********** Clock Source Device *********/
57 
58 #ifdef CONFIG_ARC_TIMERS_64BIT
59 
60 static u64 arc_read_gfrc(struct clocksource *cs)
61 {
62 	unsigned long flags;
63 	u32 l, h;
64 
65 	/*
66 	 * From a programming model pov, there seems to be just one instance of
67 	 * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
68 	 * an instance PER ARC CORE (not per cluster), and there are dedicated
69 	 * hardware decode logic (per core) inside ARConnect to handle
70 	 * simultaneous read/write accesses from cores via those two registers.
71 	 * So several concurrent commands to ARConnect are OK if they are
72 	 * trying to access two different sub-components (like GFRC,
73 	 * inter-core interrupt, etc...). HW also supports simultaneously
74 	 * accessing GFRC by multiple cores.
75 	 * That's why it is safe to disable hard interrupts on the local CPU
76 	 * before access to GFRC instead of taking global MCIP spinlock
77 	 * defined in arch/arc/kernel/mcip.c
78 	 */
79 	local_irq_save(flags);
80 
81 	__mcip_cmd(CMD_GFRC_READ_LO, 0);
82 	l = read_aux_reg(ARC_REG_MCIP_READBACK);
83 
84 	__mcip_cmd(CMD_GFRC_READ_HI, 0);
85 	h = read_aux_reg(ARC_REG_MCIP_READBACK);
86 
87 	local_irq_restore(flags);
88 
89 	return (((u64)h) << 32) | l;
90 }
91 
92 static notrace u64 arc_gfrc_clock_read(void)
93 {
94 	return arc_read_gfrc(NULL);
95 }
96 
97 static struct clocksource arc_counter_gfrc = {
98 	.name   = "ARConnect GFRC",
99 	.rating = 400,
100 	.read   = arc_read_gfrc,
101 	.mask   = CLOCKSOURCE_MASK(64),
102 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
103 };
104 
105 static int __init arc_cs_setup_gfrc(struct device_node *node)
106 {
107 	struct mcip_bcr mp;
108 	int ret;
109 
110 	READ_BCR(ARC_REG_MCIP_BCR, mp);
111 	if (!mp.gfrc) {
112 		pr_warn("Global-64-bit-Ctr clocksource not detected\n");
113 		return -ENXIO;
114 	}
115 
116 	ret = arc_get_timer_clk(node);
117 	if (ret)
118 		return ret;
119 
120 	sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
121 
122 	return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
123 }
124 TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
125 
126 #define AUX_RTC_CTRL	0x103
127 #define AUX_RTC_LOW	0x104
128 #define AUX_RTC_HIGH	0x105
129 
130 static u64 arc_read_rtc(struct clocksource *cs)
131 {
132 	unsigned long status;
133 	u32 l, h;
134 
135 	/*
136 	 * hardware has an internal state machine which tracks readout of
137 	 * low/high and updates the CTRL.status if
138 	 *  - interrupt/exception taken between the two reads
139 	 *  - high increments after low has been read
140 	 */
141 	do {
142 		l = read_aux_reg(AUX_RTC_LOW);
143 		h = read_aux_reg(AUX_RTC_HIGH);
144 		status = read_aux_reg(AUX_RTC_CTRL);
145 	} while (!(status & _BITUL(31)));
146 
147 	return (((u64)h) << 32) | l;
148 }
149 
150 static notrace u64 arc_rtc_clock_read(void)
151 {
152 	return arc_read_rtc(NULL);
153 }
154 
155 static struct clocksource arc_counter_rtc = {
156 	.name   = "ARCv2 RTC",
157 	.rating = 350,
158 	.read   = arc_read_rtc,
159 	.mask   = CLOCKSOURCE_MASK(64),
160 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
161 };
162 
163 static int __init arc_cs_setup_rtc(struct device_node *node)
164 {
165 	struct bcr_timer timer;
166 	int ret;
167 
168 	READ_BCR(ARC_REG_TIMERS_BCR, timer);
169 	if (!timer.rtc) {
170 		pr_warn("Local-64-bit-Ctr clocksource not detected\n");
171 		return -ENXIO;
172 	}
173 
174 	/* Local to CPU hence not usable in SMP */
175 	if (IS_ENABLED(CONFIG_SMP)) {
176 		pr_warn("Local-64-bit-Ctr not usable in SMP\n");
177 		return -EINVAL;
178 	}
179 
180 	ret = arc_get_timer_clk(node);
181 	if (ret)
182 		return ret;
183 
184 	write_aux_reg(AUX_RTC_CTRL, 1);
185 
186 	sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
187 
188 	return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
189 }
190 TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
191 
192 #endif
193 
194 /*
195  * 32bit TIMER1 to keep counting monotonically and wraparound
196  */
197 
198 static u64 arc_read_timer1(struct clocksource *cs)
199 {
200 	return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
201 }
202 
203 static notrace u64 arc_timer1_clock_read(void)
204 {
205 	return arc_read_timer1(NULL);
206 }
207 
208 static struct clocksource arc_counter_timer1 = {
209 	.name   = "ARC Timer1",
210 	.rating = 300,
211 	.read   = arc_read_timer1,
212 	.mask   = CLOCKSOURCE_MASK(32),
213 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
214 };
215 
216 static int __init arc_cs_setup_timer1(struct device_node *node)
217 {
218 	int ret;
219 
220 	/* Local to CPU hence not usable in SMP */
221 	if (IS_ENABLED(CONFIG_SMP))
222 		return -EINVAL;
223 
224 	ret = arc_get_timer_clk(node);
225 	if (ret)
226 		return ret;
227 
228 	write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
229 	write_aux_reg(ARC_REG_TIMER1_CNT, 0);
230 	write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
231 
232 	sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
233 
234 	return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
235 }
236 
237 /********** Clock Event Device *********/
238 
239 static int arc_timer_irq;
240 
241 /*
242  * Arm the timer to interrupt after @cycles
243  * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
244  */
245 static void arc_timer_event_setup(unsigned int cycles)
246 {
247 	write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
248 	write_aux_reg(ARC_REG_TIMER0_CNT, 0);	/* start from 0 */
249 
250 	write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
251 }
252 
253 
254 static int arc_clkevent_set_next_event(unsigned long delta,
255 				       struct clock_event_device *dev)
256 {
257 	arc_timer_event_setup(delta);
258 	return 0;
259 }
260 
261 static int arc_clkevent_set_periodic(struct clock_event_device *dev)
262 {
263 	/*
264 	 * At X Hz, 1 sec = 1000ms -> X cycles;
265 	 *		      10ms -> X / 100 cycles
266 	 */
267 	arc_timer_event_setup(arc_timer_freq / HZ);
268 	return 0;
269 }
270 
271 static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
272 	.name			= "ARC Timer0",
273 	.features		= CLOCK_EVT_FEAT_ONESHOT |
274 				  CLOCK_EVT_FEAT_PERIODIC,
275 	.rating			= 300,
276 	.set_next_event		= arc_clkevent_set_next_event,
277 	.set_state_periodic	= arc_clkevent_set_periodic,
278 };
279 
280 static irqreturn_t timer_irq_handler(int irq, void *dev_id)
281 {
282 	/*
283 	 * Note that generic IRQ core could have passed @evt for @dev_id if
284 	 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
285 	 */
286 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
287 	int irq_reenable = clockevent_state_periodic(evt);
288 
289 	/*
290 	 * 1. ACK the interrupt
291 	 *    - For ARC700, any write to CTRL reg ACKs it, so just rewrite
292 	 *      Count when [N]ot [H]alted bit.
293 	 *    - For HS3x, it is a bit subtle. On taken count-down interrupt,
294 	 *      IP bit [3] is set, which needs to be cleared for ACK'ing.
295 	 *      The write below can only update the other two bits, hence
296 	 *      explicitly clears IP bit
297 	 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
298 	 */
299 	write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
300 
301 	evt->event_handler(evt);
302 
303 	return IRQ_HANDLED;
304 }
305 
306 
307 static int arc_timer_starting_cpu(unsigned int cpu)
308 {
309 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
310 
311 	evt->cpumask = cpumask_of(smp_processor_id());
312 
313 	clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
314 	enable_percpu_irq(arc_timer_irq, 0);
315 	return 0;
316 }
317 
318 static int arc_timer_dying_cpu(unsigned int cpu)
319 {
320 	disable_percpu_irq(arc_timer_irq);
321 	return 0;
322 }
323 
324 /*
325  * clockevent setup for boot CPU
326  */
327 static int __init arc_clockevent_setup(struct device_node *node)
328 {
329 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
330 	int ret;
331 
332 	arc_timer_irq = irq_of_parse_and_map(node, 0);
333 	if (arc_timer_irq <= 0) {
334 		pr_err("clockevent: missing irq\n");
335 		return -EINVAL;
336 	}
337 
338 	ret = arc_get_timer_clk(node);
339 	if (ret) {
340 		pr_err("clockevent: missing clk\n");
341 		return ret;
342 	}
343 
344 	/* Needs apriori irq_set_percpu_devid() done in intc map function */
345 	ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
346 				 "Timer0 (per-cpu-tick)", evt);
347 	if (ret) {
348 		pr_err("clockevent: unable to request irq\n");
349 		return ret;
350 	}
351 
352 	ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
353 				"clockevents/arc/timer:starting",
354 				arc_timer_starting_cpu,
355 				arc_timer_dying_cpu);
356 	if (ret) {
357 		pr_err("Failed to setup hotplug state\n");
358 		return ret;
359 	}
360 	return 0;
361 }
362 
363 static int __init arc_of_timer_init(struct device_node *np)
364 {
365 	static int init_count = 0;
366 	int ret;
367 
368 	if (!init_count) {
369 		init_count = 1;
370 		ret = arc_clockevent_setup(np);
371 	} else {
372 		ret = arc_cs_setup_timer1(np);
373 	}
374 
375 	return ret;
376 }
377 TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
378