xref: /linux/drivers/clk/ti/fapll.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License as
4  * published by the Free Software Foundation version 2.
5  *
6  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
7  * kind, whether express or implied; without even the implied warranty
8  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9  * GNU General Public License for more details.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/math64.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/clk/ti.h>
21 
22 /* FAPLL Control Register PLL_CTRL */
23 #define FAPLL_MAIN_MULT_N_SHIFT	16
24 #define FAPLL_MAIN_DIV_P_SHIFT	8
25 #define FAPLL_MAIN_LOCK		BIT(7)
26 #define FAPLL_MAIN_PLLEN	BIT(3)
27 #define FAPLL_MAIN_BP		BIT(2)
28 #define FAPLL_MAIN_LOC_CTL	BIT(0)
29 
30 #define FAPLL_MAIN_MAX_MULT_N	0xffff
31 #define FAPLL_MAIN_MAX_DIV_P	0xff
32 #define FAPLL_MAIN_CLEAR_MASK	\
33 	((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
34 	 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
35 	 FAPLL_MAIN_LOC_CTL)
36 
37 /* FAPLL powerdown register PWD */
38 #define FAPLL_PWD_OFFSET	4
39 
40 #define MAX_FAPLL_OUTPUTS	7
41 #define FAPLL_MAX_RETRIES	1000
42 
43 #define to_fapll(_hw)		container_of(_hw, struct fapll_data, hw)
44 #define to_synth(_hw)		container_of(_hw, struct fapll_synth, hw)
45 
46 /* The bypass bit is inverted on the ddr_pll.. */
47 #define fapll_is_ddr_pll(va)	(((u32)(va) & 0xffff) == 0x0440)
48 
49 /*
50  * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
51  * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
52  */
53 #define is_ddr_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x044c)
54 #define is_audio_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x04a8)
55 
56 /* Synthesizer divider register */
57 #define SYNTH_LDMDIV1		BIT(8)
58 
59 /* Synthesizer frequency register */
60 #define SYNTH_LDFREQ		BIT(31)
61 
62 #define SYNTH_PHASE_K		8
63 #define SYNTH_MAX_INT_DIV	0xf
64 #define SYNTH_MAX_DIV_M		0xff
65 
66 struct fapll_data {
67 	struct clk_hw hw;
68 	void __iomem *base;
69 	const char *name;
70 	struct clk *clk_ref;
71 	struct clk *clk_bypass;
72 	struct clk_onecell_data outputs;
73 	bool bypass_bit_inverted;
74 };
75 
76 struct fapll_synth {
77 	struct clk_hw hw;
78 	struct fapll_data *fd;
79 	int index;
80 	void __iomem *freq;
81 	void __iomem *div;
82 	const char *name;
83 	struct clk *clk_pll;
84 };
85 
86 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
87 {
88 	u32 v = readl_relaxed(fd->base);
89 
90 	if (fd->bypass_bit_inverted)
91 		return !(v & FAPLL_MAIN_BP);
92 	else
93 		return !!(v & FAPLL_MAIN_BP);
94 }
95 
96 static void ti_fapll_set_bypass(struct fapll_data *fd)
97 {
98 	u32 v = readl_relaxed(fd->base);
99 
100 	if (fd->bypass_bit_inverted)
101 		v &= ~FAPLL_MAIN_BP;
102 	else
103 		v |= FAPLL_MAIN_BP;
104 	writel_relaxed(v, fd->base);
105 }
106 
107 static void ti_fapll_clear_bypass(struct fapll_data *fd)
108 {
109 	u32 v = readl_relaxed(fd->base);
110 
111 	if (fd->bypass_bit_inverted)
112 		v |= FAPLL_MAIN_BP;
113 	else
114 		v &= ~FAPLL_MAIN_BP;
115 	writel_relaxed(v, fd->base);
116 }
117 
118 static int ti_fapll_wait_lock(struct fapll_data *fd)
119 {
120 	int retries = FAPLL_MAX_RETRIES;
121 	u32 v;
122 
123 	while ((v = readl_relaxed(fd->base))) {
124 		if (v & FAPLL_MAIN_LOCK)
125 			return 0;
126 
127 		if (retries-- <= 0)
128 			break;
129 
130 		udelay(1);
131 	}
132 
133 	pr_err("%s failed to lock\n", fd->name);
134 
135 	return -ETIMEDOUT;
136 }
137 
138 static int ti_fapll_enable(struct clk_hw *hw)
139 {
140 	struct fapll_data *fd = to_fapll(hw);
141 	u32 v = readl_relaxed(fd->base);
142 
143 	v |= FAPLL_MAIN_PLLEN;
144 	writel_relaxed(v, fd->base);
145 	ti_fapll_wait_lock(fd);
146 
147 	return 0;
148 }
149 
150 static void ti_fapll_disable(struct clk_hw *hw)
151 {
152 	struct fapll_data *fd = to_fapll(hw);
153 	u32 v = readl_relaxed(fd->base);
154 
155 	v &= ~FAPLL_MAIN_PLLEN;
156 	writel_relaxed(v, fd->base);
157 }
158 
159 static int ti_fapll_is_enabled(struct clk_hw *hw)
160 {
161 	struct fapll_data *fd = to_fapll(hw);
162 	u32 v = readl_relaxed(fd->base);
163 
164 	return v & FAPLL_MAIN_PLLEN;
165 }
166 
167 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
168 					  unsigned long parent_rate)
169 {
170 	struct fapll_data *fd = to_fapll(hw);
171 	u32 fapll_n, fapll_p, v;
172 	u64 rate;
173 
174 	if (ti_fapll_clock_is_bypass(fd))
175 		return parent_rate;
176 
177 	rate = parent_rate;
178 
179 	/* PLL pre-divider is P and multiplier is N */
180 	v = readl_relaxed(fd->base);
181 	fapll_p = (v >> 8) & 0xff;
182 	if (fapll_p)
183 		do_div(rate, fapll_p);
184 	fapll_n = v >> 16;
185 	if (fapll_n)
186 		rate *= fapll_n;
187 
188 	return rate;
189 }
190 
191 static u8 ti_fapll_get_parent(struct clk_hw *hw)
192 {
193 	struct fapll_data *fd = to_fapll(hw);
194 
195 	if (ti_fapll_clock_is_bypass(fd))
196 		return 1;
197 
198 	return 0;
199 }
200 
201 static int ti_fapll_set_div_mult(unsigned long rate,
202 				 unsigned long parent_rate,
203 				 u32 *pre_div_p, u32 *mult_n)
204 {
205 	/*
206 	 * So far no luck getting decent clock with PLL divider,
207 	 * PLL does not seem to lock and the signal does not look
208 	 * right. It seems the divider can only be used together
209 	 * with the multiplier?
210 	 */
211 	if (rate < parent_rate) {
212 		pr_warn("FAPLL main divider rates unsupported\n");
213 		return -EINVAL;
214 	}
215 
216 	*mult_n = rate / parent_rate;
217 	if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
218 		return -EINVAL;
219 	*pre_div_p = 1;
220 
221 	return 0;
222 }
223 
224 static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
225 				unsigned long *parent_rate)
226 {
227 	u32 pre_div_p, mult_n;
228 	int error;
229 
230 	if (!rate)
231 		return -EINVAL;
232 
233 	error = ti_fapll_set_div_mult(rate, *parent_rate,
234 				      &pre_div_p, &mult_n);
235 	if (error)
236 		return error;
237 
238 	rate = *parent_rate / pre_div_p;
239 	rate *= mult_n;
240 
241 	return rate;
242 }
243 
244 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
245 			     unsigned long parent_rate)
246 {
247 	struct fapll_data *fd = to_fapll(hw);
248 	u32 pre_div_p, mult_n, v;
249 	int error;
250 
251 	if (!rate)
252 		return -EINVAL;
253 
254 	error = ti_fapll_set_div_mult(rate, parent_rate,
255 				      &pre_div_p, &mult_n);
256 	if (error)
257 		return error;
258 
259 	ti_fapll_set_bypass(fd);
260 	v = readl_relaxed(fd->base);
261 	v &= ~FAPLL_MAIN_CLEAR_MASK;
262 	v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
263 	v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
264 	writel_relaxed(v, fd->base);
265 	if (ti_fapll_is_enabled(hw))
266 		ti_fapll_wait_lock(fd);
267 	ti_fapll_clear_bypass(fd);
268 
269 	return 0;
270 }
271 
272 static const struct clk_ops ti_fapll_ops = {
273 	.enable = ti_fapll_enable,
274 	.disable = ti_fapll_disable,
275 	.is_enabled = ti_fapll_is_enabled,
276 	.recalc_rate = ti_fapll_recalc_rate,
277 	.get_parent = ti_fapll_get_parent,
278 	.round_rate = ti_fapll_round_rate,
279 	.set_rate = ti_fapll_set_rate,
280 };
281 
282 static int ti_fapll_synth_enable(struct clk_hw *hw)
283 {
284 	struct fapll_synth *synth = to_synth(hw);
285 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
286 
287 	v &= ~(1 << synth->index);
288 	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
289 
290 	return 0;
291 }
292 
293 static void ti_fapll_synth_disable(struct clk_hw *hw)
294 {
295 	struct fapll_synth *synth = to_synth(hw);
296 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
297 
298 	v |= 1 << synth->index;
299 	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
300 }
301 
302 static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
303 {
304 	struct fapll_synth *synth = to_synth(hw);
305 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
306 
307 	return !(v & (1 << synth->index));
308 }
309 
310 /*
311  * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
312  */
313 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
314 						unsigned long parent_rate)
315 {
316 	struct fapll_synth *synth = to_synth(hw);
317 	u32 synth_div_m;
318 	u64 rate;
319 
320 	/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
321 	if (!synth->div)
322 		return 32768;
323 
324 	/*
325 	 * PLL in bypass sets the synths in bypass mode too. The PLL rate
326 	 * can be also be set to 27MHz, so we can't use parent_rate to
327 	 * check for bypass mode.
328 	 */
329 	if (ti_fapll_clock_is_bypass(synth->fd))
330 		return parent_rate;
331 
332 	rate = parent_rate;
333 
334 	/*
335 	 * Synth frequency integer and fractional divider.
336 	 * Note that the phase output K is 8, so the result needs
337 	 * to be multiplied by SYNTH_PHASE_K.
338 	 */
339 	if (synth->freq) {
340 		u32 v, synth_int_div, synth_frac_div, synth_div_freq;
341 
342 		v = readl_relaxed(synth->freq);
343 		synth_int_div = (v >> 24) & 0xf;
344 		synth_frac_div = v & 0xffffff;
345 		synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
346 		rate *= 10000000;
347 		do_div(rate, synth_div_freq);
348 		rate *= SYNTH_PHASE_K;
349 	}
350 
351 	/* Synth post-divider M */
352 	synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
353 
354 	return DIV_ROUND_UP_ULL(rate, synth_div_m);
355 }
356 
357 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
358 						  unsigned long parent_rate)
359 {
360 	struct fapll_synth *synth = to_synth(hw);
361 	unsigned long current_rate, frac_rate;
362 	u32 post_div_m;
363 
364 	current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
365 	post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
366 	frac_rate = current_rate * post_div_m;
367 
368 	return frac_rate;
369 }
370 
371 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
372 					unsigned long rate,
373 					unsigned long parent_rate)
374 {
375 	u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
376 
377 	post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
378 	post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
379 	if (post_div_m > SYNTH_MAX_DIV_M)
380 		return -EINVAL;
381 	if (!post_div_m)
382 		post_div_m = 1;
383 
384 	for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
385 		synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
386 						 SYNTH_PHASE_K *
387 						 10000000,
388 						 rate * post_div_m);
389 		synth_frac_div = synth_int_div % 10000000;
390 		synth_int_div /= 10000000;
391 
392 		if (synth_int_div <= SYNTH_MAX_INT_DIV)
393 			break;
394 	}
395 
396 	if (synth_int_div > SYNTH_MAX_INT_DIV)
397 		return -EINVAL;
398 
399 	v = readl_relaxed(synth->freq);
400 	v &= ~0x1fffffff;
401 	v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
402 	v |= (synth_frac_div & 0xffffff);
403 	v |= SYNTH_LDFREQ;
404 	writel_relaxed(v, synth->freq);
405 
406 	return post_div_m;
407 }
408 
409 static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
410 				      unsigned long *parent_rate)
411 {
412 	struct fapll_synth *synth = to_synth(hw);
413 	struct fapll_data *fd = synth->fd;
414 	unsigned long r;
415 
416 	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
417 		return -EINVAL;
418 
419 	/* Only post divider m available with no fractional divider? */
420 	if (!synth->freq) {
421 		unsigned long frac_rate;
422 		u32 synth_post_div_m;
423 
424 		frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
425 		synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
426 		r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
427 		goto out;
428 	}
429 
430 	r = *parent_rate * SYNTH_PHASE_K;
431 	if (rate > r)
432 		goto out;
433 
434 	r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
435 	if (rate < r)
436 		goto out;
437 
438 	r = rate;
439 out:
440 	return r;
441 }
442 
443 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
444 				   unsigned long parent_rate)
445 {
446 	struct fapll_synth *synth = to_synth(hw);
447 	struct fapll_data *fd = synth->fd;
448 	unsigned long frac_rate, post_rate = 0;
449 	u32 post_div_m = 0, v;
450 
451 	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
452 		return -EINVAL;
453 
454 	/* Produce the rate with just post divider M? */
455 	frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
456 	if (frac_rate < rate) {
457 		if (!synth->freq)
458 			return -EINVAL;
459 	} else {
460 		post_div_m = DIV_ROUND_UP(frac_rate, rate);
461 		if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
462 			post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
463 		if (!synth->freq && !post_rate)
464 			return -EINVAL;
465 	}
466 
467 	/* Need to recalculate the fractional divider? */
468 	if ((post_rate != rate) && synth->freq)
469 		post_div_m = ti_fapll_synth_set_frac_rate(synth,
470 							  rate,
471 							  parent_rate);
472 
473 	v = readl_relaxed(synth->div);
474 	v &= ~SYNTH_MAX_DIV_M;
475 	v |= post_div_m;
476 	v |= SYNTH_LDMDIV1;
477 	writel_relaxed(v, synth->div);
478 
479 	return 0;
480 }
481 
482 static const struct clk_ops ti_fapll_synt_ops = {
483 	.enable = ti_fapll_synth_enable,
484 	.disable = ti_fapll_synth_disable,
485 	.is_enabled = ti_fapll_synth_is_enabled,
486 	.recalc_rate = ti_fapll_synth_recalc_rate,
487 	.round_rate = ti_fapll_synth_round_rate,
488 	.set_rate = ti_fapll_synth_set_rate,
489 };
490 
491 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
492 						void __iomem *freq,
493 						void __iomem *div,
494 						int index,
495 						const char *name,
496 						const char *parent,
497 						struct clk *pll_clk)
498 {
499 	struct clk_init_data *init;
500 	struct fapll_synth *synth;
501 
502 	init = kzalloc(sizeof(*init), GFP_KERNEL);
503 	if (!init)
504 		return ERR_PTR(-ENOMEM);
505 
506 	init->ops = &ti_fapll_synt_ops;
507 	init->name = name;
508 	init->parent_names = &parent;
509 	init->num_parents = 1;
510 
511 	synth = kzalloc(sizeof(*synth), GFP_KERNEL);
512 	if (!synth)
513 		goto free;
514 
515 	synth->fd = fd;
516 	synth->index = index;
517 	synth->freq = freq;
518 	synth->div = div;
519 	synth->name = name;
520 	synth->hw.init = init;
521 	synth->clk_pll = pll_clk;
522 
523 	return clk_register(NULL, &synth->hw);
524 
525 free:
526 	kfree(synth);
527 	kfree(init);
528 
529 	return ERR_PTR(-ENOMEM);
530 }
531 
532 static void __init ti_fapll_setup(struct device_node *node)
533 {
534 	struct fapll_data *fd;
535 	struct clk_init_data *init = NULL;
536 	const char *parent_name[2];
537 	struct clk *pll_clk;
538 	int i;
539 
540 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
541 	if (!fd)
542 		return;
543 
544 	fd->outputs.clks = kzalloc(sizeof(struct clk *) *
545 				   MAX_FAPLL_OUTPUTS + 1,
546 				   GFP_KERNEL);
547 	if (!fd->outputs.clks)
548 		goto free;
549 
550 	init = kzalloc(sizeof(*init), GFP_KERNEL);
551 	if (!init)
552 		goto free;
553 
554 	init->ops = &ti_fapll_ops;
555 	init->name = node->name;
556 
557 	init->num_parents = of_clk_get_parent_count(node);
558 	if (init->num_parents != 2) {
559 		pr_err("%pOFn must have two parents\n", node);
560 		goto free;
561 	}
562 
563 	of_clk_parent_fill(node, parent_name, 2);
564 	init->parent_names = parent_name;
565 
566 	fd->clk_ref = of_clk_get(node, 0);
567 	if (IS_ERR(fd->clk_ref)) {
568 		pr_err("%pOFn could not get clk_ref\n", node);
569 		goto free;
570 	}
571 
572 	fd->clk_bypass = of_clk_get(node, 1);
573 	if (IS_ERR(fd->clk_bypass)) {
574 		pr_err("%pOFn could not get clk_bypass\n", node);
575 		goto free;
576 	}
577 
578 	fd->base = of_iomap(node, 0);
579 	if (!fd->base) {
580 		pr_err("%pOFn could not get IO base\n", node);
581 		goto free;
582 	}
583 
584 	if (fapll_is_ddr_pll(fd->base))
585 		fd->bypass_bit_inverted = true;
586 
587 	fd->name = node->name;
588 	fd->hw.init = init;
589 
590 	/* Register the parent PLL */
591 	pll_clk = clk_register(NULL, &fd->hw);
592 	if (IS_ERR(pll_clk))
593 		goto unmap;
594 
595 	fd->outputs.clks[0] = pll_clk;
596 	fd->outputs.clk_num++;
597 
598 	/*
599 	 * Set up the child synthesizers starting at index 1 as the
600 	 * PLL output is at index 0. We need to check the clock-indices
601 	 * for numbering in case there are holes in the synth mapping,
602 	 * and then probe the synth register to see if it has a FREQ
603 	 * register available.
604 	 */
605 	for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
606 		const char *output_name;
607 		void __iomem *freq, *div;
608 		struct clk *synth_clk;
609 		int output_instance;
610 		u32 v;
611 
612 		if (of_property_read_string_index(node, "clock-output-names",
613 						  i, &output_name))
614 			continue;
615 
616 		if (of_property_read_u32_index(node, "clock-indices", i,
617 					       &output_instance))
618 			output_instance = i;
619 
620 		freq = fd->base + (output_instance * 8);
621 		div = freq + 4;
622 
623 		/* Check for hardwired audio_pll_clk1 */
624 		if (is_audio_pll_clk1(freq)) {
625 			freq = NULL;
626 			div = NULL;
627 		} else {
628 			/* Does the synthesizer have a FREQ register? */
629 			v = readl_relaxed(freq);
630 			if (!v)
631 				freq = NULL;
632 		}
633 		synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
634 						 output_name, node->name,
635 						 pll_clk);
636 		if (IS_ERR(synth_clk))
637 			continue;
638 
639 		fd->outputs.clks[output_instance] = synth_clk;
640 		fd->outputs.clk_num++;
641 
642 		clk_register_clkdev(synth_clk, output_name, NULL);
643 	}
644 
645 	/* Register the child synthesizers as the FAPLL outputs */
646 	of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
647 	/* Add clock alias for the outputs */
648 
649 	kfree(init);
650 
651 	return;
652 
653 unmap:
654 	iounmap(fd->base);
655 free:
656 	if (fd->clk_bypass)
657 		clk_put(fd->clk_bypass);
658 	if (fd->clk_ref)
659 		clk_put(fd->clk_ref);
660 	kfree(fd->outputs.clks);
661 	kfree(fd);
662 	kfree(init);
663 }
664 
665 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
666