xref: /linux/drivers/clk/ti/fapll.c (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License as
4  * published by the Free Software Foundation version 2.
5  *
6  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
7  * kind, whether express or implied; without even the implied warranty
8  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9  * GNU General Public License for more details.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/math64.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/clk/ti.h>
21 
22 #include "clock.h"
23 
24 /* FAPLL Control Register PLL_CTRL */
25 #define FAPLL_MAIN_MULT_N_SHIFT	16
26 #define FAPLL_MAIN_DIV_P_SHIFT	8
27 #define FAPLL_MAIN_LOCK		BIT(7)
28 #define FAPLL_MAIN_PLLEN	BIT(3)
29 #define FAPLL_MAIN_BP		BIT(2)
30 #define FAPLL_MAIN_LOC_CTL	BIT(0)
31 
32 #define FAPLL_MAIN_MAX_MULT_N	0xffff
33 #define FAPLL_MAIN_MAX_DIV_P	0xff
34 #define FAPLL_MAIN_CLEAR_MASK	\
35 	((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
36 	 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
37 	 FAPLL_MAIN_LOC_CTL)
38 
39 /* FAPLL powerdown register PWD */
40 #define FAPLL_PWD_OFFSET	4
41 
42 #define MAX_FAPLL_OUTPUTS	7
43 #define FAPLL_MAX_RETRIES	1000
44 
45 #define to_fapll(_hw)		container_of(_hw, struct fapll_data, hw)
46 #define to_synth(_hw)		container_of(_hw, struct fapll_synth, hw)
47 
48 /* The bypass bit is inverted on the ddr_pll.. */
49 #define fapll_is_ddr_pll(va)	(((u32)(va) & 0xffff) == 0x0440)
50 
51 /*
52  * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
53  * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
54  */
55 #define is_ddr_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x044c)
56 #define is_audio_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x04a8)
57 
58 /* Synthesizer divider register */
59 #define SYNTH_LDMDIV1		BIT(8)
60 
61 /* Synthesizer frequency register */
62 #define SYNTH_LDFREQ		BIT(31)
63 
64 #define SYNTH_PHASE_K		8
65 #define SYNTH_MAX_INT_DIV	0xf
66 #define SYNTH_MAX_DIV_M		0xff
67 
68 struct fapll_data {
69 	struct clk_hw hw;
70 	void __iomem *base;
71 	const char *name;
72 	struct clk *clk_ref;
73 	struct clk *clk_bypass;
74 	struct clk_onecell_data outputs;
75 	bool bypass_bit_inverted;
76 };
77 
78 struct fapll_synth {
79 	struct clk_hw hw;
80 	struct fapll_data *fd;
81 	int index;
82 	void __iomem *freq;
83 	void __iomem *div;
84 	const char *name;
85 	struct clk *clk_pll;
86 };
87 
88 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
89 {
90 	u32 v = readl_relaxed(fd->base);
91 
92 	if (fd->bypass_bit_inverted)
93 		return !(v & FAPLL_MAIN_BP);
94 	else
95 		return !!(v & FAPLL_MAIN_BP);
96 }
97 
98 static void ti_fapll_set_bypass(struct fapll_data *fd)
99 {
100 	u32 v = readl_relaxed(fd->base);
101 
102 	if (fd->bypass_bit_inverted)
103 		v &= ~FAPLL_MAIN_BP;
104 	else
105 		v |= FAPLL_MAIN_BP;
106 	writel_relaxed(v, fd->base);
107 }
108 
109 static void ti_fapll_clear_bypass(struct fapll_data *fd)
110 {
111 	u32 v = readl_relaxed(fd->base);
112 
113 	if (fd->bypass_bit_inverted)
114 		v |= FAPLL_MAIN_BP;
115 	else
116 		v &= ~FAPLL_MAIN_BP;
117 	writel_relaxed(v, fd->base);
118 }
119 
120 static int ti_fapll_wait_lock(struct fapll_data *fd)
121 {
122 	int retries = FAPLL_MAX_RETRIES;
123 	u32 v;
124 
125 	while ((v = readl_relaxed(fd->base))) {
126 		if (v & FAPLL_MAIN_LOCK)
127 			return 0;
128 
129 		if (retries-- <= 0)
130 			break;
131 
132 		udelay(1);
133 	}
134 
135 	pr_err("%s failed to lock\n", fd->name);
136 
137 	return -ETIMEDOUT;
138 }
139 
140 static int ti_fapll_enable(struct clk_hw *hw)
141 {
142 	struct fapll_data *fd = to_fapll(hw);
143 	u32 v = readl_relaxed(fd->base);
144 
145 	v |= FAPLL_MAIN_PLLEN;
146 	writel_relaxed(v, fd->base);
147 	ti_fapll_wait_lock(fd);
148 
149 	return 0;
150 }
151 
152 static void ti_fapll_disable(struct clk_hw *hw)
153 {
154 	struct fapll_data *fd = to_fapll(hw);
155 	u32 v = readl_relaxed(fd->base);
156 
157 	v &= ~FAPLL_MAIN_PLLEN;
158 	writel_relaxed(v, fd->base);
159 }
160 
161 static int ti_fapll_is_enabled(struct clk_hw *hw)
162 {
163 	struct fapll_data *fd = to_fapll(hw);
164 	u32 v = readl_relaxed(fd->base);
165 
166 	return v & FAPLL_MAIN_PLLEN;
167 }
168 
169 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
170 					  unsigned long parent_rate)
171 {
172 	struct fapll_data *fd = to_fapll(hw);
173 	u32 fapll_n, fapll_p, v;
174 	u64 rate;
175 
176 	if (ti_fapll_clock_is_bypass(fd))
177 		return parent_rate;
178 
179 	rate = parent_rate;
180 
181 	/* PLL pre-divider is P and multiplier is N */
182 	v = readl_relaxed(fd->base);
183 	fapll_p = (v >> 8) & 0xff;
184 	if (fapll_p)
185 		do_div(rate, fapll_p);
186 	fapll_n = v >> 16;
187 	if (fapll_n)
188 		rate *= fapll_n;
189 
190 	return rate;
191 }
192 
193 static u8 ti_fapll_get_parent(struct clk_hw *hw)
194 {
195 	struct fapll_data *fd = to_fapll(hw);
196 
197 	if (ti_fapll_clock_is_bypass(fd))
198 		return 1;
199 
200 	return 0;
201 }
202 
203 static int ti_fapll_set_div_mult(unsigned long rate,
204 				 unsigned long parent_rate,
205 				 u32 *pre_div_p, u32 *mult_n)
206 {
207 	/*
208 	 * So far no luck getting decent clock with PLL divider,
209 	 * PLL does not seem to lock and the signal does not look
210 	 * right. It seems the divider can only be used together
211 	 * with the multiplier?
212 	 */
213 	if (rate < parent_rate) {
214 		pr_warn("FAPLL main divider rates unsupported\n");
215 		return -EINVAL;
216 	}
217 
218 	*mult_n = rate / parent_rate;
219 	if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
220 		return -EINVAL;
221 	*pre_div_p = 1;
222 
223 	return 0;
224 }
225 
226 static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
227 				unsigned long *parent_rate)
228 {
229 	u32 pre_div_p, mult_n;
230 	int error;
231 
232 	if (!rate)
233 		return -EINVAL;
234 
235 	error = ti_fapll_set_div_mult(rate, *parent_rate,
236 				      &pre_div_p, &mult_n);
237 	if (error)
238 		return error;
239 
240 	rate = *parent_rate / pre_div_p;
241 	rate *= mult_n;
242 
243 	return rate;
244 }
245 
246 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
247 			     unsigned long parent_rate)
248 {
249 	struct fapll_data *fd = to_fapll(hw);
250 	u32 pre_div_p, mult_n, v;
251 	int error;
252 
253 	if (!rate)
254 		return -EINVAL;
255 
256 	error = ti_fapll_set_div_mult(rate, parent_rate,
257 				      &pre_div_p, &mult_n);
258 	if (error)
259 		return error;
260 
261 	ti_fapll_set_bypass(fd);
262 	v = readl_relaxed(fd->base);
263 	v &= ~FAPLL_MAIN_CLEAR_MASK;
264 	v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
265 	v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
266 	writel_relaxed(v, fd->base);
267 	if (ti_fapll_is_enabled(hw))
268 		ti_fapll_wait_lock(fd);
269 	ti_fapll_clear_bypass(fd);
270 
271 	return 0;
272 }
273 
274 static const struct clk_ops ti_fapll_ops = {
275 	.enable = ti_fapll_enable,
276 	.disable = ti_fapll_disable,
277 	.is_enabled = ti_fapll_is_enabled,
278 	.recalc_rate = ti_fapll_recalc_rate,
279 	.get_parent = ti_fapll_get_parent,
280 	.round_rate = ti_fapll_round_rate,
281 	.set_rate = ti_fapll_set_rate,
282 };
283 
284 static int ti_fapll_synth_enable(struct clk_hw *hw)
285 {
286 	struct fapll_synth *synth = to_synth(hw);
287 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
288 
289 	v &= ~(1 << synth->index);
290 	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
291 
292 	return 0;
293 }
294 
295 static void ti_fapll_synth_disable(struct clk_hw *hw)
296 {
297 	struct fapll_synth *synth = to_synth(hw);
298 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
299 
300 	v |= 1 << synth->index;
301 	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
302 }
303 
304 static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
305 {
306 	struct fapll_synth *synth = to_synth(hw);
307 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
308 
309 	return !(v & (1 << synth->index));
310 }
311 
312 /*
313  * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
314  */
315 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
316 						unsigned long parent_rate)
317 {
318 	struct fapll_synth *synth = to_synth(hw);
319 	u32 synth_div_m;
320 	u64 rate;
321 
322 	/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
323 	if (!synth->div)
324 		return 32768;
325 
326 	/*
327 	 * PLL in bypass sets the synths in bypass mode too. The PLL rate
328 	 * can be also be set to 27MHz, so we can't use parent_rate to
329 	 * check for bypass mode.
330 	 */
331 	if (ti_fapll_clock_is_bypass(synth->fd))
332 		return parent_rate;
333 
334 	rate = parent_rate;
335 
336 	/*
337 	 * Synth frequency integer and fractional divider.
338 	 * Note that the phase output K is 8, so the result needs
339 	 * to be multiplied by SYNTH_PHASE_K.
340 	 */
341 	if (synth->freq) {
342 		u32 v, synth_int_div, synth_frac_div, synth_div_freq;
343 
344 		v = readl_relaxed(synth->freq);
345 		synth_int_div = (v >> 24) & 0xf;
346 		synth_frac_div = v & 0xffffff;
347 		synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
348 		rate *= 10000000;
349 		do_div(rate, synth_div_freq);
350 		rate *= SYNTH_PHASE_K;
351 	}
352 
353 	/* Synth post-divider M */
354 	synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
355 
356 	return DIV_ROUND_UP_ULL(rate, synth_div_m);
357 }
358 
359 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
360 						  unsigned long parent_rate)
361 {
362 	struct fapll_synth *synth = to_synth(hw);
363 	unsigned long current_rate, frac_rate;
364 	u32 post_div_m;
365 
366 	current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
367 	post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
368 	frac_rate = current_rate * post_div_m;
369 
370 	return frac_rate;
371 }
372 
373 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
374 					unsigned long rate,
375 					unsigned long parent_rate)
376 {
377 	u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
378 
379 	post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
380 	post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
381 	if (post_div_m > SYNTH_MAX_DIV_M)
382 		return -EINVAL;
383 	if (!post_div_m)
384 		post_div_m = 1;
385 
386 	for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
387 		synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
388 						 SYNTH_PHASE_K *
389 						 10000000,
390 						 rate * post_div_m);
391 		synth_frac_div = synth_int_div % 10000000;
392 		synth_int_div /= 10000000;
393 
394 		if (synth_int_div <= SYNTH_MAX_INT_DIV)
395 			break;
396 	}
397 
398 	if (synth_int_div > SYNTH_MAX_INT_DIV)
399 		return -EINVAL;
400 
401 	v = readl_relaxed(synth->freq);
402 	v &= ~0x1fffffff;
403 	v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
404 	v |= (synth_frac_div & 0xffffff);
405 	v |= SYNTH_LDFREQ;
406 	writel_relaxed(v, synth->freq);
407 
408 	return post_div_m;
409 }
410 
411 static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
412 				      unsigned long *parent_rate)
413 {
414 	struct fapll_synth *synth = to_synth(hw);
415 	struct fapll_data *fd = synth->fd;
416 	unsigned long r;
417 
418 	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
419 		return -EINVAL;
420 
421 	/* Only post divider m available with no fractional divider? */
422 	if (!synth->freq) {
423 		unsigned long frac_rate;
424 		u32 synth_post_div_m;
425 
426 		frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
427 		synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
428 		r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
429 		goto out;
430 	}
431 
432 	r = *parent_rate * SYNTH_PHASE_K;
433 	if (rate > r)
434 		goto out;
435 
436 	r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
437 	if (rate < r)
438 		goto out;
439 
440 	r = rate;
441 out:
442 	return r;
443 }
444 
445 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
446 				   unsigned long parent_rate)
447 {
448 	struct fapll_synth *synth = to_synth(hw);
449 	struct fapll_data *fd = synth->fd;
450 	unsigned long frac_rate, post_rate = 0;
451 	u32 post_div_m = 0, v;
452 
453 	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
454 		return -EINVAL;
455 
456 	/* Produce the rate with just post divider M? */
457 	frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
458 	if (frac_rate < rate) {
459 		if (!synth->freq)
460 			return -EINVAL;
461 	} else {
462 		post_div_m = DIV_ROUND_UP(frac_rate, rate);
463 		if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
464 			post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
465 		if (!synth->freq && !post_rate)
466 			return -EINVAL;
467 	}
468 
469 	/* Need to recalculate the fractional divider? */
470 	if ((post_rate != rate) && synth->freq)
471 		post_div_m = ti_fapll_synth_set_frac_rate(synth,
472 							  rate,
473 							  parent_rate);
474 
475 	v = readl_relaxed(synth->div);
476 	v &= ~SYNTH_MAX_DIV_M;
477 	v |= post_div_m;
478 	v |= SYNTH_LDMDIV1;
479 	writel_relaxed(v, synth->div);
480 
481 	return 0;
482 }
483 
484 static const struct clk_ops ti_fapll_synt_ops = {
485 	.enable = ti_fapll_synth_enable,
486 	.disable = ti_fapll_synth_disable,
487 	.is_enabled = ti_fapll_synth_is_enabled,
488 	.recalc_rate = ti_fapll_synth_recalc_rate,
489 	.round_rate = ti_fapll_synth_round_rate,
490 	.set_rate = ti_fapll_synth_set_rate,
491 };
492 
493 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
494 						void __iomem *freq,
495 						void __iomem *div,
496 						int index,
497 						const char *name,
498 						const char *parent,
499 						struct clk *pll_clk)
500 {
501 	struct clk_init_data *init;
502 	struct fapll_synth *synth;
503 	struct clk *clk = ERR_PTR(-ENOMEM);
504 
505 	init = kzalloc(sizeof(*init), GFP_KERNEL);
506 	if (!init)
507 		return ERR_PTR(-ENOMEM);
508 
509 	init->ops = &ti_fapll_synt_ops;
510 	init->name = name;
511 	init->parent_names = &parent;
512 	init->num_parents = 1;
513 
514 	synth = kzalloc(sizeof(*synth), GFP_KERNEL);
515 	if (!synth)
516 		goto free;
517 
518 	synth->fd = fd;
519 	synth->index = index;
520 	synth->freq = freq;
521 	synth->div = div;
522 	synth->name = name;
523 	synth->hw.init = init;
524 	synth->clk_pll = pll_clk;
525 
526 	clk = clk_register(NULL, &synth->hw);
527 	if (IS_ERR(clk)) {
528 		pr_err("failed to register clock\n");
529 		goto free;
530 	}
531 
532 	return clk;
533 
534 free:
535 	kfree(synth);
536 	kfree(init);
537 
538 	return clk;
539 }
540 
541 static void __init ti_fapll_setup(struct device_node *node)
542 {
543 	struct fapll_data *fd;
544 	struct clk_init_data *init = NULL;
545 	const char *parent_name[2];
546 	struct clk *pll_clk;
547 	const char *name;
548 	int i;
549 
550 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
551 	if (!fd)
552 		return;
553 
554 	fd->outputs.clks = kzalloc(sizeof(struct clk *) *
555 				   MAX_FAPLL_OUTPUTS + 1,
556 				   GFP_KERNEL);
557 	if (!fd->outputs.clks)
558 		goto free;
559 
560 	init = kzalloc(sizeof(*init), GFP_KERNEL);
561 	if (!init)
562 		goto free;
563 
564 	init->ops = &ti_fapll_ops;
565 	name = ti_dt_clk_name(node);
566 	init->name = name;
567 
568 	init->num_parents = of_clk_get_parent_count(node);
569 	if (init->num_parents != 2) {
570 		pr_err("%pOFn must have two parents\n", node);
571 		goto free;
572 	}
573 
574 	of_clk_parent_fill(node, parent_name, 2);
575 	init->parent_names = parent_name;
576 
577 	fd->clk_ref = of_clk_get(node, 0);
578 	if (IS_ERR(fd->clk_ref)) {
579 		pr_err("%pOFn could not get clk_ref\n", node);
580 		goto free;
581 	}
582 
583 	fd->clk_bypass = of_clk_get(node, 1);
584 	if (IS_ERR(fd->clk_bypass)) {
585 		pr_err("%pOFn could not get clk_bypass\n", node);
586 		goto free;
587 	}
588 
589 	fd->base = of_iomap(node, 0);
590 	if (!fd->base) {
591 		pr_err("%pOFn could not get IO base\n", node);
592 		goto free;
593 	}
594 
595 	if (fapll_is_ddr_pll(fd->base))
596 		fd->bypass_bit_inverted = true;
597 
598 	fd->name = name;
599 	fd->hw.init = init;
600 
601 	/* Register the parent PLL */
602 	pll_clk = clk_register(NULL, &fd->hw);
603 	if (IS_ERR(pll_clk))
604 		goto unmap;
605 
606 	fd->outputs.clks[0] = pll_clk;
607 	fd->outputs.clk_num++;
608 
609 	/*
610 	 * Set up the child synthesizers starting at index 1 as the
611 	 * PLL output is at index 0. We need to check the clock-indices
612 	 * for numbering in case there are holes in the synth mapping,
613 	 * and then probe the synth register to see if it has a FREQ
614 	 * register available.
615 	 */
616 	for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
617 		const char *output_name;
618 		void __iomem *freq, *div;
619 		struct clk *synth_clk;
620 		int output_instance;
621 		u32 v;
622 
623 		if (of_property_read_string_index(node, "clock-output-names",
624 						  i, &output_name))
625 			continue;
626 
627 		if (of_property_read_u32_index(node, "clock-indices", i,
628 					       &output_instance))
629 			output_instance = i;
630 
631 		freq = fd->base + (output_instance * 8);
632 		div = freq + 4;
633 
634 		/* Check for hardwired audio_pll_clk1 */
635 		if (is_audio_pll_clk1(freq)) {
636 			freq = NULL;
637 			div = NULL;
638 		} else {
639 			/* Does the synthesizer have a FREQ register? */
640 			v = readl_relaxed(freq);
641 			if (!v)
642 				freq = NULL;
643 		}
644 		synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
645 						 output_name, name, pll_clk);
646 		if (IS_ERR(synth_clk))
647 			continue;
648 
649 		fd->outputs.clks[output_instance] = synth_clk;
650 		fd->outputs.clk_num++;
651 
652 		clk_register_clkdev(synth_clk, output_name, NULL);
653 	}
654 
655 	/* Register the child synthesizers as the FAPLL outputs */
656 	of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
657 	/* Add clock alias for the outputs */
658 
659 	kfree(init);
660 
661 	return;
662 
663 unmap:
664 	iounmap(fd->base);
665 free:
666 	if (fd->clk_bypass)
667 		clk_put(fd->clk_bypass);
668 	if (fd->clk_ref)
669 		clk_put(fd->clk_ref);
670 	kfree(fd->outputs.clks);
671 	kfree(fd);
672 	kfree(init);
673 }
674 
675 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
676