xref: /linux/drivers/clk/ti/clkt_dpll.c (revision 088e88be5a380cc4e81963a9a02815da465d144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * OMAP2/3/4 DPLL clock functions
4  *
5  * Copyright (C) 2005-2008 Texas Instruments, Inc.
6  * Copyright (C) 2004-2010 Nokia Corporation
7  *
8  * Contacts:
9  * Richard Woodruff <r-woodruff2@ti.com>
10  * Paul Walmsley
11  */
12 #undef DEBUG
13 
14 #include <linux/kernel.h>
15 #include <linux/errno.h>
16 #include <linux/clk.h>
17 #include <linux/clk-provider.h>
18 #include <linux/io.h>
19 #include <linux/clk/ti.h>
20 
21 #include <asm/div64.h>
22 
23 #include "clock.h"
24 
25 /* DPLL rate rounding: minimum DPLL multiplier, divider values */
26 #define DPLL_MIN_MULTIPLIER		2
27 #define DPLL_MIN_DIVIDER		1
28 
29 /* Possible error results from _dpll_test_mult */
30 #define DPLL_MULT_UNDERFLOW		-1
31 
32 /*
33  * Scale factor to mitigate roundoff errors in DPLL rate rounding.
34  * The higher the scale factor, the greater the risk of arithmetic overflow,
35  * but the closer the rounded rate to the target rate.  DPLL_SCALE_FACTOR
36  * must be a power of DPLL_SCALE_BASE.
37  */
38 #define DPLL_SCALE_FACTOR		64
39 #define DPLL_SCALE_BASE			2
40 #define DPLL_ROUNDING_VAL		((DPLL_SCALE_BASE / 2) * \
41 					 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
42 
43 /*
44  * DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx.
45  * From device data manual section 4.3 "DPLL and DLL Specifications".
46  */
47 #define OMAP3PLUS_DPLL_FINT_JTYPE_MIN	500000
48 #define OMAP3PLUS_DPLL_FINT_JTYPE_MAX	2500000
49 
50 /* _dpll_test_fint() return codes */
51 #define DPLL_FINT_UNDERFLOW		-1
52 #define DPLL_FINT_INVALID		-2
53 
54 /* Private functions */
55 
56 /*
57  * _dpll_test_fint - test whether an Fint value is valid for the DPLL
58  * @clk: DPLL struct clk to test
59  * @n: divider value (N) to test
60  *
61  * Tests whether a particular divider @n will result in a valid DPLL
62  * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
63  * Correction".  Returns 0 if OK, -1 if the enclosing loop can terminate
64  * (assuming that it is counting N upwards), or -2 if the enclosing loop
65  * should skip to the next iteration (again assuming N is increasing).
66  */
67 static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n)
68 {
69 	struct dpll_data *dd;
70 	long fint, fint_min, fint_max;
71 	int ret = 0;
72 
73 	dd = clk->dpll_data;
74 
75 	/* DPLL divider must result in a valid jitter correction val */
76 	fint = clk_hw_get_rate(clk_hw_get_parent(&clk->hw)) / n;
77 
78 	if (dd->flags & DPLL_J_TYPE) {
79 		fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN;
80 		fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX;
81 	} else {
82 		fint_min = ti_clk_get_features()->fint_min;
83 		fint_max = ti_clk_get_features()->fint_max;
84 	}
85 
86 	if (!fint_min || !fint_max) {
87 		WARN(1, "No fint limits available!\n");
88 		return DPLL_FINT_INVALID;
89 	}
90 
91 	if (fint < ti_clk_get_features()->fint_min) {
92 		pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n",
93 			 n);
94 		dd->max_divider = n;
95 		ret = DPLL_FINT_UNDERFLOW;
96 	} else if (fint > ti_clk_get_features()->fint_max) {
97 		pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n",
98 			 n);
99 		dd->min_divider = n;
100 		ret = DPLL_FINT_INVALID;
101 	} else if (fint > ti_clk_get_features()->fint_band1_max &&
102 		   fint < ti_clk_get_features()->fint_band2_min) {
103 		pr_debug("rejecting n=%d due to Fint failure\n", n);
104 		ret = DPLL_FINT_INVALID;
105 	}
106 
107 	return ret;
108 }
109 
110 static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
111 					    unsigned int m, unsigned int n)
112 {
113 	unsigned long long num;
114 
115 	num = (unsigned long long)parent_rate * m;
116 	do_div(num, n);
117 	return num;
118 }
119 
120 /*
121  * _dpll_test_mult - test a DPLL multiplier value
122  * @m: pointer to the DPLL m (multiplier) value under test
123  * @n: current DPLL n (divider) value under test
124  * @new_rate: pointer to storage for the resulting rounded rate
125  * @target_rate: the desired DPLL rate
126  * @parent_rate: the DPLL's parent clock rate
127  *
128  * This code tests a DPLL multiplier value, ensuring that the
129  * resulting rate will not be higher than the target_rate, and that
130  * the multiplier value itself is valid for the DPLL.  Initially, the
131  * integer pointed to by the m argument should be prescaled by
132  * multiplying by DPLL_SCALE_FACTOR.  The code will replace this with
133  * a non-scaled m upon return.  This non-scaled m will result in a
134  * new_rate as close as possible to target_rate (but not greater than
135  * target_rate) given the current (parent_rate, n, prescaled m)
136  * triple. Returns DPLL_MULT_UNDERFLOW in the event that the
137  * non-scaled m attempted to underflow, which can allow the calling
138  * function to bail out early; or 0 upon success.
139  */
140 static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
141 			   unsigned long target_rate,
142 			   unsigned long parent_rate)
143 {
144 	int r = 0, carry = 0;
145 
146 	/* Unscale m and round if necessary */
147 	if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
148 		carry = 1;
149 	*m = (*m / DPLL_SCALE_FACTOR) + carry;
150 
151 	/*
152 	 * The new rate must be <= the target rate to avoid programming
153 	 * a rate that is impossible for the hardware to handle
154 	 */
155 	*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
156 	if (*new_rate > target_rate) {
157 		(*m)--;
158 		*new_rate = 0;
159 	}
160 
161 	/* Guard against m underflow */
162 	if (*m < DPLL_MIN_MULTIPLIER) {
163 		*m = DPLL_MIN_MULTIPLIER;
164 		*new_rate = 0;
165 		r = DPLL_MULT_UNDERFLOW;
166 	}
167 
168 	if (*new_rate == 0)
169 		*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
170 
171 	return r;
172 }
173 
174 /**
175  * _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not
176  * @v: bitfield value of the DPLL enable
177  *
178  * Checks given DPLL enable bitfield to see whether the DPLL is in bypass
179  * mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise.
180  */
181 static int _omap2_dpll_is_in_bypass(u32 v)
182 {
183 	u8 mask, val;
184 
185 	mask = ti_clk_get_features()->dpll_bypass_vals;
186 
187 	/*
188 	 * Each set bit in the mask corresponds to a bypass value equal
189 	 * to the bitshift. Go through each set-bit in the mask and
190 	 * compare against the given register value.
191 	 */
192 	while (mask) {
193 		val = __ffs(mask);
194 		mask ^= (1 << val);
195 		if (v == val)
196 			return 1;
197 	}
198 
199 	return 0;
200 }
201 
202 /* Public functions */
203 u8 omap2_init_dpll_parent(struct clk_hw *hw)
204 {
205 	struct clk_hw_omap *clk = to_clk_hw_omap(hw);
206 	u32 v;
207 	struct dpll_data *dd;
208 
209 	dd = clk->dpll_data;
210 	if (!dd)
211 		return -EINVAL;
212 
213 	v = ti_clk_ll_ops->clk_readl(&dd->control_reg);
214 	v &= dd->enable_mask;
215 	v >>= __ffs(dd->enable_mask);
216 
217 	/* Reparent the struct clk in case the dpll is in bypass */
218 	if (_omap2_dpll_is_in_bypass(v))
219 		return 1;
220 
221 	return 0;
222 }
223 
224 /**
225  * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
226  * @clk: struct clk * of a DPLL
227  *
228  * DPLLs can be locked or bypassed - basically, enabled or disabled.
229  * When locked, the DPLL output depends on the M and N values.  When
230  * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
231  * or sys_clk.  Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
232  * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
233  * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
234  * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
235  * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
236  * if the clock @clk is not a DPLL.
237  */
238 unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk)
239 {
240 	u64 dpll_clk;
241 	u32 dpll_mult, dpll_div, v;
242 	struct dpll_data *dd;
243 
244 	dd = clk->dpll_data;
245 	if (!dd)
246 		return 0;
247 
248 	/* Return bypass rate if DPLL is bypassed */
249 	v = ti_clk_ll_ops->clk_readl(&dd->control_reg);
250 	v &= dd->enable_mask;
251 	v >>= __ffs(dd->enable_mask);
252 
253 	if (_omap2_dpll_is_in_bypass(v))
254 		return clk_hw_get_rate(dd->clk_bypass);
255 
256 	v = ti_clk_ll_ops->clk_readl(&dd->mult_div1_reg);
257 	dpll_mult = v & dd->mult_mask;
258 	dpll_mult >>= __ffs(dd->mult_mask);
259 	dpll_div = v & dd->div1_mask;
260 	dpll_div >>= __ffs(dd->div1_mask);
261 
262 	dpll_clk = (u64)clk_hw_get_rate(dd->clk_ref) * dpll_mult;
263 	do_div(dpll_clk, dpll_div + 1);
264 
265 	return dpll_clk;
266 }
267 
268 /* DPLL rate rounding code */
269 
270 /**
271  * omap2_dpll_round_rate - round a target rate for an OMAP DPLL
272  * @clk: struct clk * for a DPLL
273  * @target_rate: desired DPLL clock rate
274  *
275  * Given a DPLL and a desired target rate, round the target rate to a
276  * possible, programmable rate for this DPLL.  Attempts to select the
277  * minimum possible n.  Stores the computed (m, n) in the DPLL's
278  * dpll_data structure so set_rate() will not need to call this
279  * (expensive) function again.  Returns ~0 if the target rate cannot
280  * be rounded, or the rounded rate upon success.
281  */
282 long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate,
283 			   unsigned long *parent_rate)
284 {
285 	struct clk_hw_omap *clk = to_clk_hw_omap(hw);
286 	int m, n, r, scaled_max_m;
287 	int min_delta_m = INT_MAX, min_delta_n = INT_MAX;
288 	unsigned long scaled_rt_rp;
289 	unsigned long new_rate = 0;
290 	struct dpll_data *dd;
291 	unsigned long ref_rate;
292 	long delta;
293 	long prev_min_delta = LONG_MAX;
294 	const char *clk_name;
295 
296 	if (!clk || !clk->dpll_data)
297 		return ~0;
298 
299 	dd = clk->dpll_data;
300 
301 	if (dd->max_rate && target_rate > dd->max_rate)
302 		target_rate = dd->max_rate;
303 
304 	ref_rate = clk_hw_get_rate(dd->clk_ref);
305 	clk_name = clk_hw_get_name(hw);
306 	pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n",
307 		 clk_name, target_rate);
308 
309 	scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR);
310 	scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
311 
312 	dd->last_rounded_rate = 0;
313 
314 	for (n = dd->min_divider; n <= dd->max_divider; n++) {
315 		/* Is the (input clk, divider) pair valid for the DPLL? */
316 		r = _dpll_test_fint(clk, n);
317 		if (r == DPLL_FINT_UNDERFLOW)
318 			break;
319 		else if (r == DPLL_FINT_INVALID)
320 			continue;
321 
322 		/* Compute the scaled DPLL multiplier, based on the divider */
323 		m = scaled_rt_rp * n;
324 
325 		/*
326 		 * Since we're counting n up, a m overflow means we
327 		 * can bail out completely (since as n increases in
328 		 * the next iteration, there's no way that m can
329 		 * increase beyond the current m)
330 		 */
331 		if (m > scaled_max_m)
332 			break;
333 
334 		r = _dpll_test_mult(&m, n, &new_rate, target_rate,
335 				    ref_rate);
336 
337 		/* m can't be set low enough for this n - try with a larger n */
338 		if (r == DPLL_MULT_UNDERFLOW)
339 			continue;
340 
341 		/* skip rates above our target rate */
342 		delta = target_rate - new_rate;
343 		if (delta < 0)
344 			continue;
345 
346 		if (delta < prev_min_delta) {
347 			prev_min_delta = delta;
348 			min_delta_m = m;
349 			min_delta_n = n;
350 		}
351 
352 		pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n",
353 			 clk_name, m, n, new_rate);
354 
355 		if (delta == 0)
356 			break;
357 	}
358 
359 	if (prev_min_delta == LONG_MAX) {
360 		pr_debug("clock: %s: cannot round to rate %lu\n",
361 			 clk_name, target_rate);
362 		return ~0;
363 	}
364 
365 	dd->last_rounded_m = min_delta_m;
366 	dd->last_rounded_n = min_delta_n;
367 	dd->last_rounded_rate = target_rate - prev_min_delta;
368 
369 	return dd->last_rounded_rate;
370 }
371