1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * OMAP2/3/4 DPLL clock functions 4 * 5 * Copyright (C) 2005-2008 Texas Instruments, Inc. 6 * Copyright (C) 2004-2010 Nokia Corporation 7 * 8 * Contacts: 9 * Richard Woodruff <r-woodruff2@ti.com> 10 * Paul Walmsley 11 */ 12 #undef DEBUG 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/clk.h> 17 #include <linux/clk-provider.h> 18 #include <linux/io.h> 19 #include <linux/clk/ti.h> 20 21 #include <asm/div64.h> 22 23 #include "clock.h" 24 25 /* DPLL rate rounding: minimum DPLL multiplier, divider values */ 26 #define DPLL_MIN_MULTIPLIER 2 27 #define DPLL_MIN_DIVIDER 1 28 29 /* Possible error results from _dpll_test_mult */ 30 #define DPLL_MULT_UNDERFLOW -1 31 32 /* 33 * Scale factor to mitigate roundoff errors in DPLL rate rounding. 34 * The higher the scale factor, the greater the risk of arithmetic overflow, 35 * but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR 36 * must be a power of DPLL_SCALE_BASE. 37 */ 38 #define DPLL_SCALE_FACTOR 64 39 #define DPLL_SCALE_BASE 2 40 #define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \ 41 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE)) 42 43 /* 44 * DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx. 45 * From device data manual section 4.3 "DPLL and DLL Specifications". 46 */ 47 #define OMAP3PLUS_DPLL_FINT_JTYPE_MIN 500000 48 #define OMAP3PLUS_DPLL_FINT_JTYPE_MAX 2500000 49 50 /* _dpll_test_fint() return codes */ 51 #define DPLL_FINT_UNDERFLOW -1 52 #define DPLL_FINT_INVALID -2 53 54 /* Private functions */ 55 56 /* 57 * _dpll_test_fint - test whether an Fint value is valid for the DPLL 58 * @clk: DPLL struct clk to test 59 * @n: divider value (N) to test 60 * 61 * Tests whether a particular divider @n will result in a valid DPLL 62 * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter 63 * Correction". Returns 0 if OK, -1 if the enclosing loop can terminate 64 * (assuming that it is counting N upwards), or -2 if the enclosing loop 65 * should skip to the next iteration (again assuming N is increasing). 66 */ 67 static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n) 68 { 69 struct dpll_data *dd; 70 long fint, fint_min, fint_max; 71 int ret = 0; 72 73 dd = clk->dpll_data; 74 75 /* DPLL divider must result in a valid jitter correction val */ 76 fint = clk_hw_get_rate(clk_hw_get_parent(&clk->hw)) / n; 77 78 if (dd->flags & DPLL_J_TYPE) { 79 fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN; 80 fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX; 81 } else { 82 fint_min = ti_clk_get_features()->fint_min; 83 fint_max = ti_clk_get_features()->fint_max; 84 } 85 86 if (!fint_min || !fint_max) { 87 WARN(1, "No fint limits available!\n"); 88 return DPLL_FINT_INVALID; 89 } 90 91 if (fint < ti_clk_get_features()->fint_min) { 92 pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n", 93 n); 94 dd->max_divider = n; 95 ret = DPLL_FINT_UNDERFLOW; 96 } else if (fint > ti_clk_get_features()->fint_max) { 97 pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n", 98 n); 99 dd->min_divider = n; 100 ret = DPLL_FINT_INVALID; 101 } else if (fint > ti_clk_get_features()->fint_band1_max && 102 fint < ti_clk_get_features()->fint_band2_min) { 103 pr_debug("rejecting n=%d due to Fint failure\n", n); 104 ret = DPLL_FINT_INVALID; 105 } 106 107 return ret; 108 } 109 110 static unsigned long _dpll_compute_new_rate(unsigned long parent_rate, 111 unsigned int m, unsigned int n) 112 { 113 unsigned long long num; 114 115 num = (unsigned long long)parent_rate * m; 116 do_div(num, n); 117 return num; 118 } 119 120 /* 121 * _dpll_test_mult - test a DPLL multiplier value 122 * @m: pointer to the DPLL m (multiplier) value under test 123 * @n: current DPLL n (divider) value under test 124 * @new_rate: pointer to storage for the resulting rounded rate 125 * @target_rate: the desired DPLL rate 126 * @parent_rate: the DPLL's parent clock rate 127 * 128 * This code tests a DPLL multiplier value, ensuring that the 129 * resulting rate will not be higher than the target_rate, and that 130 * the multiplier value itself is valid for the DPLL. Initially, the 131 * integer pointed to by the m argument should be prescaled by 132 * multiplying by DPLL_SCALE_FACTOR. The code will replace this with 133 * a non-scaled m upon return. This non-scaled m will result in a 134 * new_rate as close as possible to target_rate (but not greater than 135 * target_rate) given the current (parent_rate, n, prescaled m) 136 * triple. Returns DPLL_MULT_UNDERFLOW in the event that the 137 * non-scaled m attempted to underflow, which can allow the calling 138 * function to bail out early; or 0 upon success. 139 */ 140 static int _dpll_test_mult(int *m, int n, unsigned long *new_rate, 141 unsigned long target_rate, 142 unsigned long parent_rate) 143 { 144 int r = 0, carry = 0; 145 146 /* Unscale m and round if necessary */ 147 if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL) 148 carry = 1; 149 *m = (*m / DPLL_SCALE_FACTOR) + carry; 150 151 /* 152 * The new rate must be <= the target rate to avoid programming 153 * a rate that is impossible for the hardware to handle 154 */ 155 *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); 156 if (*new_rate > target_rate) { 157 (*m)--; 158 *new_rate = 0; 159 } 160 161 /* Guard against m underflow */ 162 if (*m < DPLL_MIN_MULTIPLIER) { 163 *m = DPLL_MIN_MULTIPLIER; 164 *new_rate = 0; 165 r = DPLL_MULT_UNDERFLOW; 166 } 167 168 if (*new_rate == 0) 169 *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); 170 171 return r; 172 } 173 174 /** 175 * _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not 176 * @v: bitfield value of the DPLL enable 177 * 178 * Checks given DPLL enable bitfield to see whether the DPLL is in bypass 179 * mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise. 180 */ 181 static int _omap2_dpll_is_in_bypass(u32 v) 182 { 183 u8 mask, val; 184 185 mask = ti_clk_get_features()->dpll_bypass_vals; 186 187 /* 188 * Each set bit in the mask corresponds to a bypass value equal 189 * to the bitshift. Go through each set-bit in the mask and 190 * compare against the given register value. 191 */ 192 while (mask) { 193 val = __ffs(mask); 194 mask ^= (1 << val); 195 if (v == val) 196 return 1; 197 } 198 199 return 0; 200 } 201 202 /* Public functions */ 203 u8 omap2_init_dpll_parent(struct clk_hw *hw) 204 { 205 struct clk_hw_omap *clk = to_clk_hw_omap(hw); 206 u32 v; 207 struct dpll_data *dd; 208 209 dd = clk->dpll_data; 210 if (!dd) 211 return -EINVAL; 212 213 v = ti_clk_ll_ops->clk_readl(&dd->control_reg); 214 v &= dd->enable_mask; 215 v >>= __ffs(dd->enable_mask); 216 217 /* Reparent the struct clk in case the dpll is in bypass */ 218 if (_omap2_dpll_is_in_bypass(v)) 219 return 1; 220 221 return 0; 222 } 223 224 /** 225 * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate 226 * @clk: struct clk * of a DPLL 227 * 228 * DPLLs can be locked or bypassed - basically, enabled or disabled. 229 * When locked, the DPLL output depends on the M and N values. When 230 * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock 231 * or sys_clk. Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and 232 * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively 233 * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk. 234 * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is 235 * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0 236 * if the clock @clk is not a DPLL. 237 */ 238 unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk) 239 { 240 u64 dpll_clk; 241 u32 dpll_mult, dpll_div, v; 242 struct dpll_data *dd; 243 244 dd = clk->dpll_data; 245 if (!dd) 246 return 0; 247 248 /* Return bypass rate if DPLL is bypassed */ 249 v = ti_clk_ll_ops->clk_readl(&dd->control_reg); 250 v &= dd->enable_mask; 251 v >>= __ffs(dd->enable_mask); 252 253 if (_omap2_dpll_is_in_bypass(v)) 254 return clk_hw_get_rate(dd->clk_bypass); 255 256 v = ti_clk_ll_ops->clk_readl(&dd->mult_div1_reg); 257 dpll_mult = v & dd->mult_mask; 258 dpll_mult >>= __ffs(dd->mult_mask); 259 dpll_div = v & dd->div1_mask; 260 dpll_div >>= __ffs(dd->div1_mask); 261 262 dpll_clk = (u64)clk_hw_get_rate(dd->clk_ref) * dpll_mult; 263 do_div(dpll_clk, dpll_div + 1); 264 265 return dpll_clk; 266 } 267 268 /* DPLL rate rounding code */ 269 270 /** 271 * omap2_dpll_round_rate - round a target rate for an OMAP DPLL 272 * @clk: struct clk * for a DPLL 273 * @target_rate: desired DPLL clock rate 274 * 275 * Given a DPLL and a desired target rate, round the target rate to a 276 * possible, programmable rate for this DPLL. Attempts to select the 277 * minimum possible n. Stores the computed (m, n) in the DPLL's 278 * dpll_data structure so set_rate() will not need to call this 279 * (expensive) function again. Returns ~0 if the target rate cannot 280 * be rounded, or the rounded rate upon success. 281 */ 282 long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate, 283 unsigned long *parent_rate) 284 { 285 struct clk_hw_omap *clk = to_clk_hw_omap(hw); 286 int m, n, r, scaled_max_m; 287 int min_delta_m = INT_MAX, min_delta_n = INT_MAX; 288 unsigned long scaled_rt_rp; 289 unsigned long new_rate = 0; 290 struct dpll_data *dd; 291 unsigned long ref_rate; 292 long delta; 293 long prev_min_delta = LONG_MAX; 294 const char *clk_name; 295 296 if (!clk || !clk->dpll_data) 297 return ~0; 298 299 dd = clk->dpll_data; 300 301 if (dd->max_rate && target_rate > dd->max_rate) 302 target_rate = dd->max_rate; 303 304 ref_rate = clk_hw_get_rate(dd->clk_ref); 305 clk_name = clk_hw_get_name(hw); 306 pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n", 307 clk_name, target_rate); 308 309 scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR); 310 scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR; 311 312 dd->last_rounded_rate = 0; 313 314 for (n = dd->min_divider; n <= dd->max_divider; n++) { 315 /* Is the (input clk, divider) pair valid for the DPLL? */ 316 r = _dpll_test_fint(clk, n); 317 if (r == DPLL_FINT_UNDERFLOW) 318 break; 319 else if (r == DPLL_FINT_INVALID) 320 continue; 321 322 /* Compute the scaled DPLL multiplier, based on the divider */ 323 m = scaled_rt_rp * n; 324 325 /* 326 * Since we're counting n up, a m overflow means we 327 * can bail out completely (since as n increases in 328 * the next iteration, there's no way that m can 329 * increase beyond the current m) 330 */ 331 if (m > scaled_max_m) 332 break; 333 334 r = _dpll_test_mult(&m, n, &new_rate, target_rate, 335 ref_rate); 336 337 /* m can't be set low enough for this n - try with a larger n */ 338 if (r == DPLL_MULT_UNDERFLOW) 339 continue; 340 341 /* skip rates above our target rate */ 342 delta = target_rate - new_rate; 343 if (delta < 0) 344 continue; 345 346 if (delta < prev_min_delta) { 347 prev_min_delta = delta; 348 min_delta_m = m; 349 min_delta_n = n; 350 } 351 352 pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n", 353 clk_name, m, n, new_rate); 354 355 if (delta == 0) 356 break; 357 } 358 359 if (prev_min_delta == LONG_MAX) { 360 pr_debug("clock: %s: cannot round to rate %lu\n", 361 clk_name, target_rate); 362 return ~0; 363 } 364 365 dd->last_rounded_m = min_delta_m; 366 dd->last_rounded_n = min_delta_n; 367 dd->last_rounded_rate = target_rate - prev_min_delta; 368 369 return dd->last_rounded_rate; 370 } 371