1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * clk-dfll.c - Tegra DFLL clock source common code 4 * 5 * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved. 6 * 7 * Aleksandr Frid <afrid@nvidia.com> 8 * Paul Walmsley <pwalmsley@nvidia.com> 9 * 10 * This library is for the DVCO and DFLL IP blocks on the Tegra124 11 * SoC. These IP blocks together are also known at NVIDIA as 12 * "CL-DVFS". To try to avoid confusion, this code refers to them 13 * collectively as the "DFLL." 14 * 15 * The DFLL is a root clocksource which tolerates some amount of 16 * supply voltage noise. Tegra124 uses it to clock the fast CPU 17 * complex when the target CPU speed is above a particular rate. The 18 * DFLL can be operated in either open-loop mode or closed-loop mode. 19 * In open-loop mode, the DFLL generates an output clock appropriate 20 * to the supply voltage. In closed-loop mode, when configured with a 21 * target frequency, the DFLL minimizes supply voltage while 22 * delivering an average frequency equal to the target. 23 * 24 * Devices clocked by the DFLL must be able to tolerate frequency 25 * variation. In the case of the CPU, it's important to note that the 26 * CPU cycle time will vary. This has implications for 27 * performance-measurement code and any code that relies on the CPU 28 * cycle time to delay for a certain length of time. 29 */ 30 31 #include <linux/clk.h> 32 #include <linux/clk-provider.h> 33 #include <linux/debugfs.h> 34 #include <linux/device.h> 35 #include <linux/err.h> 36 #include <linux/i2c.h> 37 #include <linux/io.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/of.h> 41 #include <linux/pinctrl/consumer.h> 42 #include <linux/pm_opp.h> 43 #include <linux/pm_runtime.h> 44 #include <linux/regmap.h> 45 #include <linux/regulator/consumer.h> 46 #include <linux/reset.h> 47 #include <linux/seq_file.h> 48 49 #include "clk-dfll.h" 50 #include "cvb.h" 51 52 /* 53 * DFLL control registers - access via dfll_{readl,writel} 54 */ 55 56 /* DFLL_CTRL: DFLL control register */ 57 #define DFLL_CTRL 0x00 58 #define DFLL_CTRL_MODE_MASK 0x03 59 60 /* DFLL_CONFIG: DFLL sample rate control */ 61 #define DFLL_CONFIG 0x04 62 #define DFLL_CONFIG_DIV_MASK 0xff 63 #define DFLL_CONFIG_DIV_PRESCALE 32 64 65 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */ 66 #define DFLL_PARAMS 0x08 67 #define DFLL_PARAMS_CG_SCALE (0x1 << 24) 68 #define DFLL_PARAMS_FORCE_MODE_SHIFT 22 69 #define DFLL_PARAMS_FORCE_MODE_MASK (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT) 70 #define DFLL_PARAMS_CF_PARAM_SHIFT 16 71 #define DFLL_PARAMS_CF_PARAM_MASK (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT) 72 #define DFLL_PARAMS_CI_PARAM_SHIFT 8 73 #define DFLL_PARAMS_CI_PARAM_MASK (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT) 74 #define DFLL_PARAMS_CG_PARAM_SHIFT 0 75 #define DFLL_PARAMS_CG_PARAM_MASK (0xff << DFLL_PARAMS_CG_PARAM_SHIFT) 76 77 /* DFLL_TUNE0: delay line configuration register 0 */ 78 #define DFLL_TUNE0 0x0c 79 80 /* DFLL_TUNE1: delay line configuration register 1 */ 81 #define DFLL_TUNE1 0x10 82 83 /* DFLL_FREQ_REQ: target DFLL frequency control */ 84 #define DFLL_FREQ_REQ 0x14 85 #define DFLL_FREQ_REQ_FORCE_ENABLE (0x1 << 28) 86 #define DFLL_FREQ_REQ_FORCE_SHIFT 16 87 #define DFLL_FREQ_REQ_FORCE_MASK (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT) 88 #define FORCE_MAX 2047 89 #define FORCE_MIN -2048 90 #define DFLL_FREQ_REQ_SCALE_SHIFT 8 91 #define DFLL_FREQ_REQ_SCALE_MASK (0xff << DFLL_FREQ_REQ_SCALE_SHIFT) 92 #define DFLL_FREQ_REQ_SCALE_MAX 256 93 #define DFLL_FREQ_REQ_FREQ_VALID (0x1 << 7) 94 #define DFLL_FREQ_REQ_MULT_SHIFT 0 95 #define DFLL_FREQ_REG_MULT_MASK (0x7f << DFLL_FREQ_REQ_MULT_SHIFT) 96 #define FREQ_MAX 127 97 98 /* DFLL_DROOP_CTRL: droop prevention control */ 99 #define DFLL_DROOP_CTRL 0x1c 100 101 /* DFLL_OUTPUT_CFG: closed loop mode control registers */ 102 /* NOTE: access via dfll_i2c_{readl,writel} */ 103 #define DFLL_OUTPUT_CFG 0x20 104 #define DFLL_OUTPUT_CFG_I2C_ENABLE (0x1 << 30) 105 #define OUT_MASK 0x3f 106 #define DFLL_OUTPUT_CFG_SAFE_SHIFT 24 107 #define DFLL_OUTPUT_CFG_SAFE_MASK \ 108 (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT) 109 #define DFLL_OUTPUT_CFG_MAX_SHIFT 16 110 #define DFLL_OUTPUT_CFG_MAX_MASK \ 111 (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT) 112 #define DFLL_OUTPUT_CFG_MIN_SHIFT 8 113 #define DFLL_OUTPUT_CFG_MIN_MASK \ 114 (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT) 115 #define DFLL_OUTPUT_CFG_PWM_DELTA (0x1 << 7) 116 #define DFLL_OUTPUT_CFG_PWM_ENABLE (0x1 << 6) 117 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT 0 118 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK \ 119 (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT) 120 121 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */ 122 #define DFLL_OUTPUT_FORCE 0x24 123 #define DFLL_OUTPUT_FORCE_ENABLE (0x1 << 6) 124 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT 0 125 #define DFLL_OUTPUT_FORCE_VALUE_MASK \ 126 (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT) 127 128 /* DFLL_MONITOR_CTRL: internal monitor data source control */ 129 #define DFLL_MONITOR_CTRL 0x28 130 #define DFLL_MONITOR_CTRL_FREQ 6 131 132 /* DFLL_MONITOR_DATA: internal monitor data output */ 133 #define DFLL_MONITOR_DATA 0x2c 134 #define DFLL_MONITOR_DATA_NEW_MASK (0x1 << 16) 135 #define DFLL_MONITOR_DATA_VAL_SHIFT 0 136 #define DFLL_MONITOR_DATA_VAL_MASK (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT) 137 138 /* 139 * I2C output control registers - access via dfll_i2c_{readl,writel} 140 */ 141 142 /* DFLL_I2C_CFG: I2C controller configuration register */ 143 #define DFLL_I2C_CFG 0x40 144 #define DFLL_I2C_CFG_ARB_ENABLE (0x1 << 20) 145 #define DFLL_I2C_CFG_HS_CODE_SHIFT 16 146 #define DFLL_I2C_CFG_HS_CODE_MASK (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT) 147 #define DFLL_I2C_CFG_PACKET_ENABLE (0x1 << 15) 148 #define DFLL_I2C_CFG_SIZE_SHIFT 12 149 #define DFLL_I2C_CFG_SIZE_MASK (0x7 << DFLL_I2C_CFG_SIZE_SHIFT) 150 #define DFLL_I2C_CFG_SLAVE_ADDR_10 (0x1 << 10) 151 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT 1 152 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT 0 153 154 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */ 155 #define DFLL_I2C_VDD_REG_ADDR 0x44 156 157 /* DFLL_I2C_STS: I2C controller status */ 158 #define DFLL_I2C_STS 0x48 159 #define DFLL_I2C_STS_I2C_LAST_SHIFT 1 160 #define DFLL_I2C_STS_I2C_REQ_PENDING 0x1 161 162 /* DFLL_INTR_STS: DFLL interrupt status register */ 163 #define DFLL_INTR_STS 0x5c 164 165 /* DFLL_INTR_EN: DFLL interrupt enable register */ 166 #define DFLL_INTR_EN 0x60 167 #define DFLL_INTR_MIN_MASK 0x1 168 #define DFLL_INTR_MAX_MASK 0x2 169 170 /* 171 * Integrated I2C controller registers - relative to td->i2c_controller_base 172 */ 173 174 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */ 175 #define DFLL_I2C_CLK_DIVISOR 0x6c 176 #define DFLL_I2C_CLK_DIVISOR_MASK 0xffff 177 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT 16 178 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT 0 179 #define DFLL_I2C_CLK_DIVISOR_PREDIV 8 180 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV 12 181 182 /* 183 * Other constants 184 */ 185 186 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */ 187 #define MAX_DFLL_VOLTAGES 33 188 189 /* 190 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware 191 * integrates the DVCO counter over - used for debug rate monitoring and 192 * droop control 193 */ 194 #define REF_CLK_CYC_PER_DVCO_SAMPLE 4 195 196 /* 197 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this 198 * driver, in Hz 199 */ 200 #define REF_CLOCK_RATE 51000000UL 201 202 #define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2)) 203 #define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2)) 204 205 /** 206 * enum dfll_ctrl_mode - DFLL hardware operating mode 207 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield) 208 * @DFLL_DISABLED: DFLL not generating an output clock 209 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage 210 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match 211 * the requested rate 212 * 213 * The integer corresponding to the last two states, minus one, is 214 * written to the DFLL hardware to change operating modes. 215 */ 216 enum dfll_ctrl_mode { 217 DFLL_UNINITIALIZED = 0, 218 DFLL_DISABLED = 1, 219 DFLL_OPEN_LOOP = 2, 220 DFLL_CLOSED_LOOP = 3, 221 }; 222 223 /** 224 * enum dfll_tune_range - voltage range that the driver believes it's in 225 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed 226 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode) 227 * 228 * Some DFLL tuning parameters may need to change depending on the 229 * DVCO's voltage; these states represent the ranges that the driver 230 * supports. These are software states; these values are never 231 * written into registers. 232 */ 233 enum dfll_tune_range { 234 DFLL_TUNE_UNINITIALIZED = 0, 235 DFLL_TUNE_LOW = 1, 236 }; 237 238 239 enum tegra_dfll_pmu_if { 240 TEGRA_DFLL_PMU_I2C = 0, 241 TEGRA_DFLL_PMU_PWM = 1, 242 }; 243 244 /** 245 * struct dfll_rate_req - target DFLL rate request data 246 * @rate: target frequency, after the postscaling 247 * @dvco_target_rate: target frequency, after the postscaling 248 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached 249 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register 250 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register 251 */ 252 struct dfll_rate_req { 253 unsigned long rate; 254 unsigned long dvco_target_rate; 255 int lut_index; 256 u8 mult_bits; 257 u8 scale_bits; 258 }; 259 260 struct tegra_dfll { 261 struct device *dev; 262 struct tegra_dfll_soc_data *soc; 263 264 void __iomem *base; 265 void __iomem *i2c_base; 266 void __iomem *i2c_controller_base; 267 void __iomem *lut_base; 268 269 struct regulator *vdd_reg; 270 struct clk *soc_clk; 271 struct clk *ref_clk; 272 struct clk *i2c_clk; 273 struct clk *dfll_clk; 274 struct reset_control *dfll_rst; 275 struct reset_control *dvco_rst; 276 unsigned long ref_rate; 277 unsigned long i2c_clk_rate; 278 unsigned long dvco_rate_min; 279 280 enum dfll_ctrl_mode mode; 281 enum dfll_tune_range tune_range; 282 struct dentry *debugfs_dir; 283 struct clk_hw dfll_clk_hw; 284 const char *output_clock_name; 285 struct dfll_rate_req last_req; 286 unsigned long last_unrounded_rate; 287 288 /* Parameters from DT */ 289 u32 droop_ctrl; 290 u32 sample_rate; 291 u32 force_mode; 292 u32 cf; 293 u32 ci; 294 u32 cg; 295 bool cg_scale; 296 297 /* I2C interface parameters */ 298 u32 i2c_fs_rate; 299 u32 i2c_reg; 300 u32 i2c_slave_addr; 301 302 /* lut array entries are regulator framework selectors or PWM values*/ 303 unsigned lut[MAX_DFLL_VOLTAGES]; 304 unsigned long lut_uv[MAX_DFLL_VOLTAGES]; 305 int lut_size; 306 u8 lut_bottom, lut_min, lut_max, lut_safe; 307 308 /* PWM interface */ 309 enum tegra_dfll_pmu_if pmu_if; 310 unsigned long pwm_rate; 311 struct pinctrl *pwm_pin; 312 struct pinctrl_state *pwm_enable_state; 313 struct pinctrl_state *pwm_disable_state; 314 u32 reg_init_uV; 315 }; 316 317 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw) 318 319 /* mode_name: map numeric DFLL modes to names for friendly console messages */ 320 static const char * const mode_name[] = { 321 [DFLL_UNINITIALIZED] = "uninitialized", 322 [DFLL_DISABLED] = "disabled", 323 [DFLL_OPEN_LOOP] = "open_loop", 324 [DFLL_CLOSED_LOOP] = "closed_loop", 325 }; 326 327 /* 328 * Register accessors 329 */ 330 331 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs) 332 { 333 return __raw_readl(td->base + offs); 334 } 335 336 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs) 337 { 338 WARN_ON(offs >= DFLL_I2C_CFG); 339 __raw_writel(val, td->base + offs); 340 } 341 342 static inline void dfll_wmb(struct tegra_dfll *td) 343 { 344 dfll_readl(td, DFLL_CTRL); 345 } 346 347 /* I2C output control registers - for addresses above DFLL_I2C_CFG */ 348 349 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs) 350 { 351 return __raw_readl(td->i2c_base + offs); 352 } 353 354 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs) 355 { 356 __raw_writel(val, td->i2c_base + offs); 357 } 358 359 static inline void dfll_i2c_wmb(struct tegra_dfll *td) 360 { 361 dfll_i2c_readl(td, DFLL_I2C_CFG); 362 } 363 364 /** 365 * dfll_is_running - is the DFLL currently generating a clock? 366 * @td: DFLL instance 367 * 368 * If the DFLL is currently generating an output clock signal, return 369 * true; otherwise return false. 370 */ 371 static bool dfll_is_running(struct tegra_dfll *td) 372 { 373 return td->mode >= DFLL_OPEN_LOOP; 374 } 375 376 /* 377 * Runtime PM suspend/resume callbacks 378 */ 379 380 /** 381 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL 382 * @dev: DFLL device * 383 * 384 * Enable all clocks needed by the DFLL. Assumes that clk_prepare() 385 * has already been called on all the clocks. 386 * 387 * XXX Should also handle context restore when returning from off. 388 */ 389 int tegra_dfll_runtime_resume(struct device *dev) 390 { 391 struct tegra_dfll *td = dev_get_drvdata(dev); 392 int ret; 393 394 ret = clk_enable(td->ref_clk); 395 if (ret) { 396 dev_err(dev, "could not enable ref clock: %d\n", ret); 397 return ret; 398 } 399 400 ret = clk_enable(td->soc_clk); 401 if (ret) { 402 dev_err(dev, "could not enable register clock: %d\n", ret); 403 clk_disable(td->ref_clk); 404 return ret; 405 } 406 407 ret = clk_enable(td->i2c_clk); 408 if (ret) { 409 dev_err(dev, "could not enable i2c clock: %d\n", ret); 410 clk_disable(td->soc_clk); 411 clk_disable(td->ref_clk); 412 return ret; 413 } 414 415 return 0; 416 } 417 EXPORT_SYMBOL(tegra_dfll_runtime_resume); 418 419 /** 420 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL 421 * @dev: DFLL device * 422 * 423 * Disable all clocks needed by the DFLL. Assumes that other code 424 * will later call clk_unprepare(). 425 */ 426 int tegra_dfll_runtime_suspend(struct device *dev) 427 { 428 struct tegra_dfll *td = dev_get_drvdata(dev); 429 430 clk_disable(td->ref_clk); 431 clk_disable(td->soc_clk); 432 clk_disable(td->i2c_clk); 433 434 return 0; 435 } 436 EXPORT_SYMBOL(tegra_dfll_runtime_suspend); 437 438 /* 439 * DFLL tuning operations (per-voltage-range tuning settings) 440 */ 441 442 /** 443 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage 444 * @td: DFLL instance 445 * 446 * Tune the DFLL oscillator parameters and the CPU clock shaper for 447 * the low-voltage range. These settings are valid for any voltage, 448 * but may not be optimal. 449 */ 450 static void dfll_tune_low(struct tegra_dfll *td) 451 { 452 td->tune_range = DFLL_TUNE_LOW; 453 454 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0); 455 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1); 456 dfll_wmb(td); 457 458 if (td->soc->set_clock_trimmers_low) 459 td->soc->set_clock_trimmers_low(); 460 } 461 462 /* 463 * Output clock scaler helpers 464 */ 465 466 /** 467 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate 468 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field) 469 * @dvco_rate: the DVCO rate 470 * 471 * Apply the same scaling formula that the DFLL hardware uses to scale 472 * the DVCO rate. 473 */ 474 static unsigned long dfll_scale_dvco_rate(int scale_bits, 475 unsigned long dvco_rate) 476 { 477 return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX; 478 } 479 480 /* 481 * DFLL mode switching 482 */ 483 484 /** 485 * dfll_set_mode - change the DFLL control mode 486 * @td: DFLL instance 487 * @mode: DFLL control mode (see enum dfll_ctrl_mode) 488 * 489 * Change the DFLL's operating mode between disabled, open-loop mode, 490 * and closed-loop mode, or vice versa. 491 */ 492 static void dfll_set_mode(struct tegra_dfll *td, 493 enum dfll_ctrl_mode mode) 494 { 495 td->mode = mode; 496 dfll_writel(td, mode - 1, DFLL_CTRL); 497 dfll_wmb(td); 498 } 499 500 /* 501 * DVCO rate control 502 */ 503 504 static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min) 505 { 506 struct dev_pm_opp *opp; 507 unsigned long rate, prev_rate; 508 unsigned long uv, min_uv; 509 510 min_uv = td->lut_uv[out_min]; 511 for (rate = 0, prev_rate = 0; ; rate++) { 512 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); 513 if (IS_ERR(opp)) 514 break; 515 516 uv = dev_pm_opp_get_voltage(opp); 517 dev_pm_opp_put(opp); 518 519 if (uv && uv > min_uv) 520 return prev_rate; 521 522 prev_rate = rate; 523 } 524 525 return prev_rate; 526 } 527 528 /* 529 * DFLL-to-I2C controller interface 530 */ 531 532 /** 533 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests 534 * @td: DFLL instance 535 * @enable: whether to enable or disable the I2C voltage requests 536 * 537 * Set the master enable control for I2C control value updates. If disabled, 538 * then I2C control messages are inhibited, regardless of the DFLL mode. 539 */ 540 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable) 541 { 542 u32 val; 543 544 val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG); 545 546 if (enable) 547 val |= DFLL_OUTPUT_CFG_I2C_ENABLE; 548 else 549 val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE; 550 551 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); 552 dfll_i2c_wmb(td); 553 554 return 0; 555 } 556 557 558 /* 559 * DFLL-to-PWM controller interface 560 */ 561 562 /** 563 * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests 564 * @td: DFLL instance 565 * @enable: whether to enable or disable the PWM voltage requests 566 * 567 * Set the master enable control for PWM control value updates. If disabled, 568 * then the PWM signal is not driven. Also configure the PWM output pad 569 * to the appropriate state. 570 */ 571 static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable) 572 { 573 int ret; 574 u32 val, div; 575 576 if (enable) { 577 ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state); 578 if (ret < 0) { 579 dev_err(td->dev, "setting enable state failed\n"); 580 return -EINVAL; 581 } 582 val = dfll_readl(td, DFLL_OUTPUT_CFG); 583 val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK; 584 div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate); 585 val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT) 586 & DFLL_OUTPUT_CFG_PWM_DIV_MASK; 587 dfll_writel(td, val, DFLL_OUTPUT_CFG); 588 dfll_wmb(td); 589 590 val |= DFLL_OUTPUT_CFG_PWM_ENABLE; 591 dfll_writel(td, val, DFLL_OUTPUT_CFG); 592 dfll_wmb(td); 593 } else { 594 ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state); 595 if (ret < 0) 596 dev_warn(td->dev, "setting disable state failed\n"); 597 598 val = dfll_readl(td, DFLL_OUTPUT_CFG); 599 val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE; 600 dfll_writel(td, val, DFLL_OUTPUT_CFG); 601 dfll_wmb(td); 602 } 603 604 return 0; 605 } 606 607 /** 608 * dfll_set_force_output_value - set fixed value for force output 609 * @td: DFLL instance 610 * @out_val: value to force output 611 * 612 * Set the fixed value for force output, DFLL will output this value when 613 * force output is enabled. 614 */ 615 static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val) 616 { 617 u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE); 618 619 val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK); 620 dfll_writel(td, val, DFLL_OUTPUT_FORCE); 621 dfll_wmb(td); 622 623 return dfll_readl(td, DFLL_OUTPUT_FORCE); 624 } 625 626 /** 627 * dfll_set_force_output_enabled - enable/disable force output 628 * @td: DFLL instance 629 * @enable: whether to enable or disable the force output 630 * 631 * Set the enable control for fouce output with fixed value. 632 */ 633 static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable) 634 { 635 u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE); 636 637 if (enable) 638 val |= DFLL_OUTPUT_FORCE_ENABLE; 639 else 640 val &= ~DFLL_OUTPUT_FORCE_ENABLE; 641 642 dfll_writel(td, val, DFLL_OUTPUT_FORCE); 643 dfll_wmb(td); 644 } 645 646 /** 647 * dfll_force_output - force output a fixed value 648 * @td: DFLL instance 649 * @out_sel: value to force output 650 * 651 * Set the fixed value for force output, DFLL will output this value. 652 */ 653 static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel) 654 { 655 u32 val; 656 657 if (out_sel > OUT_MASK) 658 return -EINVAL; 659 660 val = dfll_set_force_output_value(td, out_sel); 661 if ((td->mode < DFLL_CLOSED_LOOP) && 662 !(val & DFLL_OUTPUT_FORCE_ENABLE)) { 663 dfll_set_force_output_enabled(td, true); 664 } 665 666 return 0; 667 } 668 669 /** 670 * dfll_load_i2c_lut - load the voltage lookup table 671 * @td: struct tegra_dfll * 672 * 673 * Load the voltage-to-PMIC register value lookup table into the DFLL 674 * IP block memory. Look-up tables can be loaded at any time. 675 */ 676 static void dfll_load_i2c_lut(struct tegra_dfll *td) 677 { 678 int i, lut_index; 679 u32 val; 680 681 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { 682 if (i < td->lut_min) 683 lut_index = td->lut_min; 684 else if (i > td->lut_max) 685 lut_index = td->lut_max; 686 else 687 lut_index = i; 688 689 val = regulator_list_hardware_vsel(td->vdd_reg, 690 td->lut[lut_index]); 691 __raw_writel(val, td->lut_base + i * 4); 692 } 693 694 dfll_i2c_wmb(td); 695 } 696 697 /** 698 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface 699 * @td: DFLL instance 700 * 701 * During DFLL driver initialization, program the DFLL-I2C interface 702 * with the PMU slave address, vdd register offset, and transfer mode. 703 * This data is used by the DFLL to automatically construct I2C 704 * voltage-set commands, which are then passed to the DFLL's internal 705 * I2C controller. 706 */ 707 static void dfll_init_i2c_if(struct tegra_dfll *td) 708 { 709 u32 val; 710 711 if (td->i2c_slave_addr > 0x7f) { 712 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT; 713 val |= DFLL_I2C_CFG_SLAVE_ADDR_10; 714 } else { 715 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT; 716 } 717 val |= DFLL_I2C_CFG_SIZE_MASK; 718 val |= DFLL_I2C_CFG_ARB_ENABLE; 719 dfll_i2c_writel(td, val, DFLL_I2C_CFG); 720 721 dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR); 722 723 val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8); 724 BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK)); 725 val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT; 726 727 /* default hs divisor just in case */ 728 val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT; 729 __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR); 730 dfll_i2c_wmb(td); 731 } 732 733 /** 734 * dfll_init_out_if - prepare DFLL-to-PMIC interface 735 * @td: DFLL instance 736 * 737 * During DFLL driver initialization or resume from context loss, 738 * disable the I2C command output to the PMIC, set safe voltage and 739 * output limits, and disable and clear limit interrupts. 740 */ 741 static void dfll_init_out_if(struct tegra_dfll *td) 742 { 743 u32 val; 744 745 td->lut_min = td->lut_bottom; 746 td->lut_max = td->lut_size - 1; 747 td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0); 748 749 /* clear DFLL_OUTPUT_CFG before setting new value */ 750 dfll_writel(td, 0, DFLL_OUTPUT_CFG); 751 dfll_wmb(td); 752 753 val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) | 754 (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) | 755 (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT); 756 dfll_writel(td, val, DFLL_OUTPUT_CFG); 757 dfll_wmb(td); 758 759 dfll_writel(td, 0, DFLL_OUTPUT_FORCE); 760 dfll_i2c_writel(td, 0, DFLL_INTR_EN); 761 dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK, 762 DFLL_INTR_STS); 763 764 if (td->pmu_if == TEGRA_DFLL_PMU_PWM) { 765 u32 vinit = td->reg_init_uV; 766 int vstep = td->soc->alignment.step_uv; 767 unsigned long vmin = td->lut_uv[0]; 768 769 /* set initial voltage */ 770 if ((vinit >= vmin) && vstep) { 771 unsigned int vsel; 772 773 vsel = DIV_ROUND_UP((vinit - vmin), vstep); 774 dfll_force_output(td, vsel); 775 } 776 } else { 777 dfll_load_i2c_lut(td); 778 dfll_init_i2c_if(td); 779 } 780 } 781 782 /* 783 * Set/get the DFLL's targeted output clock rate 784 */ 785 786 /** 787 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate 788 * @td: DFLL instance 789 * @rate: clock rate 790 * 791 * Determines the index of a I2C LUT entry for a voltage that approximately 792 * produces the given DFLL clock rate. This is used when forcing a value 793 * to the integrator during rate changes. Returns -ENOENT if a suitable 794 * LUT index is not found. 795 */ 796 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate) 797 { 798 struct dev_pm_opp *opp; 799 int i, align_step; 800 801 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); 802 if (IS_ERR(opp)) 803 return PTR_ERR(opp); 804 805 align_step = dev_pm_opp_get_voltage(opp) / td->soc->alignment.step_uv; 806 dev_pm_opp_put(opp); 807 808 for (i = td->lut_bottom; i < td->lut_size; i++) { 809 if ((td->lut_uv[i] / td->soc->alignment.step_uv) >= align_step) 810 return i; 811 } 812 813 return -ENOENT; 814 } 815 816 /** 817 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate 818 * @td: DFLL instance 819 * @req: DFLL-rate-request structure 820 * @rate: the desired DFLL rate 821 * 822 * Populate the DFLL-rate-request record @req fields with the scale_bits 823 * and mult_bits fields, based on the target input rate. Returns 0 upon 824 * success, or -EINVAL if the requested rate in req->rate is too high 825 * or low for the DFLL to generate. 826 */ 827 static int dfll_calculate_rate_request(struct tegra_dfll *td, 828 struct dfll_rate_req *req, 829 unsigned long rate) 830 { 831 u32 val; 832 833 /* 834 * If requested rate is below the minimum DVCO rate, active the scaler. 835 * In the future the DVCO minimum voltage should be selected based on 836 * chip temperature and the actual minimum rate should be calibrated 837 * at runtime. 838 */ 839 req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1; 840 if (rate < td->dvco_rate_min) { 841 int scale; 842 843 scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX, 844 td->dvco_rate_min / 1000); 845 if (!scale) { 846 dev_err(td->dev, "%s: Rate %lu is too low\n", 847 __func__, rate); 848 return -EINVAL; 849 } 850 req->scale_bits = scale - 1; 851 rate = td->dvco_rate_min; 852 } 853 854 /* Convert requested rate into frequency request and scale settings */ 855 val = DVCO_RATE_TO_MULT(rate, td->ref_rate); 856 if (val > FREQ_MAX) { 857 dev_err(td->dev, "%s: Rate %lu is above dfll range\n", 858 __func__, rate); 859 return -EINVAL; 860 } 861 req->mult_bits = val; 862 req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate); 863 req->rate = dfll_scale_dvco_rate(req->scale_bits, 864 req->dvco_target_rate); 865 req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate); 866 if (req->lut_index < 0) 867 return req->lut_index; 868 869 return 0; 870 } 871 872 /** 873 * dfll_set_frequency_request - start the frequency change operation 874 * @td: DFLL instance 875 * @req: rate request structure 876 * 877 * Tell the DFLL to try to change its output frequency to the 878 * frequency represented by @req. DFLL must be in closed-loop mode. 879 */ 880 static void dfll_set_frequency_request(struct tegra_dfll *td, 881 struct dfll_rate_req *req) 882 { 883 u32 val = 0; 884 int force_val; 885 int coef = 128; /* FIXME: td->cg_scale? */; 886 887 force_val = (req->lut_index - td->lut_safe) * coef / td->cg; 888 force_val = clamp(force_val, FORCE_MIN, FORCE_MAX); 889 890 val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT; 891 val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT; 892 val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) & 893 DFLL_FREQ_REQ_FORCE_MASK; 894 val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE; 895 896 dfll_writel(td, val, DFLL_FREQ_REQ); 897 dfll_wmb(td); 898 } 899 900 /** 901 * dfll_request_rate - set the next rate for the DFLL to tune to 902 * @td: DFLL instance 903 * @rate: clock rate to target 904 * 905 * Convert the requested clock rate @rate into the DFLL control logic 906 * settings. In closed-loop mode, update new settings immediately to 907 * adjust DFLL output rate accordingly. Otherwise, just save them 908 * until the next switch to closed loop. Returns 0 upon success, 909 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL 910 * if @rate is outside the DFLL's tunable range. 911 */ 912 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate) 913 { 914 int ret; 915 struct dfll_rate_req req; 916 917 if (td->mode == DFLL_UNINITIALIZED) { 918 dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n", 919 __func__, mode_name[td->mode]); 920 return -EPERM; 921 } 922 923 ret = dfll_calculate_rate_request(td, &req, rate); 924 if (ret) 925 return ret; 926 927 td->last_unrounded_rate = rate; 928 td->last_req = req; 929 930 if (td->mode == DFLL_CLOSED_LOOP) 931 dfll_set_frequency_request(td, &td->last_req); 932 933 return 0; 934 } 935 936 /* 937 * DFLL enable/disable & open-loop <-> closed-loop transitions 938 */ 939 940 /** 941 * dfll_disable - switch from open-loop mode to disabled mode 942 * @td: DFLL instance 943 * 944 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success 945 * or -EPERM if the DFLL is not currently in open-loop mode. 946 */ 947 static int dfll_disable(struct tegra_dfll *td) 948 { 949 if (td->mode != DFLL_OPEN_LOOP) { 950 dev_err(td->dev, "cannot disable DFLL in %s mode\n", 951 mode_name[td->mode]); 952 return -EINVAL; 953 } 954 955 dfll_set_mode(td, DFLL_DISABLED); 956 pm_runtime_put_sync(td->dev); 957 958 return 0; 959 } 960 961 /** 962 * dfll_enable - switch a disabled DFLL to open-loop mode 963 * @td: DFLL instance 964 * 965 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success 966 * or -EPERM if the DFLL is not currently disabled. 967 */ 968 static int dfll_enable(struct tegra_dfll *td) 969 { 970 if (td->mode != DFLL_DISABLED) { 971 dev_err(td->dev, "cannot enable DFLL in %s mode\n", 972 mode_name[td->mode]); 973 return -EPERM; 974 } 975 976 pm_runtime_get_sync(td->dev); 977 dfll_set_mode(td, DFLL_OPEN_LOOP); 978 979 return 0; 980 } 981 982 /** 983 * dfll_set_open_loop_config - prepare to switch to open-loop mode 984 * @td: DFLL instance 985 * 986 * Prepare to switch the DFLL to open-loop mode. This switches the 987 * DFLL to the low-voltage tuning range, ensures that I2C output 988 * forcing is disabled, and disables the output clock rate scaler. 989 * The DFLL's low-voltage tuning range parameters must be 990 * characterized to keep the downstream device stable at any DVCO 991 * input voltage. No return value. 992 */ 993 static void dfll_set_open_loop_config(struct tegra_dfll *td) 994 { 995 u32 val; 996 997 /* always tune low (safe) in open loop */ 998 if (td->tune_range != DFLL_TUNE_LOW) 999 dfll_tune_low(td); 1000 1001 val = dfll_readl(td, DFLL_FREQ_REQ); 1002 val |= DFLL_FREQ_REQ_SCALE_MASK; 1003 val &= ~DFLL_FREQ_REQ_FORCE_ENABLE; 1004 dfll_writel(td, val, DFLL_FREQ_REQ); 1005 dfll_wmb(td); 1006 } 1007 1008 /** 1009 * dfll_lock - switch from open-loop to closed-loop mode 1010 * @td: DFLL instance 1011 * 1012 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success, 1013 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the 1014 * DFLL is not currently in open-loop mode. 1015 */ 1016 static int dfll_lock(struct tegra_dfll *td) 1017 { 1018 struct dfll_rate_req *req = &td->last_req; 1019 1020 switch (td->mode) { 1021 case DFLL_CLOSED_LOOP: 1022 return 0; 1023 1024 case DFLL_OPEN_LOOP: 1025 if (req->rate == 0) { 1026 dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n", 1027 __func__); 1028 return -EINVAL; 1029 } 1030 1031 if (td->pmu_if == TEGRA_DFLL_PMU_PWM) 1032 dfll_pwm_set_output_enabled(td, true); 1033 else 1034 dfll_i2c_set_output_enabled(td, true); 1035 1036 dfll_set_mode(td, DFLL_CLOSED_LOOP); 1037 dfll_set_frequency_request(td, req); 1038 dfll_set_force_output_enabled(td, false); 1039 return 0; 1040 1041 default: 1042 BUG_ON(td->mode > DFLL_CLOSED_LOOP); 1043 dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n", 1044 __func__, mode_name[td->mode]); 1045 return -EPERM; 1046 } 1047 } 1048 1049 /** 1050 * dfll_unlock - switch from closed-loop to open-loop mode 1051 * @td: DFLL instance 1052 * 1053 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success, 1054 * or -EPERM if the DFLL is not currently in open-loop mode. 1055 */ 1056 static int dfll_unlock(struct tegra_dfll *td) 1057 { 1058 switch (td->mode) { 1059 case DFLL_CLOSED_LOOP: 1060 dfll_set_open_loop_config(td); 1061 dfll_set_mode(td, DFLL_OPEN_LOOP); 1062 if (td->pmu_if == TEGRA_DFLL_PMU_PWM) 1063 dfll_pwm_set_output_enabled(td, false); 1064 else 1065 dfll_i2c_set_output_enabled(td, false); 1066 return 0; 1067 1068 case DFLL_OPEN_LOOP: 1069 return 0; 1070 1071 default: 1072 BUG_ON(td->mode > DFLL_CLOSED_LOOP); 1073 dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n", 1074 __func__, mode_name[td->mode]); 1075 return -EPERM; 1076 } 1077 } 1078 1079 /* 1080 * Clock framework integration 1081 * 1082 * When the DFLL is being controlled by the CCF, always enter closed loop 1083 * mode when the clk is enabled. This requires that a DFLL rate request 1084 * has been set beforehand, which implies that a clk_set_rate() call is 1085 * always required before a clk_enable(). 1086 */ 1087 1088 static int dfll_clk_is_enabled(struct clk_hw *hw) 1089 { 1090 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1091 1092 return dfll_is_running(td); 1093 } 1094 1095 static int dfll_clk_enable(struct clk_hw *hw) 1096 { 1097 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1098 int ret; 1099 1100 ret = dfll_enable(td); 1101 if (ret) 1102 return ret; 1103 1104 ret = dfll_lock(td); 1105 if (ret) 1106 dfll_disable(td); 1107 1108 return ret; 1109 } 1110 1111 static void dfll_clk_disable(struct clk_hw *hw) 1112 { 1113 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1114 int ret; 1115 1116 ret = dfll_unlock(td); 1117 if (!ret) 1118 dfll_disable(td); 1119 } 1120 1121 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw, 1122 unsigned long parent_rate) 1123 { 1124 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1125 1126 return td->last_unrounded_rate; 1127 } 1128 1129 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */ 1130 static int dfll_clk_determine_rate(struct clk_hw *hw, 1131 struct clk_rate_request *clk_req) 1132 { 1133 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1134 struct dfll_rate_req req; 1135 int ret; 1136 1137 ret = dfll_calculate_rate_request(td, &req, clk_req->rate); 1138 if (ret) 1139 return ret; 1140 1141 /* 1142 * Don't set the rounded rate, since it doesn't really matter as 1143 * the output rate will be voltage controlled anyway, and cpufreq 1144 * freaks out if any rounding happens. 1145 */ 1146 1147 return 0; 1148 } 1149 1150 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate, 1151 unsigned long parent_rate) 1152 { 1153 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1154 1155 return dfll_request_rate(td, rate); 1156 } 1157 1158 static const struct clk_ops dfll_clk_ops = { 1159 .is_enabled = dfll_clk_is_enabled, 1160 .enable = dfll_clk_enable, 1161 .disable = dfll_clk_disable, 1162 .recalc_rate = dfll_clk_recalc_rate, 1163 .determine_rate = dfll_clk_determine_rate, 1164 .set_rate = dfll_clk_set_rate, 1165 }; 1166 1167 static struct clk_init_data dfll_clk_init_data = { 1168 .ops = &dfll_clk_ops, 1169 .num_parents = 0, 1170 }; 1171 1172 /** 1173 * dfll_register_clk - register the DFLL output clock with the clock framework 1174 * @td: DFLL instance 1175 * 1176 * Register the DFLL's output clock with the Linux clock framework and register 1177 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL 1178 * or -ENOMEM upon failure. 1179 */ 1180 static int dfll_register_clk(struct tegra_dfll *td) 1181 { 1182 int ret; 1183 1184 dfll_clk_init_data.name = td->output_clock_name; 1185 td->dfll_clk_hw.init = &dfll_clk_init_data; 1186 1187 td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw); 1188 if (IS_ERR(td->dfll_clk)) { 1189 dev_err(td->dev, "DFLL clock registration error\n"); 1190 return -EINVAL; 1191 } 1192 1193 ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get, 1194 td->dfll_clk); 1195 if (ret) { 1196 dev_err(td->dev, "of_clk_add_provider() failed\n"); 1197 1198 clk_unregister(td->dfll_clk); 1199 return ret; 1200 } 1201 1202 return 0; 1203 } 1204 1205 /** 1206 * dfll_unregister_clk - unregister the DFLL output clock 1207 * @td: DFLL instance 1208 * 1209 * Unregister the DFLL's output clock from the Linux clock framework 1210 * and from clkdev. No return value. 1211 */ 1212 static void dfll_unregister_clk(struct tegra_dfll *td) 1213 { 1214 of_clk_del_provider(td->dev->of_node); 1215 clk_unregister(td->dfll_clk); 1216 td->dfll_clk = NULL; 1217 } 1218 1219 /* 1220 * Debugfs interface 1221 */ 1222 1223 #ifdef CONFIG_DEBUG_FS 1224 /* 1225 * Monitor control 1226 */ 1227 1228 /** 1229 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq 1230 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield 1231 * @ref_rate: DFLL reference clock rate 1232 * 1233 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles 1234 * per second. Returns the converted value. 1235 */ 1236 static u64 dfll_calc_monitored_rate(u32 monitor_data, 1237 unsigned long ref_rate) 1238 { 1239 return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE); 1240 } 1241 1242 /** 1243 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor 1244 * @td: DFLL instance 1245 * 1246 * If the DFLL is enabled, return the last rate reported by the DFLL's 1247 * internal monitoring hardware. This works in both open-loop and 1248 * closed-loop mode, and takes the output scaler setting into account. 1249 * Assumes that the monitor was programmed to monitor frequency before 1250 * the sample period started. If the driver believes that the DFLL is 1251 * currently uninitialized or disabled, it will return 0, since 1252 * otherwise the DFLL monitor data register will return the last 1253 * measured rate from when the DFLL was active. 1254 */ 1255 static u64 dfll_read_monitor_rate(struct tegra_dfll *td) 1256 { 1257 u32 v, s; 1258 u64 pre_scaler_rate, post_scaler_rate; 1259 1260 if (!dfll_is_running(td)) 1261 return 0; 1262 1263 v = dfll_readl(td, DFLL_MONITOR_DATA); 1264 v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT; 1265 pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate); 1266 1267 s = dfll_readl(td, DFLL_FREQ_REQ); 1268 s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT; 1269 post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate); 1270 1271 return post_scaler_rate; 1272 } 1273 1274 static int attr_enable_get(void *data, u64 *val) 1275 { 1276 struct tegra_dfll *td = data; 1277 1278 *val = dfll_is_running(td); 1279 1280 return 0; 1281 } 1282 static int attr_enable_set(void *data, u64 val) 1283 { 1284 struct tegra_dfll *td = data; 1285 1286 return val ? dfll_enable(td) : dfll_disable(td); 1287 } 1288 DEFINE_DEBUGFS_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set, 1289 "%llu\n"); 1290 1291 static int attr_lock_get(void *data, u64 *val) 1292 { 1293 struct tegra_dfll *td = data; 1294 1295 *val = (td->mode == DFLL_CLOSED_LOOP); 1296 1297 return 0; 1298 } 1299 static int attr_lock_set(void *data, u64 val) 1300 { 1301 struct tegra_dfll *td = data; 1302 1303 return val ? dfll_lock(td) : dfll_unlock(td); 1304 } 1305 DEFINE_DEBUGFS_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, "%llu\n"); 1306 1307 static int attr_rate_get(void *data, u64 *val) 1308 { 1309 struct tegra_dfll *td = data; 1310 1311 *val = dfll_read_monitor_rate(td); 1312 1313 return 0; 1314 } 1315 1316 static int attr_rate_set(void *data, u64 val) 1317 { 1318 struct tegra_dfll *td = data; 1319 1320 return dfll_request_rate(td, val); 1321 } 1322 DEFINE_DEBUGFS_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n"); 1323 1324 static int attr_registers_show(struct seq_file *s, void *data) 1325 { 1326 u32 val, offs; 1327 struct tegra_dfll *td = s->private; 1328 1329 seq_puts(s, "CONTROL REGISTERS:\n"); 1330 for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) { 1331 if (offs == DFLL_OUTPUT_CFG) 1332 val = dfll_i2c_readl(td, offs); 1333 else 1334 val = dfll_readl(td, offs); 1335 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val); 1336 } 1337 1338 seq_puts(s, "\nI2C and INTR REGISTERS:\n"); 1339 for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4) 1340 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1341 dfll_i2c_readl(td, offs)); 1342 for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4) 1343 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1344 dfll_i2c_readl(td, offs)); 1345 1346 if (td->pmu_if == TEGRA_DFLL_PMU_I2C) { 1347 seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n"); 1348 offs = DFLL_I2C_CLK_DIVISOR; 1349 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1350 __raw_readl(td->i2c_controller_base + offs)); 1351 1352 seq_puts(s, "\nLUT:\n"); 1353 for (offs = 0; offs < 4 * MAX_DFLL_VOLTAGES; offs += 4) 1354 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1355 __raw_readl(td->lut_base + offs)); 1356 } 1357 1358 return 0; 1359 } 1360 1361 DEFINE_SHOW_ATTRIBUTE(attr_registers); 1362 1363 static void dfll_debug_init(struct tegra_dfll *td) 1364 { 1365 struct dentry *root; 1366 1367 if (!td || (td->mode == DFLL_UNINITIALIZED)) 1368 return; 1369 1370 root = debugfs_create_dir("tegra_dfll_fcpu", NULL); 1371 td->debugfs_dir = root; 1372 1373 debugfs_create_file_unsafe("enable", 0644, root, td, 1374 &enable_fops); 1375 debugfs_create_file_unsafe("lock", 0444, root, td, &lock_fops); 1376 debugfs_create_file_unsafe("rate", 0444, root, td, &rate_fops); 1377 debugfs_create_file("registers", 0444, root, td, &attr_registers_fops); 1378 } 1379 1380 #else 1381 static inline void dfll_debug_init(struct tegra_dfll *td) { } 1382 #endif /* CONFIG_DEBUG_FS */ 1383 1384 /* 1385 * DFLL initialization 1386 */ 1387 1388 /** 1389 * dfll_set_default_params - program non-output related DFLL parameters 1390 * @td: DFLL instance 1391 * 1392 * During DFLL driver initialization or resume from context loss, 1393 * program parameters for the closed loop integrator, DVCO tuning, 1394 * voltage droop control and monitor control. 1395 */ 1396 static void dfll_set_default_params(struct tegra_dfll *td) 1397 { 1398 u32 val; 1399 1400 val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32); 1401 BUG_ON(val > DFLL_CONFIG_DIV_MASK); 1402 dfll_writel(td, val, DFLL_CONFIG); 1403 1404 val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) | 1405 (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) | 1406 (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) | 1407 (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) | 1408 (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0); 1409 dfll_writel(td, val, DFLL_PARAMS); 1410 1411 dfll_tune_low(td); 1412 dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL); 1413 dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL); 1414 } 1415 1416 /** 1417 * dfll_init_clks - clk_get() the DFLL source clocks 1418 * @td: DFLL instance 1419 * 1420 * Call clk_get() on the DFLL source clocks and save the pointers for later 1421 * use. Returns 0 upon success or error (see devm_clk_get) if one or more 1422 * of the clocks couldn't be looked up. 1423 */ 1424 static int dfll_init_clks(struct tegra_dfll *td) 1425 { 1426 td->ref_clk = devm_clk_get(td->dev, "ref"); 1427 if (IS_ERR(td->ref_clk)) { 1428 dev_err(td->dev, "missing ref clock\n"); 1429 return PTR_ERR(td->ref_clk); 1430 } 1431 1432 td->soc_clk = devm_clk_get(td->dev, "soc"); 1433 if (IS_ERR(td->soc_clk)) { 1434 dev_err(td->dev, "missing soc clock\n"); 1435 return PTR_ERR(td->soc_clk); 1436 } 1437 1438 td->i2c_clk = devm_clk_get(td->dev, "i2c"); 1439 if (IS_ERR(td->i2c_clk)) { 1440 dev_err(td->dev, "missing i2c clock\n"); 1441 return PTR_ERR(td->i2c_clk); 1442 } 1443 td->i2c_clk_rate = clk_get_rate(td->i2c_clk); 1444 1445 return 0; 1446 } 1447 1448 /** 1449 * dfll_init - Prepare the DFLL IP block for use 1450 * @td: DFLL instance 1451 * 1452 * Do everything necessary to prepare the DFLL IP block for use. The 1453 * DFLL will be left in DISABLED state. Called by dfll_probe(). 1454 * Returns 0 upon success, or passes along the error from whatever 1455 * function returned it. 1456 */ 1457 static int dfll_init(struct tegra_dfll *td) 1458 { 1459 int ret; 1460 1461 td->ref_rate = clk_get_rate(td->ref_clk); 1462 if (td->ref_rate != REF_CLOCK_RATE) { 1463 dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu", 1464 td->ref_rate, REF_CLOCK_RATE); 1465 return -EINVAL; 1466 } 1467 1468 reset_control_deassert(td->dfll_rst); 1469 reset_control_deassert(td->dvco_rst); 1470 1471 ret = clk_prepare(td->ref_clk); 1472 if (ret) { 1473 dev_err(td->dev, "failed to prepare ref_clk\n"); 1474 return ret; 1475 } 1476 1477 ret = clk_prepare(td->soc_clk); 1478 if (ret) { 1479 dev_err(td->dev, "failed to prepare soc_clk\n"); 1480 goto di_err1; 1481 } 1482 1483 ret = clk_prepare(td->i2c_clk); 1484 if (ret) { 1485 dev_err(td->dev, "failed to prepare i2c_clk\n"); 1486 goto di_err2; 1487 } 1488 1489 td->last_unrounded_rate = 0; 1490 1491 pm_runtime_enable(td->dev); 1492 pm_runtime_get_sync(td->dev); 1493 1494 dfll_set_mode(td, DFLL_DISABLED); 1495 dfll_set_default_params(td); 1496 1497 if (td->soc->init_clock_trimmers) 1498 td->soc->init_clock_trimmers(); 1499 1500 dfll_set_open_loop_config(td); 1501 1502 dfll_init_out_if(td); 1503 1504 pm_runtime_put_sync(td->dev); 1505 1506 return 0; 1507 1508 di_err2: 1509 clk_unprepare(td->soc_clk); 1510 di_err1: 1511 clk_unprepare(td->ref_clk); 1512 1513 reset_control_assert(td->dvco_rst); 1514 reset_control_assert(td->dfll_rst); 1515 1516 return ret; 1517 } 1518 1519 /** 1520 * tegra_dfll_suspend - check DFLL is disabled 1521 * @dev: DFLL instance 1522 * 1523 * DFLL clock should be disabled by the CPUFreq driver. So, make 1524 * sure it is disabled and disable all clocks needed by the DFLL. 1525 */ 1526 int tegra_dfll_suspend(struct device *dev) 1527 { 1528 struct tegra_dfll *td = dev_get_drvdata(dev); 1529 1530 if (dfll_is_running(td)) { 1531 dev_err(td->dev, "DFLL still enabled while suspending\n"); 1532 return -EBUSY; 1533 } 1534 1535 reset_control_assert(td->dvco_rst); 1536 reset_control_assert(td->dfll_rst); 1537 1538 return 0; 1539 } 1540 EXPORT_SYMBOL(tegra_dfll_suspend); 1541 1542 /** 1543 * tegra_dfll_resume - reinitialize DFLL on resume 1544 * @dev: DFLL instance 1545 * 1546 * DFLL is disabled and reset during suspend and resume. 1547 * So, reinitialize the DFLL IP block back for use. 1548 * DFLL clock is enabled later in closed loop mode by CPUFreq 1549 * driver before switching its clock source to DFLL output. 1550 */ 1551 int tegra_dfll_resume(struct device *dev) 1552 { 1553 struct tegra_dfll *td = dev_get_drvdata(dev); 1554 1555 reset_control_deassert(td->dfll_rst); 1556 reset_control_deassert(td->dvco_rst); 1557 1558 pm_runtime_get_sync(td->dev); 1559 1560 dfll_set_mode(td, DFLL_DISABLED); 1561 dfll_set_default_params(td); 1562 1563 if (td->soc->init_clock_trimmers) 1564 td->soc->init_clock_trimmers(); 1565 1566 dfll_set_open_loop_config(td); 1567 1568 dfll_init_out_if(td); 1569 1570 pm_runtime_put_sync(td->dev); 1571 1572 return 0; 1573 } 1574 EXPORT_SYMBOL(tegra_dfll_resume); 1575 1576 /* 1577 * DT data fetch 1578 */ 1579 1580 /* 1581 * Find a PMIC voltage register-to-voltage mapping for the given voltage. 1582 * An exact voltage match is required. 1583 */ 1584 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV) 1585 { 1586 int i, n_voltages, reg_uV,reg_volt_id, align_step; 1587 1588 if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM)) 1589 return -EINVAL; 1590 1591 align_step = uV / td->soc->alignment.step_uv; 1592 n_voltages = regulator_count_voltages(td->vdd_reg); 1593 for (i = 0; i < n_voltages; i++) { 1594 reg_uV = regulator_list_voltage(td->vdd_reg, i); 1595 if (reg_uV < 0) 1596 break; 1597 1598 reg_volt_id = reg_uV / td->soc->alignment.step_uv; 1599 1600 if (align_step == reg_volt_id) 1601 return i; 1602 } 1603 1604 dev_err(td->dev, "no voltage map entry for %d uV\n", uV); 1605 return -EINVAL; 1606 } 1607 1608 /* 1609 * Find a PMIC voltage register-to-voltage mapping for the given voltage, 1610 * rounding up to the closest supported voltage. 1611 * */ 1612 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV) 1613 { 1614 int i, n_voltages, reg_uV, reg_volt_id, align_step; 1615 1616 if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM)) 1617 return -EINVAL; 1618 1619 align_step = uV / td->soc->alignment.step_uv; 1620 n_voltages = regulator_count_voltages(td->vdd_reg); 1621 for (i = 0; i < n_voltages; i++) { 1622 reg_uV = regulator_list_voltage(td->vdd_reg, i); 1623 if (reg_uV < 0) 1624 break; 1625 1626 reg_volt_id = reg_uV / td->soc->alignment.step_uv; 1627 1628 if (align_step <= reg_volt_id) 1629 return i; 1630 } 1631 1632 dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV); 1633 return -EINVAL; 1634 } 1635 1636 /* 1637 * dfll_build_pwm_lut - build the PWM regulator lookup table 1638 * @td: DFLL instance 1639 * @v_max: Vmax from OPP table 1640 * 1641 * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC. 1642 * In this case closed loop output is controlling duty cycle directly. The s/w 1643 * look-up that maps PWM duty cycle to voltage is still built by this function. 1644 */ 1645 static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max) 1646 { 1647 int i; 1648 unsigned long rate, reg_volt; 1649 u8 lut_bottom = MAX_DFLL_VOLTAGES; 1650 int v_min = td->soc->cvb->min_millivolts * 1000; 1651 1652 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { 1653 reg_volt = td->lut_uv[i]; 1654 1655 /* since opp voltage is exact mv */ 1656 reg_volt = (reg_volt / 1000) * 1000; 1657 if (reg_volt > v_max) 1658 break; 1659 1660 td->lut[i] = i; 1661 if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min)) 1662 lut_bottom = i; 1663 } 1664 1665 /* determine voltage boundaries */ 1666 td->lut_size = i; 1667 if ((lut_bottom == MAX_DFLL_VOLTAGES) || 1668 (lut_bottom + 1 >= td->lut_size)) { 1669 dev_err(td->dev, "no voltage above DFLL minimum %d mV\n", 1670 td->soc->cvb->min_millivolts); 1671 return -EINVAL; 1672 } 1673 td->lut_bottom = lut_bottom; 1674 1675 /* determine rate boundaries */ 1676 rate = get_dvco_rate_below(td, td->lut_bottom); 1677 if (!rate) { 1678 dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n", 1679 td->soc->cvb->min_millivolts); 1680 return -EINVAL; 1681 } 1682 td->dvco_rate_min = rate; 1683 1684 return 0; 1685 } 1686 1687 /** 1688 * dfll_build_i2c_lut - build the I2C voltage register lookup table 1689 * @td: DFLL instance 1690 * @v_max: Vmax from OPP table 1691 * 1692 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with 1693 * PMIC voltage register values that span the entire DFLL operating range. 1694 * This function builds the look-up table based on the OPP table provided by 1695 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC 1696 * register-to-voltage mapping queried from the regulator framework. 1697 * 1698 * On success, fills in td->lut and returns 0, or -err on failure. 1699 */ 1700 static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max) 1701 { 1702 unsigned long rate, v, v_opp; 1703 int ret = -EINVAL; 1704 int j, selector, lut; 1705 1706 v = td->soc->cvb->min_millivolts * 1000; 1707 lut = find_vdd_map_entry_exact(td, v); 1708 if (lut < 0) 1709 goto out; 1710 td->lut[0] = lut; 1711 td->lut_bottom = 0; 1712 1713 for (j = 1, rate = 0; ; rate++) { 1714 struct dev_pm_opp *opp; 1715 1716 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); 1717 if (IS_ERR(opp)) 1718 break; 1719 v_opp = dev_pm_opp_get_voltage(opp); 1720 1721 if (v_opp <= td->soc->cvb->min_millivolts * 1000) 1722 td->dvco_rate_min = dev_pm_opp_get_freq(opp); 1723 1724 dev_pm_opp_put(opp); 1725 1726 for (;;) { 1727 v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j)); 1728 if (v >= v_opp) 1729 break; 1730 1731 selector = find_vdd_map_entry_min(td, v); 1732 if (selector < 0) 1733 goto out; 1734 if (selector != td->lut[j - 1]) 1735 td->lut[j++] = selector; 1736 } 1737 1738 v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp; 1739 selector = find_vdd_map_entry_exact(td, v); 1740 if (selector < 0) 1741 goto out; 1742 if (selector != td->lut[j - 1]) 1743 td->lut[j++] = selector; 1744 1745 if (v >= v_max) 1746 break; 1747 } 1748 td->lut_size = j; 1749 1750 if (!td->dvco_rate_min) 1751 dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n", 1752 td->soc->cvb->min_millivolts); 1753 else { 1754 ret = 0; 1755 for (j = 0; j < td->lut_size; j++) 1756 td->lut_uv[j] = 1757 regulator_list_voltage(td->vdd_reg, 1758 td->lut[j]); 1759 } 1760 1761 out: 1762 return ret; 1763 } 1764 1765 static int dfll_build_lut(struct tegra_dfll *td) 1766 { 1767 unsigned long rate, v_max; 1768 struct dev_pm_opp *opp; 1769 1770 rate = ULONG_MAX; 1771 opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate); 1772 if (IS_ERR(opp)) { 1773 dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n"); 1774 return -EINVAL; 1775 } 1776 v_max = dev_pm_opp_get_voltage(opp); 1777 dev_pm_opp_put(opp); 1778 1779 if (td->pmu_if == TEGRA_DFLL_PMU_PWM) 1780 return dfll_build_pwm_lut(td, v_max); 1781 else 1782 return dfll_build_i2c_lut(td, v_max); 1783 } 1784 1785 /** 1786 * read_dt_param - helper function for reading required parameters from the DT 1787 * @td: DFLL instance 1788 * @param: DT property name 1789 * @dest: output pointer for the value read 1790 * 1791 * Read a required numeric parameter from the DFLL device node, or complain 1792 * if the property doesn't exist. Returns a boolean indicating success for 1793 * easy chaining of multiple calls to this function. 1794 */ 1795 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest) 1796 { 1797 int err = of_property_read_u32(td->dev->of_node, param, dest); 1798 1799 if (err < 0) { 1800 dev_err(td->dev, "failed to read DT parameter %s: %d\n", 1801 param, err); 1802 return false; 1803 } 1804 1805 return true; 1806 } 1807 1808 /** 1809 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem 1810 * @td: DFLL instance 1811 * 1812 * Read all the parameters required for operation in I2C mode. The parameters 1813 * can originate from the device tree or the regulator subsystem. 1814 * Returns 0 on success or -err on failure. 1815 */ 1816 static int dfll_fetch_i2c_params(struct tegra_dfll *td) 1817 { 1818 struct regmap *regmap; 1819 struct device *i2c_dev; 1820 struct i2c_client *i2c_client; 1821 int vsel_reg, vsel_mask; 1822 int ret; 1823 1824 if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate)) 1825 return -EINVAL; 1826 1827 regmap = regulator_get_regmap(td->vdd_reg); 1828 i2c_dev = regmap_get_device(regmap); 1829 i2c_client = to_i2c_client(i2c_dev); 1830 1831 td->i2c_slave_addr = i2c_client->addr; 1832 1833 ret = regulator_get_hardware_vsel_register(td->vdd_reg, 1834 &vsel_reg, 1835 &vsel_mask); 1836 if (ret < 0) { 1837 dev_err(td->dev, 1838 "regulator unsuitable for DFLL I2C operation\n"); 1839 return -EINVAL; 1840 } 1841 td->i2c_reg = vsel_reg; 1842 1843 return 0; 1844 } 1845 1846 static int dfll_fetch_pwm_params(struct tegra_dfll *td) 1847 { 1848 int ret, i; 1849 u32 pwm_period; 1850 1851 if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) { 1852 dev_err(td->dev, 1853 "Missing step or alignment info for PWM regulator"); 1854 return -EINVAL; 1855 } 1856 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) 1857 td->lut_uv[i] = td->soc->alignment.offset_uv + 1858 i * td->soc->alignment.step_uv; 1859 1860 ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts", 1861 &td->reg_init_uV); 1862 if (!ret) { 1863 dev_err(td->dev, "couldn't get initialized voltage\n"); 1864 return -EINVAL; 1865 } 1866 1867 ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period); 1868 if (!ret) { 1869 dev_err(td->dev, "couldn't get PWM period\n"); 1870 return -EINVAL; 1871 } 1872 td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1); 1873 1874 td->pwm_pin = devm_pinctrl_get(td->dev); 1875 if (IS_ERR(td->pwm_pin)) { 1876 dev_err(td->dev, "DT: missing pinctrl device\n"); 1877 return PTR_ERR(td->pwm_pin); 1878 } 1879 1880 td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin, 1881 "dvfs_pwm_enable"); 1882 if (IS_ERR(td->pwm_enable_state)) { 1883 dev_err(td->dev, "DT: missing pwm enabled state\n"); 1884 return PTR_ERR(td->pwm_enable_state); 1885 } 1886 1887 td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin, 1888 "dvfs_pwm_disable"); 1889 if (IS_ERR(td->pwm_disable_state)) { 1890 dev_err(td->dev, "DT: missing pwm disabled state\n"); 1891 return PTR_ERR(td->pwm_disable_state); 1892 } 1893 1894 return 0; 1895 } 1896 1897 /** 1898 * dfll_fetch_common_params - read DFLL parameters from the device tree 1899 * @td: DFLL instance 1900 * 1901 * Read all the DT parameters that are common to both I2C and PWM operation. 1902 * Returns 0 on success or -EINVAL on any failure. 1903 */ 1904 static int dfll_fetch_common_params(struct tegra_dfll *td) 1905 { 1906 bool ok = true; 1907 1908 ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl); 1909 ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate); 1910 ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode); 1911 ok &= read_dt_param(td, "nvidia,cf", &td->cf); 1912 ok &= read_dt_param(td, "nvidia,ci", &td->ci); 1913 ok &= read_dt_param(td, "nvidia,cg", &td->cg); 1914 td->cg_scale = of_property_read_bool(td->dev->of_node, 1915 "nvidia,cg-scale"); 1916 1917 if (of_property_read_string(td->dev->of_node, "clock-output-names", 1918 &td->output_clock_name)) { 1919 dev_err(td->dev, "missing clock-output-names property\n"); 1920 ok = false; 1921 } 1922 1923 return ok ? 0 : -EINVAL; 1924 } 1925 1926 /* 1927 * API exported to per-SoC platform drivers 1928 */ 1929 1930 /** 1931 * tegra_dfll_register - probe a Tegra DFLL device 1932 * @pdev: DFLL platform_device * 1933 * @soc: Per-SoC integration and characterization data for this DFLL instance 1934 * 1935 * Probe and initialize a DFLL device instance. Intended to be called 1936 * by a SoC-specific shim driver that passes in per-SoC integration 1937 * and configuration data via @soc. Returns 0 on success or -err on failure. 1938 */ 1939 int tegra_dfll_register(struct platform_device *pdev, 1940 struct tegra_dfll_soc_data *soc) 1941 { 1942 struct resource *mem; 1943 struct tegra_dfll *td; 1944 int ret; 1945 1946 if (!soc) { 1947 dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n"); 1948 return -EINVAL; 1949 } 1950 1951 td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL); 1952 if (!td) 1953 return -ENOMEM; 1954 td->dev = &pdev->dev; 1955 platform_set_drvdata(pdev, td); 1956 1957 td->soc = soc; 1958 1959 td->dfll_rst = devm_reset_control_get_optional(td->dev, "dfll"); 1960 if (IS_ERR(td->dfll_rst)) { 1961 dev_err(td->dev, "couldn't get dfll reset\n"); 1962 return PTR_ERR(td->dfll_rst); 1963 } 1964 1965 td->dvco_rst = devm_reset_control_get(td->dev, "dvco"); 1966 if (IS_ERR(td->dvco_rst)) { 1967 dev_err(td->dev, "couldn't get dvco reset\n"); 1968 return PTR_ERR(td->dvco_rst); 1969 } 1970 1971 ret = dfll_fetch_common_params(td); 1972 if (ret) { 1973 dev_err(td->dev, "couldn't parse device tree parameters\n"); 1974 return ret; 1975 } 1976 1977 if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) { 1978 td->pmu_if = TEGRA_DFLL_PMU_PWM; 1979 ret = dfll_fetch_pwm_params(td); 1980 } else { 1981 td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu"); 1982 if (IS_ERR(td->vdd_reg)) { 1983 dev_err(td->dev, "couldn't get vdd_cpu regulator\n"); 1984 return PTR_ERR(td->vdd_reg); 1985 } 1986 td->pmu_if = TEGRA_DFLL_PMU_I2C; 1987 ret = dfll_fetch_i2c_params(td); 1988 } 1989 if (ret) 1990 return ret; 1991 1992 ret = dfll_build_lut(td); 1993 if (ret) { 1994 dev_err(td->dev, "couldn't build LUT\n"); 1995 return ret; 1996 } 1997 1998 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1999 if (!mem) { 2000 dev_err(td->dev, "no control register resource\n"); 2001 return -ENODEV; 2002 } 2003 2004 td->base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 2005 if (!td->base) { 2006 dev_err(td->dev, "couldn't ioremap DFLL control registers\n"); 2007 return -ENODEV; 2008 } 2009 2010 mem = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2011 if (!mem) { 2012 dev_err(td->dev, "no i2c_base resource\n"); 2013 return -ENODEV; 2014 } 2015 2016 td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 2017 if (!td->i2c_base) { 2018 dev_err(td->dev, "couldn't ioremap i2c_base resource\n"); 2019 return -ENODEV; 2020 } 2021 2022 mem = platform_get_resource(pdev, IORESOURCE_MEM, 2); 2023 if (!mem) { 2024 dev_err(td->dev, "no i2c_controller_base resource\n"); 2025 return -ENODEV; 2026 } 2027 2028 td->i2c_controller_base = devm_ioremap(td->dev, mem->start, 2029 resource_size(mem)); 2030 if (!td->i2c_controller_base) { 2031 dev_err(td->dev, 2032 "couldn't ioremap i2c_controller_base resource\n"); 2033 return -ENODEV; 2034 } 2035 2036 mem = platform_get_resource(pdev, IORESOURCE_MEM, 3); 2037 if (!mem) { 2038 dev_err(td->dev, "no lut_base resource\n"); 2039 return -ENODEV; 2040 } 2041 2042 td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 2043 if (!td->lut_base) { 2044 dev_err(td->dev, 2045 "couldn't ioremap lut_base resource\n"); 2046 return -ENODEV; 2047 } 2048 2049 ret = dfll_init_clks(td); 2050 if (ret) { 2051 dev_err(&pdev->dev, "DFLL clock init error\n"); 2052 return ret; 2053 } 2054 2055 /* Enable the clocks and set the device up */ 2056 ret = dfll_init(td); 2057 if (ret) 2058 return ret; 2059 2060 ret = dfll_register_clk(td); 2061 if (ret) { 2062 dev_err(&pdev->dev, "DFLL clk registration failed\n"); 2063 return ret; 2064 } 2065 2066 dfll_debug_init(td); 2067 2068 return 0; 2069 } 2070 EXPORT_SYMBOL(tegra_dfll_register); 2071 2072 /** 2073 * tegra_dfll_unregister - release all of the DFLL driver resources for a device 2074 * @pdev: DFLL platform_device * 2075 * 2076 * Unbind this driver from the DFLL hardware device represented by 2077 * @pdev. The DFLL must be disabled for this to succeed. Returns a 2078 * soc pointer upon success or -EBUSY if the DFLL is still active. 2079 */ 2080 struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev) 2081 { 2082 struct tegra_dfll *td = platform_get_drvdata(pdev); 2083 2084 /* 2085 * Note that exiting early here doesn't prevent unbinding the driver. 2086 * Exiting early here only leaks some resources. 2087 */ 2088 if (td->mode != DFLL_DISABLED) { 2089 dev_err(&pdev->dev, 2090 "must disable DFLL before removing driver\n"); 2091 return ERR_PTR(-EBUSY); 2092 } 2093 2094 debugfs_remove_recursive(td->debugfs_dir); 2095 2096 dfll_unregister_clk(td); 2097 pm_runtime_disable(&pdev->dev); 2098 2099 clk_unprepare(td->ref_clk); 2100 clk_unprepare(td->soc_clk); 2101 clk_unprepare(td->i2c_clk); 2102 2103 reset_control_assert(td->dvco_rst); 2104 reset_control_assert(td->dfll_rst); 2105 2106 return td->soc; 2107 } 2108 EXPORT_SYMBOL(tegra_dfll_unregister); 2109