1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2022 - All Rights Reserved 4 * Author: Gabriel Fernandez <gabriel.fernandez@foss.st.com> for STMicroelectronics. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/delay.h> 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/io.h> 12 #include <linux/of.h> 13 #include <linux/of_address.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 17 #include "clk-stm32-core.h" 18 #include "reset-stm32.h" 19 20 static DEFINE_SPINLOCK(rlock); 21 22 static int stm32_rcc_clock_init(struct device *dev, 23 const struct of_device_id *match, 24 void __iomem *base) 25 { 26 const struct stm32_rcc_match_data *data = match->data; 27 struct clk_hw_onecell_data *clk_data = data->hw_clks; 28 struct device_node *np = dev_of_node(dev); 29 struct clk_hw **hws; 30 int n, max_binding; 31 32 max_binding = data->maxbinding; 33 34 clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, max_binding), GFP_KERNEL); 35 if (!clk_data) 36 return -ENOMEM; 37 38 clk_data->num = max_binding; 39 40 hws = clk_data->hws; 41 42 for (n = 0; n < max_binding; n++) 43 hws[n] = ERR_PTR(-ENOENT); 44 45 for (n = 0; n < data->num_clocks; n++) { 46 const struct clock_config *cfg_clock = &data->tab_clocks[n]; 47 struct clk_hw *hw = ERR_PTR(-ENOENT); 48 49 if (data->check_security && 50 data->check_security(base, cfg_clock)) 51 continue; 52 53 if (cfg_clock->func) 54 hw = (*cfg_clock->func)(dev, data, base, &rlock, 55 cfg_clock); 56 57 if (IS_ERR(hw)) { 58 dev_err(dev, "Can't register clk %d: %ld\n", n, 59 PTR_ERR(hw)); 60 return PTR_ERR(hw); 61 } 62 63 if (cfg_clock->id != NO_ID) 64 hws[cfg_clock->id] = hw; 65 } 66 67 return of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); 68 } 69 70 int stm32_rcc_init(struct device *dev, const struct of_device_id *match_data, 71 void __iomem *base) 72 { 73 const struct of_device_id *match; 74 int err; 75 76 match = of_match_node(match_data, dev_of_node(dev)); 77 if (!match) { 78 dev_err(dev, "match data not found\n"); 79 return -ENODEV; 80 } 81 82 /* RCC Reset Configuration */ 83 err = stm32_rcc_reset_init(dev, match, base); 84 if (err) { 85 pr_err("stm32 reset failed to initialize\n"); 86 return err; 87 } 88 89 /* RCC Clock Configuration */ 90 err = stm32_rcc_clock_init(dev, match, base); 91 if (err) { 92 pr_err("stm32 clock failed to initialize\n"); 93 return err; 94 } 95 96 return 0; 97 } 98 99 static u8 stm32_mux_get_parent(void __iomem *base, 100 struct clk_stm32_clock_data *data, 101 u16 mux_id) 102 { 103 const struct stm32_mux_cfg *mux = &data->muxes[mux_id]; 104 u32 mask = BIT(mux->width) - 1; 105 u32 val; 106 107 val = readl(base + mux->offset) >> mux->shift; 108 val &= mask; 109 110 return val; 111 } 112 113 static int stm32_mux_set_parent(void __iomem *base, 114 struct clk_stm32_clock_data *data, 115 u16 mux_id, u8 index) 116 { 117 const struct stm32_mux_cfg *mux = &data->muxes[mux_id]; 118 119 u32 mask = BIT(mux->width) - 1; 120 u32 reg = readl(base + mux->offset); 121 u32 val = index << mux->shift; 122 123 reg &= ~(mask << mux->shift); 124 reg |= val; 125 126 writel(reg, base + mux->offset); 127 128 return 0; 129 } 130 131 static void stm32_gate_endisable(void __iomem *base, 132 struct clk_stm32_clock_data *data, 133 u16 gate_id, int enable) 134 { 135 const struct stm32_gate_cfg *gate = &data->gates[gate_id]; 136 void __iomem *addr = base + gate->offset; 137 138 if (enable) { 139 if (data->gate_cpt[gate_id]++ > 0) 140 return; 141 142 if (gate->set_clr != 0) 143 writel(BIT(gate->bit_idx), addr); 144 else 145 writel(readl(addr) | BIT(gate->bit_idx), addr); 146 } else { 147 if (--data->gate_cpt[gate_id] > 0) 148 return; 149 150 if (gate->set_clr != 0) 151 writel(BIT(gate->bit_idx), addr + gate->set_clr); 152 else 153 writel(readl(addr) & ~BIT(gate->bit_idx), addr); 154 } 155 } 156 157 static void stm32_gate_disable_unused(void __iomem *base, 158 struct clk_stm32_clock_data *data, 159 u16 gate_id) 160 { 161 const struct stm32_gate_cfg *gate = &data->gates[gate_id]; 162 void __iomem *addr = base + gate->offset; 163 164 if (data->gate_cpt[gate_id] > 0) 165 return; 166 167 if (gate->set_clr != 0) 168 writel(BIT(gate->bit_idx), addr + gate->set_clr); 169 else 170 writel(readl(addr) & ~BIT(gate->bit_idx), addr); 171 } 172 173 static int stm32_gate_is_enabled(void __iomem *base, 174 struct clk_stm32_clock_data *data, 175 u16 gate_id) 176 { 177 const struct stm32_gate_cfg *gate = &data->gates[gate_id]; 178 179 return (readl(base + gate->offset) & BIT(gate->bit_idx)) != 0; 180 } 181 182 static unsigned int _get_table_div(const struct clk_div_table *table, 183 unsigned int val) 184 { 185 const struct clk_div_table *clkt; 186 187 for (clkt = table; clkt->div; clkt++) 188 if (clkt->val == val) 189 return clkt->div; 190 return 0; 191 } 192 193 static unsigned int _get_div(const struct clk_div_table *table, 194 unsigned int val, unsigned long flags, u8 width) 195 { 196 if (flags & CLK_DIVIDER_ONE_BASED) 197 return val; 198 if (flags & CLK_DIVIDER_POWER_OF_TWO) 199 return 1 << val; 200 if (table) 201 return _get_table_div(table, val); 202 return val + 1; 203 } 204 205 static unsigned long stm32_divider_get_rate(void __iomem *base, 206 struct clk_stm32_clock_data *data, 207 u16 div_id, 208 unsigned long parent_rate) 209 { 210 const struct stm32_div_cfg *divider = &data->dividers[div_id]; 211 unsigned int val; 212 unsigned int div; 213 214 val = readl(base + divider->offset) >> divider->shift; 215 val &= clk_div_mask(divider->width); 216 div = _get_div(divider->table, val, divider->flags, divider->width); 217 218 if (!div) { 219 WARN(!(divider->flags & CLK_DIVIDER_ALLOW_ZERO), 220 "%d: Zero divisor and CLK_DIVIDER_ALLOW_ZERO not set\n", 221 div_id); 222 return parent_rate; 223 } 224 225 return DIV_ROUND_UP_ULL((u64)parent_rate, div); 226 } 227 228 static int stm32_divider_set_rate(void __iomem *base, 229 struct clk_stm32_clock_data *data, 230 u16 div_id, unsigned long rate, 231 unsigned long parent_rate) 232 { 233 const struct stm32_div_cfg *divider = &data->dividers[div_id]; 234 int value; 235 u32 val; 236 237 value = divider_get_val(rate, parent_rate, divider->table, 238 divider->width, divider->flags); 239 if (value < 0) 240 return value; 241 242 if (divider->flags & CLK_DIVIDER_HIWORD_MASK) { 243 val = clk_div_mask(divider->width) << (divider->shift + 16); 244 } else { 245 val = readl(base + divider->offset); 246 val &= ~(clk_div_mask(divider->width) << divider->shift); 247 } 248 249 val |= (u32)value << divider->shift; 250 251 writel(val, base + divider->offset); 252 253 return 0; 254 } 255 256 static u8 clk_stm32_mux_get_parent(struct clk_hw *hw) 257 { 258 struct clk_stm32_mux *mux = to_clk_stm32_mux(hw); 259 260 return stm32_mux_get_parent(mux->base, mux->clock_data, mux->mux_id); 261 } 262 263 static int clk_stm32_mux_set_parent(struct clk_hw *hw, u8 index) 264 { 265 struct clk_stm32_mux *mux = to_clk_stm32_mux(hw); 266 unsigned long flags = 0; 267 268 spin_lock_irqsave(mux->lock, flags); 269 270 stm32_mux_set_parent(mux->base, mux->clock_data, mux->mux_id, index); 271 272 spin_unlock_irqrestore(mux->lock, flags); 273 274 return 0; 275 } 276 277 const struct clk_ops clk_stm32_mux_ops = { 278 .get_parent = clk_stm32_mux_get_parent, 279 .set_parent = clk_stm32_mux_set_parent, 280 }; 281 282 static void clk_stm32_gate_endisable(struct clk_hw *hw, int enable) 283 { 284 struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); 285 unsigned long flags = 0; 286 287 spin_lock_irqsave(gate->lock, flags); 288 289 stm32_gate_endisable(gate->base, gate->clock_data, gate->gate_id, enable); 290 291 spin_unlock_irqrestore(gate->lock, flags); 292 } 293 294 static int clk_stm32_gate_enable(struct clk_hw *hw) 295 { 296 clk_stm32_gate_endisable(hw, 1); 297 298 return 0; 299 } 300 301 static void clk_stm32_gate_disable(struct clk_hw *hw) 302 { 303 clk_stm32_gate_endisable(hw, 0); 304 } 305 306 static int clk_stm32_gate_is_enabled(struct clk_hw *hw) 307 { 308 struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); 309 310 return stm32_gate_is_enabled(gate->base, gate->clock_data, gate->gate_id); 311 } 312 313 static void clk_stm32_gate_disable_unused(struct clk_hw *hw) 314 { 315 struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); 316 unsigned long flags = 0; 317 318 spin_lock_irqsave(gate->lock, flags); 319 320 stm32_gate_disable_unused(gate->base, gate->clock_data, gate->gate_id); 321 322 spin_unlock_irqrestore(gate->lock, flags); 323 } 324 325 const struct clk_ops clk_stm32_gate_ops = { 326 .enable = clk_stm32_gate_enable, 327 .disable = clk_stm32_gate_disable, 328 .is_enabled = clk_stm32_gate_is_enabled, 329 .disable_unused = clk_stm32_gate_disable_unused, 330 }; 331 332 static int clk_stm32_divider_set_rate(struct clk_hw *hw, unsigned long rate, 333 unsigned long parent_rate) 334 { 335 struct clk_stm32_div *div = to_clk_stm32_divider(hw); 336 unsigned long flags = 0; 337 int ret; 338 339 if (div->div_id == NO_STM32_DIV) 340 return rate; 341 342 spin_lock_irqsave(div->lock, flags); 343 344 ret = stm32_divider_set_rate(div->base, div->clock_data, div->div_id, rate, parent_rate); 345 346 spin_unlock_irqrestore(div->lock, flags); 347 348 return ret; 349 } 350 351 static long clk_stm32_divider_round_rate(struct clk_hw *hw, unsigned long rate, 352 unsigned long *prate) 353 { 354 struct clk_stm32_div *div = to_clk_stm32_divider(hw); 355 const struct stm32_div_cfg *divider; 356 357 if (div->div_id == NO_STM32_DIV) 358 return rate; 359 360 divider = &div->clock_data->dividers[div->div_id]; 361 362 /* if read only, just return current value */ 363 if (divider->flags & CLK_DIVIDER_READ_ONLY) { 364 u32 val; 365 366 val = readl(div->base + divider->offset) >> divider->shift; 367 val &= clk_div_mask(divider->width); 368 369 return divider_ro_round_rate(hw, rate, prate, divider->table, 370 divider->width, divider->flags, 371 val); 372 } 373 374 return divider_round_rate_parent(hw, clk_hw_get_parent(hw), 375 rate, prate, divider->table, 376 divider->width, divider->flags); 377 } 378 379 static unsigned long clk_stm32_divider_recalc_rate(struct clk_hw *hw, 380 unsigned long parent_rate) 381 { 382 struct clk_stm32_div *div = to_clk_stm32_divider(hw); 383 384 if (div->div_id == NO_STM32_DIV) 385 return parent_rate; 386 387 return stm32_divider_get_rate(div->base, div->clock_data, div->div_id, parent_rate); 388 } 389 390 const struct clk_ops clk_stm32_divider_ops = { 391 .recalc_rate = clk_stm32_divider_recalc_rate, 392 .round_rate = clk_stm32_divider_round_rate, 393 .set_rate = clk_stm32_divider_set_rate, 394 }; 395 396 static int clk_stm32_composite_set_rate(struct clk_hw *hw, unsigned long rate, 397 unsigned long parent_rate) 398 { 399 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 400 unsigned long flags = 0; 401 int ret; 402 403 if (composite->div_id == NO_STM32_DIV) 404 return rate; 405 406 spin_lock_irqsave(composite->lock, flags); 407 408 ret = stm32_divider_set_rate(composite->base, composite->clock_data, 409 composite->div_id, rate, parent_rate); 410 411 spin_unlock_irqrestore(composite->lock, flags); 412 413 return ret; 414 } 415 416 static unsigned long clk_stm32_composite_recalc_rate(struct clk_hw *hw, 417 unsigned long parent_rate) 418 { 419 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 420 421 if (composite->div_id == NO_STM32_DIV) 422 return parent_rate; 423 424 return stm32_divider_get_rate(composite->base, composite->clock_data, 425 composite->div_id, parent_rate); 426 } 427 428 static long clk_stm32_composite_round_rate(struct clk_hw *hw, unsigned long rate, 429 unsigned long *prate) 430 { 431 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 432 433 const struct stm32_div_cfg *divider; 434 435 if (composite->div_id == NO_STM32_DIV) 436 return rate; 437 438 divider = &composite->clock_data->dividers[composite->div_id]; 439 440 /* if read only, just return current value */ 441 if (divider->flags & CLK_DIVIDER_READ_ONLY) { 442 u32 val; 443 444 val = readl(composite->base + divider->offset) >> divider->shift; 445 val &= clk_div_mask(divider->width); 446 447 return divider_ro_round_rate(hw, rate, prate, divider->table, 448 divider->width, divider->flags, 449 val); 450 } 451 452 return divider_round_rate_parent(hw, clk_hw_get_parent(hw), 453 rate, prate, divider->table, 454 divider->width, divider->flags); 455 } 456 457 static u8 clk_stm32_composite_get_parent(struct clk_hw *hw) 458 { 459 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 460 461 return stm32_mux_get_parent(composite->base, composite->clock_data, composite->mux_id); 462 } 463 464 static int clk_stm32_composite_set_parent(struct clk_hw *hw, u8 index) 465 { 466 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 467 unsigned long flags = 0; 468 469 spin_lock_irqsave(composite->lock, flags); 470 471 stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, index); 472 473 spin_unlock_irqrestore(composite->lock, flags); 474 475 if (composite->clock_data->is_multi_mux) { 476 struct clk_hw *other_mux_hw = composite->clock_data->is_multi_mux(hw); 477 478 if (other_mux_hw) { 479 struct clk_hw *hwp = clk_hw_get_parent_by_index(hw, index); 480 481 clk_hw_reparent(other_mux_hw, hwp); 482 } 483 } 484 485 return 0; 486 } 487 488 static int clk_stm32_composite_is_enabled(struct clk_hw *hw) 489 { 490 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 491 492 if (composite->gate_id == NO_STM32_GATE) 493 return (__clk_get_enable_count(hw->clk) > 0); 494 495 return stm32_gate_is_enabled(composite->base, composite->clock_data, composite->gate_id); 496 } 497 498 #define MUX_SAFE_POSITION 0 499 500 static int clk_stm32_has_safe_mux(struct clk_hw *hw) 501 { 502 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 503 const struct stm32_mux_cfg *mux = &composite->clock_data->muxes[composite->mux_id]; 504 505 return !!(mux->flags & MUX_SAFE); 506 } 507 508 static void clk_stm32_set_safe_position_mux(struct clk_hw *hw) 509 { 510 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 511 512 if (!clk_stm32_composite_is_enabled(hw)) { 513 unsigned long flags = 0; 514 515 if (composite->clock_data->is_multi_mux) { 516 struct clk_hw *other_mux_hw = NULL; 517 518 other_mux_hw = composite->clock_data->is_multi_mux(hw); 519 520 if (!other_mux_hw || clk_stm32_composite_is_enabled(other_mux_hw)) 521 return; 522 } 523 524 spin_lock_irqsave(composite->lock, flags); 525 526 stm32_mux_set_parent(composite->base, composite->clock_data, 527 composite->mux_id, MUX_SAFE_POSITION); 528 529 spin_unlock_irqrestore(composite->lock, flags); 530 } 531 } 532 533 static void clk_stm32_safe_restore_position_mux(struct clk_hw *hw) 534 { 535 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 536 int sel = clk_hw_get_parent_index(hw); 537 unsigned long flags = 0; 538 539 spin_lock_irqsave(composite->lock, flags); 540 541 stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, sel); 542 543 spin_unlock_irqrestore(composite->lock, flags); 544 } 545 546 static void clk_stm32_composite_gate_endisable(struct clk_hw *hw, int enable) 547 { 548 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 549 unsigned long flags = 0; 550 551 spin_lock_irqsave(composite->lock, flags); 552 553 stm32_gate_endisable(composite->base, composite->clock_data, composite->gate_id, enable); 554 555 spin_unlock_irqrestore(composite->lock, flags); 556 } 557 558 static int clk_stm32_composite_gate_enable(struct clk_hw *hw) 559 { 560 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 561 562 if (composite->gate_id == NO_STM32_GATE) 563 return 0; 564 565 clk_stm32_composite_gate_endisable(hw, 1); 566 567 if (composite->mux_id != NO_STM32_MUX && clk_stm32_has_safe_mux(hw)) 568 clk_stm32_safe_restore_position_mux(hw); 569 570 return 0; 571 } 572 573 static void clk_stm32_composite_gate_disable(struct clk_hw *hw) 574 { 575 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 576 577 if (composite->gate_id == NO_STM32_GATE) 578 return; 579 580 clk_stm32_composite_gate_endisable(hw, 0); 581 582 if (composite->mux_id != NO_STM32_MUX && clk_stm32_has_safe_mux(hw)) 583 clk_stm32_set_safe_position_mux(hw); 584 } 585 586 static void clk_stm32_composite_disable_unused(struct clk_hw *hw) 587 { 588 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 589 unsigned long flags = 0; 590 591 if (composite->gate_id == NO_STM32_GATE) 592 return; 593 594 spin_lock_irqsave(composite->lock, flags); 595 596 stm32_gate_disable_unused(composite->base, composite->clock_data, composite->gate_id); 597 598 spin_unlock_irqrestore(composite->lock, flags); 599 } 600 601 const struct clk_ops clk_stm32_composite_ops = { 602 .set_rate = clk_stm32_composite_set_rate, 603 .recalc_rate = clk_stm32_composite_recalc_rate, 604 .round_rate = clk_stm32_composite_round_rate, 605 .get_parent = clk_stm32_composite_get_parent, 606 .set_parent = clk_stm32_composite_set_parent, 607 .enable = clk_stm32_composite_gate_enable, 608 .disable = clk_stm32_composite_gate_disable, 609 .is_enabled = clk_stm32_composite_is_enabled, 610 .disable_unused = clk_stm32_composite_disable_unused, 611 }; 612 613 struct clk_hw *clk_stm32_mux_register(struct device *dev, 614 const struct stm32_rcc_match_data *data, 615 void __iomem *base, 616 spinlock_t *lock, 617 const struct clock_config *cfg) 618 { 619 struct clk_stm32_mux *mux = cfg->clock_cfg; 620 struct clk_hw *hw = &mux->hw; 621 int err; 622 623 mux->base = base; 624 mux->lock = lock; 625 mux->clock_data = data->clock_data; 626 627 err = clk_hw_register(dev, hw); 628 if (err) 629 return ERR_PTR(err); 630 631 return hw; 632 } 633 634 struct clk_hw *clk_stm32_gate_register(struct device *dev, 635 const struct stm32_rcc_match_data *data, 636 void __iomem *base, 637 spinlock_t *lock, 638 const struct clock_config *cfg) 639 { 640 struct clk_stm32_gate *gate = cfg->clock_cfg; 641 struct clk_hw *hw = &gate->hw; 642 int err; 643 644 gate->base = base; 645 gate->lock = lock; 646 gate->clock_data = data->clock_data; 647 648 err = clk_hw_register(dev, hw); 649 if (err) 650 return ERR_PTR(err); 651 652 return hw; 653 } 654 655 struct clk_hw *clk_stm32_div_register(struct device *dev, 656 const struct stm32_rcc_match_data *data, 657 void __iomem *base, 658 spinlock_t *lock, 659 const struct clock_config *cfg) 660 { 661 struct clk_stm32_div *div = cfg->clock_cfg; 662 struct clk_hw *hw = &div->hw; 663 int err; 664 665 div->base = base; 666 div->lock = lock; 667 div->clock_data = data->clock_data; 668 669 err = clk_hw_register(dev, hw); 670 if (err) 671 return ERR_PTR(err); 672 673 return hw; 674 } 675 676 struct clk_hw *clk_stm32_composite_register(struct device *dev, 677 const struct stm32_rcc_match_data *data, 678 void __iomem *base, 679 spinlock_t *lock, 680 const struct clock_config *cfg) 681 { 682 struct clk_stm32_composite *composite = cfg->clock_cfg; 683 struct clk_hw *hw = &composite->hw; 684 int err; 685 686 composite->base = base; 687 composite->lock = lock; 688 composite->clock_data = data->clock_data; 689 690 err = clk_hw_register(dev, hw); 691 if (err) 692 return ERR_PTR(err); 693 694 return hw; 695 } 696