1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2022 - All Rights Reserved 4 * Author: Gabriel Fernandez <gabriel.fernandez@foss.st.com> for STMicroelectronics. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/delay.h> 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/io.h> 12 #include <linux/of.h> 13 #include <linux/of_address.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 17 #include "clk-stm32-core.h" 18 #include "reset-stm32.h" 19 20 static DEFINE_SPINLOCK(rlock); 21 22 static int stm32_rcc_clock_init(struct device *dev, 23 const struct of_device_id *match, 24 void __iomem *base) 25 { 26 const struct stm32_rcc_match_data *data = match->data; 27 struct clk_hw_onecell_data *clk_data = data->hw_clks; 28 struct clk_hw **hws; 29 int n, max_binding; 30 31 max_binding = data->maxbinding; 32 33 clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, max_binding), GFP_KERNEL); 34 if (!clk_data) 35 return -ENOMEM; 36 37 clk_data->num = max_binding; 38 39 hws = clk_data->hws; 40 41 for (n = 0; n < max_binding; n++) 42 hws[n] = ERR_PTR(-ENOENT); 43 44 for (n = 0; n < data->num_clocks; n++) { 45 const struct clock_config *cfg_clock = &data->tab_clocks[n]; 46 struct clk_hw *hw = ERR_PTR(-ENOENT); 47 48 if (data->check_security && 49 data->check_security(base, cfg_clock)) 50 continue; 51 52 if (cfg_clock->func) 53 hw = (*cfg_clock->func)(dev, data, base, &rlock, 54 cfg_clock); 55 56 if (IS_ERR(hw)) { 57 dev_err(dev, "Can't register clk %d: %ld\n", n, 58 PTR_ERR(hw)); 59 return PTR_ERR(hw); 60 } 61 62 if (cfg_clock->id != NO_ID) 63 hws[cfg_clock->id] = hw; 64 } 65 66 return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data); 67 } 68 69 int stm32_rcc_init(struct device *dev, const struct of_device_id *match_data, 70 void __iomem *base) 71 { 72 const struct stm32_rcc_match_data *rcc_match_data; 73 const struct of_device_id *match; 74 int err; 75 76 match = of_match_node(match_data, dev_of_node(dev)); 77 if (!match) { 78 dev_err(dev, "match data not found\n"); 79 return -ENODEV; 80 } 81 82 rcc_match_data = match->data; 83 84 /* RCC Reset Configuration */ 85 err = stm32_rcc_reset_init(dev, rcc_match_data->reset_data, base); 86 if (err) { 87 pr_err("stm32 reset failed to initialize\n"); 88 return err; 89 } 90 91 /* RCC Clock Configuration */ 92 err = stm32_rcc_clock_init(dev, match, base); 93 if (err) { 94 pr_err("stm32 clock failed to initialize\n"); 95 return err; 96 } 97 98 return 0; 99 } 100 101 static u8 stm32_mux_get_parent(void __iomem *base, 102 struct clk_stm32_clock_data *data, 103 u16 mux_id) 104 { 105 const struct stm32_mux_cfg *mux = &data->muxes[mux_id]; 106 u32 mask = BIT(mux->width) - 1; 107 u32 val; 108 109 val = readl(base + mux->offset) >> mux->shift; 110 val &= mask; 111 112 return val; 113 } 114 115 static int stm32_mux_set_parent(void __iomem *base, 116 struct clk_stm32_clock_data *data, 117 u16 mux_id, u8 index) 118 { 119 const struct stm32_mux_cfg *mux = &data->muxes[mux_id]; 120 121 u32 mask = BIT(mux->width) - 1; 122 u32 reg = readl(base + mux->offset); 123 u32 val = index << mux->shift; 124 125 reg &= ~(mask << mux->shift); 126 reg |= val; 127 128 writel(reg, base + mux->offset); 129 130 return 0; 131 } 132 133 static void stm32_gate_endisable(void __iomem *base, 134 struct clk_stm32_clock_data *data, 135 u16 gate_id, int enable) 136 { 137 const struct stm32_gate_cfg *gate = &data->gates[gate_id]; 138 void __iomem *addr = base + gate->offset; 139 140 if (enable) { 141 if (data->gate_cpt[gate_id]++ > 0) 142 return; 143 144 if (gate->set_clr != 0) 145 writel(BIT(gate->bit_idx), addr); 146 else 147 writel(readl(addr) | BIT(gate->bit_idx), addr); 148 } else { 149 if (--data->gate_cpt[gate_id] > 0) 150 return; 151 152 if (gate->set_clr != 0) 153 writel(BIT(gate->bit_idx), addr + gate->set_clr); 154 else 155 writel(readl(addr) & ~BIT(gate->bit_idx), addr); 156 } 157 } 158 159 static void stm32_gate_disable_unused(void __iomem *base, 160 struct clk_stm32_clock_data *data, 161 u16 gate_id) 162 { 163 const struct stm32_gate_cfg *gate = &data->gates[gate_id]; 164 void __iomem *addr = base + gate->offset; 165 166 if (data->gate_cpt[gate_id] > 0) 167 return; 168 169 if (gate->set_clr != 0) 170 writel(BIT(gate->bit_idx), addr + gate->set_clr); 171 else 172 writel(readl(addr) & ~BIT(gate->bit_idx), addr); 173 } 174 175 static int stm32_gate_is_enabled(void __iomem *base, 176 struct clk_stm32_clock_data *data, 177 u16 gate_id) 178 { 179 const struct stm32_gate_cfg *gate = &data->gates[gate_id]; 180 181 return (readl(base + gate->offset) & BIT(gate->bit_idx)) != 0; 182 } 183 184 static unsigned int _get_table_div(const struct clk_div_table *table, 185 unsigned int val) 186 { 187 const struct clk_div_table *clkt; 188 189 for (clkt = table; clkt->div; clkt++) 190 if (clkt->val == val) 191 return clkt->div; 192 return 0; 193 } 194 195 static unsigned int _get_div(const struct clk_div_table *table, 196 unsigned int val, unsigned long flags, u8 width) 197 { 198 if (flags & CLK_DIVIDER_ONE_BASED) 199 return val; 200 if (flags & CLK_DIVIDER_POWER_OF_TWO) 201 return 1 << val; 202 if (table) 203 return _get_table_div(table, val); 204 return val + 1; 205 } 206 207 static unsigned long stm32_divider_get_rate(void __iomem *base, 208 struct clk_stm32_clock_data *data, 209 u16 div_id, 210 unsigned long parent_rate) 211 { 212 const struct stm32_div_cfg *divider = &data->dividers[div_id]; 213 unsigned int val; 214 unsigned int div; 215 216 val = readl(base + divider->offset) >> divider->shift; 217 val &= clk_div_mask(divider->width); 218 div = _get_div(divider->table, val, divider->flags, divider->width); 219 220 if (!div) { 221 WARN(!(divider->flags & CLK_DIVIDER_ALLOW_ZERO), 222 "%d: Zero divisor and CLK_DIVIDER_ALLOW_ZERO not set\n", 223 div_id); 224 return parent_rate; 225 } 226 227 return DIV_ROUND_UP_ULL((u64)parent_rate, div); 228 } 229 230 static int stm32_divider_set_rate(void __iomem *base, 231 struct clk_stm32_clock_data *data, 232 u16 div_id, unsigned long rate, 233 unsigned long parent_rate) 234 { 235 const struct stm32_div_cfg *divider = &data->dividers[div_id]; 236 int value; 237 u32 val; 238 239 value = divider_get_val(rate, parent_rate, divider->table, 240 divider->width, divider->flags); 241 if (value < 0) 242 return value; 243 244 if (divider->flags & CLK_DIVIDER_HIWORD_MASK) { 245 val = clk_div_mask(divider->width) << (divider->shift + 16); 246 } else { 247 val = readl(base + divider->offset); 248 val &= ~(clk_div_mask(divider->width) << divider->shift); 249 } 250 251 val |= (u32)value << divider->shift; 252 253 writel(val, base + divider->offset); 254 255 return 0; 256 } 257 258 static u8 clk_stm32_mux_get_parent(struct clk_hw *hw) 259 { 260 struct clk_stm32_mux *mux = to_clk_stm32_mux(hw); 261 262 return stm32_mux_get_parent(mux->base, mux->clock_data, mux->mux_id); 263 } 264 265 static int clk_stm32_mux_set_parent(struct clk_hw *hw, u8 index) 266 { 267 struct clk_stm32_mux *mux = to_clk_stm32_mux(hw); 268 unsigned long flags = 0; 269 270 spin_lock_irqsave(mux->lock, flags); 271 272 stm32_mux_set_parent(mux->base, mux->clock_data, mux->mux_id, index); 273 274 spin_unlock_irqrestore(mux->lock, flags); 275 276 return 0; 277 } 278 279 const struct clk_ops clk_stm32_mux_ops = { 280 .determine_rate = __clk_mux_determine_rate, 281 .get_parent = clk_stm32_mux_get_parent, 282 .set_parent = clk_stm32_mux_set_parent, 283 }; 284 285 static void clk_stm32_gate_endisable(struct clk_hw *hw, int enable) 286 { 287 struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); 288 unsigned long flags = 0; 289 290 spin_lock_irqsave(gate->lock, flags); 291 292 stm32_gate_endisable(gate->base, gate->clock_data, gate->gate_id, enable); 293 294 spin_unlock_irqrestore(gate->lock, flags); 295 } 296 297 static int clk_stm32_gate_enable(struct clk_hw *hw) 298 { 299 clk_stm32_gate_endisable(hw, 1); 300 301 return 0; 302 } 303 304 static void clk_stm32_gate_disable(struct clk_hw *hw) 305 { 306 clk_stm32_gate_endisable(hw, 0); 307 } 308 309 static int clk_stm32_gate_is_enabled(struct clk_hw *hw) 310 { 311 struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); 312 313 return stm32_gate_is_enabled(gate->base, gate->clock_data, gate->gate_id); 314 } 315 316 static void clk_stm32_gate_disable_unused(struct clk_hw *hw) 317 { 318 struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); 319 unsigned long flags = 0; 320 321 spin_lock_irqsave(gate->lock, flags); 322 323 stm32_gate_disable_unused(gate->base, gate->clock_data, gate->gate_id); 324 325 spin_unlock_irqrestore(gate->lock, flags); 326 } 327 328 const struct clk_ops clk_stm32_gate_ops = { 329 .enable = clk_stm32_gate_enable, 330 .disable = clk_stm32_gate_disable, 331 .is_enabled = clk_stm32_gate_is_enabled, 332 .disable_unused = clk_stm32_gate_disable_unused, 333 }; 334 335 static int clk_stm32_divider_set_rate(struct clk_hw *hw, unsigned long rate, 336 unsigned long parent_rate) 337 { 338 struct clk_stm32_div *div = to_clk_stm32_divider(hw); 339 unsigned long flags = 0; 340 int ret; 341 342 if (div->div_id == NO_STM32_DIV) 343 return rate; 344 345 spin_lock_irqsave(div->lock, flags); 346 347 ret = stm32_divider_set_rate(div->base, div->clock_data, div->div_id, rate, parent_rate); 348 349 spin_unlock_irqrestore(div->lock, flags); 350 351 return ret; 352 } 353 354 static long clk_stm32_divider_round_rate(struct clk_hw *hw, unsigned long rate, 355 unsigned long *prate) 356 { 357 struct clk_stm32_div *div = to_clk_stm32_divider(hw); 358 const struct stm32_div_cfg *divider; 359 360 if (div->div_id == NO_STM32_DIV) 361 return rate; 362 363 divider = &div->clock_data->dividers[div->div_id]; 364 365 /* if read only, just return current value */ 366 if (divider->flags & CLK_DIVIDER_READ_ONLY) { 367 u32 val; 368 369 val = readl(div->base + divider->offset) >> divider->shift; 370 val &= clk_div_mask(divider->width); 371 372 return divider_ro_round_rate(hw, rate, prate, divider->table, 373 divider->width, divider->flags, 374 val); 375 } 376 377 return divider_round_rate_parent(hw, clk_hw_get_parent(hw), 378 rate, prate, divider->table, 379 divider->width, divider->flags); 380 } 381 382 static unsigned long clk_stm32_divider_recalc_rate(struct clk_hw *hw, 383 unsigned long parent_rate) 384 { 385 struct clk_stm32_div *div = to_clk_stm32_divider(hw); 386 387 if (div->div_id == NO_STM32_DIV) 388 return parent_rate; 389 390 return stm32_divider_get_rate(div->base, div->clock_data, div->div_id, parent_rate); 391 } 392 393 const struct clk_ops clk_stm32_divider_ops = { 394 .recalc_rate = clk_stm32_divider_recalc_rate, 395 .round_rate = clk_stm32_divider_round_rate, 396 .set_rate = clk_stm32_divider_set_rate, 397 }; 398 399 static int clk_stm32_composite_set_rate(struct clk_hw *hw, unsigned long rate, 400 unsigned long parent_rate) 401 { 402 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 403 unsigned long flags = 0; 404 int ret; 405 406 if (composite->div_id == NO_STM32_DIV) 407 return rate; 408 409 spin_lock_irqsave(composite->lock, flags); 410 411 ret = stm32_divider_set_rate(composite->base, composite->clock_data, 412 composite->div_id, rate, parent_rate); 413 414 spin_unlock_irqrestore(composite->lock, flags); 415 416 return ret; 417 } 418 419 static unsigned long clk_stm32_composite_recalc_rate(struct clk_hw *hw, 420 unsigned long parent_rate) 421 { 422 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 423 424 if (composite->div_id == NO_STM32_DIV) 425 return parent_rate; 426 427 return stm32_divider_get_rate(composite->base, composite->clock_data, 428 composite->div_id, parent_rate); 429 } 430 431 static int clk_stm32_composite_determine_rate(struct clk_hw *hw, 432 struct clk_rate_request *req) 433 { 434 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 435 const struct stm32_div_cfg *divider; 436 long rate; 437 438 if (composite->div_id == NO_STM32_DIV) 439 return 0; 440 441 divider = &composite->clock_data->dividers[composite->div_id]; 442 443 /* if read only, just return current value */ 444 if (divider->flags & CLK_DIVIDER_READ_ONLY) { 445 u32 val; 446 447 val = readl(composite->base + divider->offset) >> divider->shift; 448 val &= clk_div_mask(divider->width); 449 450 rate = divider_ro_round_rate(hw, req->rate, &req->best_parent_rate, 451 divider->table, divider->width, divider->flags, 452 val); 453 if (rate < 0) 454 return rate; 455 456 req->rate = rate; 457 return 0; 458 } 459 460 rate = divider_round_rate_parent(hw, clk_hw_get_parent(hw), 461 req->rate, &req->best_parent_rate, 462 divider->table, divider->width, divider->flags); 463 if (rate < 0) 464 return rate; 465 466 req->rate = rate; 467 return 0; 468 } 469 470 static u8 clk_stm32_composite_get_parent(struct clk_hw *hw) 471 { 472 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 473 474 return stm32_mux_get_parent(composite->base, composite->clock_data, composite->mux_id); 475 } 476 477 static int clk_stm32_composite_set_parent(struct clk_hw *hw, u8 index) 478 { 479 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 480 unsigned long flags = 0; 481 482 spin_lock_irqsave(composite->lock, flags); 483 484 stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, index); 485 486 spin_unlock_irqrestore(composite->lock, flags); 487 488 if (composite->clock_data->is_multi_mux) { 489 struct clk_hw *other_mux_hw = composite->clock_data->is_multi_mux(hw); 490 491 if (other_mux_hw) { 492 struct clk_hw *hwp = clk_hw_get_parent_by_index(hw, index); 493 494 clk_hw_reparent(other_mux_hw, hwp); 495 } 496 } 497 498 return 0; 499 } 500 501 static int clk_stm32_composite_is_enabled(struct clk_hw *hw) 502 { 503 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 504 505 if (composite->gate_id == NO_STM32_GATE) 506 return (__clk_get_enable_count(hw->clk) > 0); 507 508 return stm32_gate_is_enabled(composite->base, composite->clock_data, composite->gate_id); 509 } 510 511 #define MUX_SAFE_POSITION 0 512 513 static int clk_stm32_has_safe_mux(struct clk_hw *hw) 514 { 515 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 516 const struct stm32_mux_cfg *mux = &composite->clock_data->muxes[composite->mux_id]; 517 518 return !!(mux->flags & MUX_SAFE); 519 } 520 521 static void clk_stm32_set_safe_position_mux(struct clk_hw *hw) 522 { 523 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 524 525 if (!clk_stm32_composite_is_enabled(hw)) { 526 unsigned long flags = 0; 527 528 if (composite->clock_data->is_multi_mux) { 529 struct clk_hw *other_mux_hw = NULL; 530 531 other_mux_hw = composite->clock_data->is_multi_mux(hw); 532 533 if (!other_mux_hw || clk_stm32_composite_is_enabled(other_mux_hw)) 534 return; 535 } 536 537 spin_lock_irqsave(composite->lock, flags); 538 539 stm32_mux_set_parent(composite->base, composite->clock_data, 540 composite->mux_id, MUX_SAFE_POSITION); 541 542 spin_unlock_irqrestore(composite->lock, flags); 543 } 544 } 545 546 static void clk_stm32_safe_restore_position_mux(struct clk_hw *hw) 547 { 548 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 549 int sel = clk_hw_get_parent_index(hw); 550 unsigned long flags = 0; 551 552 spin_lock_irqsave(composite->lock, flags); 553 554 stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, sel); 555 556 spin_unlock_irqrestore(composite->lock, flags); 557 } 558 559 static void clk_stm32_composite_gate_endisable(struct clk_hw *hw, int enable) 560 { 561 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 562 unsigned long flags = 0; 563 564 spin_lock_irqsave(composite->lock, flags); 565 566 stm32_gate_endisable(composite->base, composite->clock_data, composite->gate_id, enable); 567 568 spin_unlock_irqrestore(composite->lock, flags); 569 } 570 571 static int clk_stm32_composite_gate_enable(struct clk_hw *hw) 572 { 573 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 574 575 if (composite->gate_id == NO_STM32_GATE) 576 return 0; 577 578 clk_stm32_composite_gate_endisable(hw, 1); 579 580 if (composite->mux_id != NO_STM32_MUX && clk_stm32_has_safe_mux(hw)) 581 clk_stm32_safe_restore_position_mux(hw); 582 583 return 0; 584 } 585 586 static void clk_stm32_composite_gate_disable(struct clk_hw *hw) 587 { 588 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 589 590 if (composite->gate_id == NO_STM32_GATE) 591 return; 592 593 clk_stm32_composite_gate_endisable(hw, 0); 594 595 if (composite->mux_id != NO_STM32_MUX && clk_stm32_has_safe_mux(hw)) 596 clk_stm32_set_safe_position_mux(hw); 597 } 598 599 static void clk_stm32_composite_disable_unused(struct clk_hw *hw) 600 { 601 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 602 unsigned long flags = 0; 603 604 if (composite->gate_id == NO_STM32_GATE) 605 return; 606 607 spin_lock_irqsave(composite->lock, flags); 608 609 stm32_gate_disable_unused(composite->base, composite->clock_data, composite->gate_id); 610 611 spin_unlock_irqrestore(composite->lock, flags); 612 } 613 614 const struct clk_ops clk_stm32_composite_ops = { 615 .set_rate = clk_stm32_composite_set_rate, 616 .recalc_rate = clk_stm32_composite_recalc_rate, 617 .determine_rate = clk_stm32_composite_determine_rate, 618 .get_parent = clk_stm32_composite_get_parent, 619 .set_parent = clk_stm32_composite_set_parent, 620 .enable = clk_stm32_composite_gate_enable, 621 .disable = clk_stm32_composite_gate_disable, 622 .is_enabled = clk_stm32_composite_is_enabled, 623 .disable_unused = clk_stm32_composite_disable_unused, 624 }; 625 626 struct clk_hw *clk_stm32_mux_register(struct device *dev, 627 const struct stm32_rcc_match_data *data, 628 void __iomem *base, 629 spinlock_t *lock, 630 const struct clock_config *cfg) 631 { 632 struct clk_stm32_mux *mux = cfg->clock_cfg; 633 struct clk_hw *hw = &mux->hw; 634 int err; 635 636 mux->base = base; 637 mux->lock = lock; 638 mux->clock_data = data->clock_data; 639 640 err = devm_clk_hw_register(dev, hw); 641 if (err) 642 return ERR_PTR(err); 643 644 return hw; 645 } 646 647 struct clk_hw *clk_stm32_gate_register(struct device *dev, 648 const struct stm32_rcc_match_data *data, 649 void __iomem *base, 650 spinlock_t *lock, 651 const struct clock_config *cfg) 652 { 653 struct clk_stm32_gate *gate = cfg->clock_cfg; 654 struct clk_hw *hw = &gate->hw; 655 int err; 656 657 gate->base = base; 658 gate->lock = lock; 659 gate->clock_data = data->clock_data; 660 661 err = devm_clk_hw_register(dev, hw); 662 if (err) 663 return ERR_PTR(err); 664 665 return hw; 666 } 667 668 struct clk_hw *clk_stm32_div_register(struct device *dev, 669 const struct stm32_rcc_match_data *data, 670 void __iomem *base, 671 spinlock_t *lock, 672 const struct clock_config *cfg) 673 { 674 struct clk_stm32_div *div = cfg->clock_cfg; 675 struct clk_hw *hw = &div->hw; 676 int err; 677 678 div->base = base; 679 div->lock = lock; 680 div->clock_data = data->clock_data; 681 682 err = devm_clk_hw_register(dev, hw); 683 if (err) 684 return ERR_PTR(err); 685 686 return hw; 687 } 688 689 struct clk_hw *clk_stm32_composite_register(struct device *dev, 690 const struct stm32_rcc_match_data *data, 691 void __iomem *base, 692 spinlock_t *lock, 693 const struct clock_config *cfg) 694 { 695 struct clk_stm32_composite *composite = cfg->clock_cfg; 696 struct clk_hw *hw = &composite->hw; 697 int err; 698 699 composite->base = base; 700 composite->lock = lock; 701 composite->clock_data = data->clock_data; 702 703 err = devm_clk_hw_register(dev, hw); 704 if (err) 705 return ERR_PTR(err); 706 707 return hw; 708 } 709