xref: /linux/drivers/clk/renesas/rzv2h-cpg.c (revision 746680ec6696585e30db3e18c93a63df9cbec39c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Renesas RZ/V2H(P) Clock Pulse Generator
4  *
5  * Copyright (C) 2024 Renesas Electronics Corp.
6  *
7  * Based on rzg2l-cpg.c
8  *
9  * Copyright (C) 2015 Glider bvba
10  * Copyright (C) 2013 Ideas On Board SPRL
11  * Copyright (C) 2015 Renesas Electronics Corp.
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/clk-provider.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/iopoll.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_clock.h>
25 #include <linux/pm_domain.h>
26 #include <linux/refcount.h>
27 #include <linux/reset-controller.h>
28 #include <linux/string_choices.h>
29 
30 #include <dt-bindings/clock/renesas-cpg-mssr.h>
31 
32 #include "rzv2h-cpg.h"
33 
34 #ifdef DEBUG
35 #define WARN_DEBUG(x)		WARN_ON(x)
36 #else
37 #define WARN_DEBUG(x)		do { } while (0)
38 #endif
39 
40 #define GET_CLK_ON_OFFSET(x)	(0x600 + ((x) * 4))
41 #define GET_CLK_MON_OFFSET(x)	(0x800 + ((x) * 4))
42 #define GET_RST_OFFSET(x)	(0x900 + ((x) * 4))
43 #define GET_RST_MON_OFFSET(x)	(0xA00 + ((x) * 4))
44 
45 #define CPG_BUS_1_MSTOP		(0xd00)
46 #define CPG_BUS_MSTOP(m)	(CPG_BUS_1_MSTOP + ((m) - 1) * 4)
47 
48 #define CPG_PLL_STBY(x)		((x))
49 #define CPG_PLL_STBY_RESETB	BIT(0)
50 #define CPG_PLL_STBY_RESETB_WEN	BIT(16)
51 #define CPG_PLL_CLK1(x)		((x) + 0x004)
52 #define CPG_PLL_CLK1_KDIV(x)	((s16)FIELD_GET(GENMASK(31, 16), (x)))
53 #define CPG_PLL_CLK1_MDIV(x)	FIELD_GET(GENMASK(15, 6), (x))
54 #define CPG_PLL_CLK1_PDIV(x)	FIELD_GET(GENMASK(5, 0), (x))
55 #define CPG_PLL_CLK2(x)		((x) + 0x008)
56 #define CPG_PLL_CLK2_SDIV(x)	FIELD_GET(GENMASK(2, 0), (x))
57 #define CPG_PLL_MON(x)		((x) + 0x010)
58 #define CPG_PLL_MON_RESETB	BIT(0)
59 #define CPG_PLL_MON_LOCK	BIT(4)
60 
61 #define DDIV_DIVCTL_WEN(shift)		BIT((shift) + 16)
62 
63 #define GET_MOD_CLK_ID(base, index, bit)		\
64 			((base) + ((((index) * (16))) + (bit)))
65 
66 #define CPG_CLKSTATUS0		(0x700)
67 
68 /**
69  * struct rzv2h_cpg_priv - Clock Pulse Generator Private Data
70  *
71  * @dev: CPG device
72  * @base: CPG register block base address
73  * @rmw_lock: protects register accesses
74  * @clks: Array containing all Core and Module Clocks
75  * @num_core_clks: Number of Core Clocks in clks[]
76  * @num_mod_clks: Number of Module Clocks in clks[]
77  * @resets: Array of resets
78  * @num_resets: Number of Module Resets in info->resets[]
79  * @last_dt_core_clk: ID of the last Core Clock exported to DT
80  * @ff_mod_status_ops: Fixed Factor Module Status Clock operations
81  * @mstop_count: Array of mstop values
82  * @rcdev: Reset controller entity
83  */
84 struct rzv2h_cpg_priv {
85 	struct device *dev;
86 	void __iomem *base;
87 	spinlock_t rmw_lock;
88 
89 	struct clk **clks;
90 	unsigned int num_core_clks;
91 	unsigned int num_mod_clks;
92 	struct rzv2h_reset *resets;
93 	unsigned int num_resets;
94 	unsigned int last_dt_core_clk;
95 
96 	struct clk_ops *ff_mod_status_ops;
97 
98 	atomic_t *mstop_count;
99 
100 	struct reset_controller_dev rcdev;
101 };
102 
103 #define rcdev_to_priv(x)	container_of(x, struct rzv2h_cpg_priv, rcdev)
104 
105 struct pll_clk {
106 	struct rzv2h_cpg_priv *priv;
107 	struct clk_hw hw;
108 	struct pll pll;
109 };
110 
111 #define to_pll(_hw)	container_of(_hw, struct pll_clk, hw)
112 
113 /**
114  * struct mod_clock - Module clock
115  *
116  * @priv: CPG private data
117  * @mstop_data: mstop data relating to module clock
118  * @hw: handle between common and hardware-specific interfaces
119  * @no_pm: flag to indicate PM is not supported
120  * @on_index: register offset
121  * @on_bit: ON/MON bit
122  * @mon_index: monitor register offset
123  * @mon_bit: monitor bit
124  * @ext_clk_mux_index: mux index for external clock source, or -1 if internal
125  */
126 struct mod_clock {
127 	struct rzv2h_cpg_priv *priv;
128 	unsigned int mstop_data;
129 	struct clk_hw hw;
130 	bool no_pm;
131 	u8 on_index;
132 	u8 on_bit;
133 	s8 mon_index;
134 	u8 mon_bit;
135 	s8 ext_clk_mux_index;
136 };
137 
138 #define to_mod_clock(_hw) container_of(_hw, struct mod_clock, hw)
139 
140 /**
141  * struct ddiv_clk - DDIV clock
142  *
143  * @priv: CPG private data
144  * @div: divider clk
145  * @mon: monitor bit in CPG_CLKSTATUS0 register
146  */
147 struct ddiv_clk {
148 	struct rzv2h_cpg_priv *priv;
149 	struct clk_divider div;
150 	u8 mon;
151 };
152 
153 #define to_ddiv_clock(_div) container_of(_div, struct ddiv_clk, div)
154 
155 /**
156  * struct rzv2h_ff_mod_status_clk - Fixed Factor Module Status Clock
157  *
158  * @priv: CPG private data
159  * @conf: fixed mod configuration
160  * @fix: fixed factor clock
161  */
162 struct rzv2h_ff_mod_status_clk {
163 	struct rzv2h_cpg_priv *priv;
164 	struct fixed_mod_conf conf;
165 	struct clk_fixed_factor fix;
166 };
167 
168 #define to_rzv2h_ff_mod_status_clk(_hw) \
169 	container_of(_hw, struct rzv2h_ff_mod_status_clk, fix.hw)
170 
171 static int rzv2h_cpg_pll_clk_is_enabled(struct clk_hw *hw)
172 {
173 	struct pll_clk *pll_clk = to_pll(hw);
174 	struct rzv2h_cpg_priv *priv = pll_clk->priv;
175 	u32 val = readl(priv->base + CPG_PLL_MON(pll_clk->pll.offset));
176 
177 	/* Ensure both RESETB and LOCK bits are set */
178 	return (val & (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK)) ==
179 	       (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK);
180 }
181 
182 static int rzv2h_cpg_pll_clk_enable(struct clk_hw *hw)
183 {
184 	struct pll_clk *pll_clk = to_pll(hw);
185 	struct rzv2h_cpg_priv *priv = pll_clk->priv;
186 	struct pll pll = pll_clk->pll;
187 	u32 stby_offset;
188 	u32 mon_offset;
189 	u32 val;
190 	int ret;
191 
192 	if (rzv2h_cpg_pll_clk_is_enabled(hw))
193 		return 0;
194 
195 	stby_offset = CPG_PLL_STBY(pll.offset);
196 	mon_offset = CPG_PLL_MON(pll.offset);
197 
198 	writel(CPG_PLL_STBY_RESETB_WEN | CPG_PLL_STBY_RESETB,
199 	       priv->base + stby_offset);
200 
201 	/*
202 	 * Ensure PLL enters into normal mode
203 	 *
204 	 * Note: There is no HW information about the worst case latency.
205 	 *
206 	 * Since this latency might depend on external crystal or PLL rate,
207 	 * use a "super" safe timeout value.
208 	 */
209 	ret = readl_poll_timeout_atomic(priv->base + mon_offset, val,
210 			(val & (CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK)) ==
211 			(CPG_PLL_MON_RESETB | CPG_PLL_MON_LOCK), 200, 2000);
212 	if (ret)
213 		dev_err(priv->dev, "Failed to enable PLL 0x%x/%pC\n",
214 			stby_offset, hw->clk);
215 
216 	return ret;
217 }
218 
219 static unsigned long rzv2h_cpg_pll_clk_recalc_rate(struct clk_hw *hw,
220 						   unsigned long parent_rate)
221 {
222 	struct pll_clk *pll_clk = to_pll(hw);
223 	struct rzv2h_cpg_priv *priv = pll_clk->priv;
224 	struct pll pll = pll_clk->pll;
225 	unsigned int clk1, clk2;
226 	u64 rate;
227 
228 	if (!pll.has_clkn)
229 		return 0;
230 
231 	clk1 = readl(priv->base + CPG_PLL_CLK1(pll.offset));
232 	clk2 = readl(priv->base + CPG_PLL_CLK2(pll.offset));
233 
234 	rate = mul_u64_u32_shr(parent_rate, (CPG_PLL_CLK1_MDIV(clk1) << 16) +
235 			       CPG_PLL_CLK1_KDIV(clk1), 16 + CPG_PLL_CLK2_SDIV(clk2));
236 
237 	return DIV_ROUND_CLOSEST_ULL(rate, CPG_PLL_CLK1_PDIV(clk1));
238 }
239 
240 static const struct clk_ops rzv2h_cpg_pll_ops = {
241 	.is_enabled = rzv2h_cpg_pll_clk_is_enabled,
242 	.enable = rzv2h_cpg_pll_clk_enable,
243 	.recalc_rate = rzv2h_cpg_pll_clk_recalc_rate,
244 };
245 
246 static struct clk * __init
247 rzv2h_cpg_pll_clk_register(const struct cpg_core_clk *core,
248 			   struct rzv2h_cpg_priv *priv,
249 			   const struct clk_ops *ops)
250 {
251 	struct device *dev = priv->dev;
252 	struct clk_init_data init;
253 	const struct clk *parent;
254 	const char *parent_name;
255 	struct pll_clk *pll_clk;
256 	int ret;
257 
258 	parent = priv->clks[core->parent];
259 	if (IS_ERR(parent))
260 		return ERR_CAST(parent);
261 
262 	pll_clk = devm_kzalloc(dev, sizeof(*pll_clk), GFP_KERNEL);
263 	if (!pll_clk)
264 		return ERR_PTR(-ENOMEM);
265 
266 	parent_name = __clk_get_name(parent);
267 	init.name = core->name;
268 	init.ops = ops;
269 	init.flags = 0;
270 	init.parent_names = &parent_name;
271 	init.num_parents = 1;
272 
273 	pll_clk->hw.init = &init;
274 	pll_clk->pll = core->cfg.pll;
275 	pll_clk->priv = priv;
276 
277 	ret = devm_clk_hw_register(dev, &pll_clk->hw);
278 	if (ret)
279 		return ERR_PTR(ret);
280 
281 	return pll_clk->hw.clk;
282 }
283 
284 static unsigned long rzv2h_ddiv_recalc_rate(struct clk_hw *hw,
285 					    unsigned long parent_rate)
286 {
287 	struct clk_divider *divider = to_clk_divider(hw);
288 	unsigned int val;
289 
290 	val = readl(divider->reg) >> divider->shift;
291 	val &= clk_div_mask(divider->width);
292 
293 	return divider_recalc_rate(hw, parent_rate, val, divider->table,
294 				   divider->flags, divider->width);
295 }
296 
297 static long rzv2h_ddiv_round_rate(struct clk_hw *hw, unsigned long rate,
298 				  unsigned long *prate)
299 {
300 	struct clk_divider *divider = to_clk_divider(hw);
301 
302 	return divider_round_rate(hw, rate, prate, divider->table,
303 				  divider->width, divider->flags);
304 }
305 
306 static int rzv2h_ddiv_determine_rate(struct clk_hw *hw,
307 				     struct clk_rate_request *req)
308 {
309 	struct clk_divider *divider = to_clk_divider(hw);
310 
311 	return divider_determine_rate(hw, req, divider->table, divider->width,
312 				      divider->flags);
313 }
314 
315 static inline int rzv2h_cpg_wait_ddiv_clk_update_done(void __iomem *base, u8 mon)
316 {
317 	u32 bitmask = BIT(mon);
318 	u32 val;
319 
320 	if (mon == CSDIV_NO_MON)
321 		return 0;
322 
323 	return readl_poll_timeout_atomic(base + CPG_CLKSTATUS0, val, !(val & bitmask), 10, 200);
324 }
325 
326 static int rzv2h_ddiv_set_rate(struct clk_hw *hw, unsigned long rate,
327 			       unsigned long parent_rate)
328 {
329 	struct clk_divider *divider = to_clk_divider(hw);
330 	struct ddiv_clk *ddiv = to_ddiv_clock(divider);
331 	struct rzv2h_cpg_priv *priv = ddiv->priv;
332 	unsigned long flags = 0;
333 	int value;
334 	u32 val;
335 	int ret;
336 
337 	value = divider_get_val(rate, parent_rate, divider->table,
338 				divider->width, divider->flags);
339 	if (value < 0)
340 		return value;
341 
342 	spin_lock_irqsave(divider->lock, flags);
343 
344 	ret = rzv2h_cpg_wait_ddiv_clk_update_done(priv->base, ddiv->mon);
345 	if (ret)
346 		goto ddiv_timeout;
347 
348 	val = readl(divider->reg) | DDIV_DIVCTL_WEN(divider->shift);
349 	val &= ~(clk_div_mask(divider->width) << divider->shift);
350 	val |= (u32)value << divider->shift;
351 	writel(val, divider->reg);
352 
353 	ret = rzv2h_cpg_wait_ddiv_clk_update_done(priv->base, ddiv->mon);
354 
355 ddiv_timeout:
356 	spin_unlock_irqrestore(divider->lock, flags);
357 	return ret;
358 }
359 
360 static const struct clk_ops rzv2h_ddiv_clk_divider_ops = {
361 	.recalc_rate = rzv2h_ddiv_recalc_rate,
362 	.round_rate = rzv2h_ddiv_round_rate,
363 	.determine_rate = rzv2h_ddiv_determine_rate,
364 	.set_rate = rzv2h_ddiv_set_rate,
365 };
366 
367 static struct clk * __init
368 rzv2h_cpg_ddiv_clk_register(const struct cpg_core_clk *core,
369 			    struct rzv2h_cpg_priv *priv)
370 {
371 	struct ddiv cfg_ddiv = core->cfg.ddiv;
372 	struct clk_init_data init = {};
373 	struct device *dev = priv->dev;
374 	u8 shift = cfg_ddiv.shift;
375 	u8 width = cfg_ddiv.width;
376 	const struct clk *parent;
377 	const char *parent_name;
378 	struct clk_divider *div;
379 	struct ddiv_clk *ddiv;
380 	int ret;
381 
382 	parent = priv->clks[core->parent];
383 	if (IS_ERR(parent))
384 		return ERR_CAST(parent);
385 
386 	parent_name = __clk_get_name(parent);
387 
388 	if ((shift + width) > 16)
389 		return ERR_PTR(-EINVAL);
390 
391 	ddiv = devm_kzalloc(priv->dev, sizeof(*ddiv), GFP_KERNEL);
392 	if (!ddiv)
393 		return ERR_PTR(-ENOMEM);
394 
395 	init.name = core->name;
396 	if (cfg_ddiv.no_rmw)
397 		init.ops = &clk_divider_ops;
398 	else
399 		init.ops = &rzv2h_ddiv_clk_divider_ops;
400 	init.parent_names = &parent_name;
401 	init.num_parents = 1;
402 	init.flags = CLK_SET_RATE_PARENT;
403 
404 	ddiv->priv = priv;
405 	ddiv->mon = cfg_ddiv.monbit;
406 	div = &ddiv->div;
407 	div->reg = priv->base + cfg_ddiv.offset;
408 	div->shift = shift;
409 	div->width = width;
410 	div->flags = core->flag;
411 	div->lock = &priv->rmw_lock;
412 	div->hw.init = &init;
413 	div->table = core->dtable;
414 
415 	ret = devm_clk_hw_register(dev, &div->hw);
416 	if (ret)
417 		return ERR_PTR(ret);
418 
419 	return div->hw.clk;
420 }
421 
422 static struct clk * __init
423 rzv2h_cpg_mux_clk_register(const struct cpg_core_clk *core,
424 			   struct rzv2h_cpg_priv *priv)
425 {
426 	struct smuxed mux = core->cfg.smux;
427 	const struct clk_hw *clk_hw;
428 
429 	clk_hw = devm_clk_hw_register_mux(priv->dev, core->name,
430 					  core->parent_names, core->num_parents,
431 					  core->flag, priv->base + mux.offset,
432 					  mux.shift, mux.width,
433 					  core->mux_flags, &priv->rmw_lock);
434 	if (IS_ERR(clk_hw))
435 		return ERR_CAST(clk_hw);
436 
437 	return clk_hw->clk;
438 }
439 
440 static int
441 rzv2h_clk_ff_mod_status_is_enabled(struct clk_hw *hw)
442 {
443 	struct rzv2h_ff_mod_status_clk *fix = to_rzv2h_ff_mod_status_clk(hw);
444 	struct rzv2h_cpg_priv *priv = fix->priv;
445 	u32 offset = GET_CLK_MON_OFFSET(fix->conf.mon_index);
446 	u32 bitmask = BIT(fix->conf.mon_bit);
447 	u32 val;
448 
449 	val = readl(priv->base + offset);
450 	return !!(val & bitmask);
451 }
452 
453 static struct clk * __init
454 rzv2h_cpg_fixed_mod_status_clk_register(const struct cpg_core_clk *core,
455 					struct rzv2h_cpg_priv *priv)
456 {
457 	struct rzv2h_ff_mod_status_clk *clk_hw_data;
458 	struct clk_init_data init = { };
459 	struct clk_fixed_factor *fix;
460 	const struct clk *parent;
461 	const char *parent_name;
462 	int ret;
463 
464 	WARN_DEBUG(core->parent >= priv->num_core_clks);
465 	parent = priv->clks[core->parent];
466 	if (IS_ERR(parent))
467 		return ERR_CAST(parent);
468 
469 	parent_name = __clk_get_name(parent);
470 	parent = priv->clks[core->parent];
471 	if (IS_ERR(parent))
472 		return ERR_CAST(parent);
473 
474 	clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL);
475 	if (!clk_hw_data)
476 		return ERR_PTR(-ENOMEM);
477 
478 	clk_hw_data->priv = priv;
479 	clk_hw_data->conf = core->cfg.fixed_mod;
480 
481 	init.name = core->name;
482 	init.ops = priv->ff_mod_status_ops;
483 	init.flags = CLK_SET_RATE_PARENT;
484 	init.parent_names = &parent_name;
485 	init.num_parents = 1;
486 
487 	fix = &clk_hw_data->fix;
488 	fix->hw.init = &init;
489 	fix->mult = core->mult;
490 	fix->div = core->div;
491 
492 	ret = devm_clk_hw_register(priv->dev, &clk_hw_data->fix.hw);
493 	if (ret)
494 		return ERR_PTR(ret);
495 
496 	return clk_hw_data->fix.hw.clk;
497 }
498 
499 static struct clk
500 *rzv2h_cpg_clk_src_twocell_get(struct of_phandle_args *clkspec,
501 			       void *data)
502 {
503 	unsigned int clkidx = clkspec->args[1];
504 	struct rzv2h_cpg_priv *priv = data;
505 	struct device *dev = priv->dev;
506 	const char *type;
507 	struct clk *clk;
508 
509 	switch (clkspec->args[0]) {
510 	case CPG_CORE:
511 		type = "core";
512 		if (clkidx > priv->last_dt_core_clk) {
513 			dev_err(dev, "Invalid %s clock index %u\n", type, clkidx);
514 			return ERR_PTR(-EINVAL);
515 		}
516 		clk = priv->clks[clkidx];
517 		break;
518 
519 	case CPG_MOD:
520 		type = "module";
521 		if (clkidx >= priv->num_mod_clks) {
522 			dev_err(dev, "Invalid %s clock index %u\n", type, clkidx);
523 			return ERR_PTR(-EINVAL);
524 		}
525 		clk = priv->clks[priv->num_core_clks + clkidx];
526 		break;
527 
528 	default:
529 		dev_err(dev, "Invalid CPG clock type %u\n", clkspec->args[0]);
530 		return ERR_PTR(-EINVAL);
531 	}
532 
533 	if (IS_ERR(clk))
534 		dev_err(dev, "Cannot get %s clock %u: %ld", type, clkidx,
535 			PTR_ERR(clk));
536 	else
537 		dev_dbg(dev, "clock (%u, %u) is %pC at %lu Hz\n",
538 			clkspec->args[0], clkspec->args[1], clk,
539 			clk_get_rate(clk));
540 	return clk;
541 }
542 
543 static void __init
544 rzv2h_cpg_register_core_clk(const struct cpg_core_clk *core,
545 			    struct rzv2h_cpg_priv *priv)
546 {
547 	struct clk *clk = ERR_PTR(-EOPNOTSUPP), *parent;
548 	unsigned int id = core->id, div = core->div;
549 	struct device *dev = priv->dev;
550 	const char *parent_name;
551 	struct clk_hw *clk_hw;
552 
553 	WARN_DEBUG(id >= priv->num_core_clks);
554 	WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT);
555 
556 	switch (core->type) {
557 	case CLK_TYPE_IN:
558 		clk = of_clk_get_by_name(priv->dev->of_node, core->name);
559 		break;
560 	case CLK_TYPE_FF:
561 		WARN_DEBUG(core->parent >= priv->num_core_clks);
562 		parent = priv->clks[core->parent];
563 		if (IS_ERR(parent)) {
564 			clk = parent;
565 			goto fail;
566 		}
567 
568 		parent_name = __clk_get_name(parent);
569 		clk_hw = devm_clk_hw_register_fixed_factor(dev, core->name,
570 							   parent_name, CLK_SET_RATE_PARENT,
571 							   core->mult, div);
572 		if (IS_ERR(clk_hw))
573 			clk = ERR_CAST(clk_hw);
574 		else
575 			clk = clk_hw->clk;
576 		break;
577 	case CLK_TYPE_FF_MOD_STATUS:
578 		if (!priv->ff_mod_status_ops) {
579 			priv->ff_mod_status_ops =
580 				devm_kzalloc(dev, sizeof(*priv->ff_mod_status_ops), GFP_KERNEL);
581 			if (!priv->ff_mod_status_ops) {
582 				clk = ERR_PTR(-ENOMEM);
583 				goto fail;
584 			}
585 			memcpy(priv->ff_mod_status_ops, &clk_fixed_factor_ops,
586 			       sizeof(const struct clk_ops));
587 			priv->ff_mod_status_ops->is_enabled = rzv2h_clk_ff_mod_status_is_enabled;
588 		}
589 		clk = rzv2h_cpg_fixed_mod_status_clk_register(core, priv);
590 		break;
591 	case CLK_TYPE_PLL:
592 		clk = rzv2h_cpg_pll_clk_register(core, priv, &rzv2h_cpg_pll_ops);
593 		break;
594 	case CLK_TYPE_DDIV:
595 		clk = rzv2h_cpg_ddiv_clk_register(core, priv);
596 		break;
597 	case CLK_TYPE_SMUX:
598 		clk = rzv2h_cpg_mux_clk_register(core, priv);
599 		break;
600 	default:
601 		goto fail;
602 	}
603 
604 	if (IS_ERR_OR_NULL(clk))
605 		goto fail;
606 
607 	dev_dbg(dev, "Core clock %pC at %lu Hz\n", clk, clk_get_rate(clk));
608 	priv->clks[id] = clk;
609 	return;
610 
611 fail:
612 	dev_err(dev, "Failed to register core clock %s: %ld\n",
613 		core->name, PTR_ERR(clk));
614 }
615 
616 static void rzv2h_mod_clock_mstop_enable(struct rzv2h_cpg_priv *priv,
617 					 u32 mstop_data)
618 {
619 	unsigned long mstop_mask = FIELD_GET(BUS_MSTOP_BITS_MASK, mstop_data);
620 	u16 mstop_index = FIELD_GET(BUS_MSTOP_IDX_MASK, mstop_data);
621 	atomic_t *mstop = &priv->mstop_count[mstop_index * 16];
622 	unsigned long flags;
623 	unsigned int i;
624 	u32 val = 0;
625 
626 	spin_lock_irqsave(&priv->rmw_lock, flags);
627 	for_each_set_bit(i, &mstop_mask, 16) {
628 		if (!atomic_read(&mstop[i]))
629 			val |= BIT(i) << 16;
630 		atomic_inc(&mstop[i]);
631 	}
632 	if (val)
633 		writel(val, priv->base + CPG_BUS_MSTOP(mstop_index));
634 	spin_unlock_irqrestore(&priv->rmw_lock, flags);
635 }
636 
637 static void rzv2h_mod_clock_mstop_disable(struct rzv2h_cpg_priv *priv,
638 					  u32 mstop_data)
639 {
640 	unsigned long mstop_mask = FIELD_GET(BUS_MSTOP_BITS_MASK, mstop_data);
641 	u16 mstop_index = FIELD_GET(BUS_MSTOP_IDX_MASK, mstop_data);
642 	atomic_t *mstop = &priv->mstop_count[mstop_index * 16];
643 	unsigned long flags;
644 	unsigned int i;
645 	u32 val = 0;
646 
647 	spin_lock_irqsave(&priv->rmw_lock, flags);
648 	for_each_set_bit(i, &mstop_mask, 16) {
649 		if (!atomic_read(&mstop[i]) ||
650 		    atomic_dec_and_test(&mstop[i]))
651 			val |= BIT(i) << 16 | BIT(i);
652 	}
653 	if (val)
654 		writel(val, priv->base + CPG_BUS_MSTOP(mstop_index));
655 	spin_unlock_irqrestore(&priv->rmw_lock, flags);
656 }
657 
658 static int rzv2h_parent_clk_mux_to_index(struct clk_hw *hw)
659 {
660 	struct clk_hw *parent_hw;
661 	struct clk *parent_clk;
662 	struct clk_mux *mux;
663 	u32 val;
664 
665 	/* This will always succeed, so no need to check for IS_ERR() */
666 	parent_clk = clk_get_parent(hw->clk);
667 
668 	parent_hw = __clk_get_hw(parent_clk);
669 	mux = to_clk_mux(parent_hw);
670 
671 	val = readl(mux->reg) >> mux->shift;
672 	val &= mux->mask;
673 	return clk_mux_val_to_index(parent_hw, mux->table, 0, val);
674 }
675 
676 static int rzv2h_mod_clock_is_enabled(struct clk_hw *hw)
677 {
678 	struct mod_clock *clock = to_mod_clock(hw);
679 	struct rzv2h_cpg_priv *priv = clock->priv;
680 	int mon_index = clock->mon_index;
681 	u32 bitmask;
682 	u32 offset;
683 
684 	if (clock->ext_clk_mux_index >= 0 &&
685 	    rzv2h_parent_clk_mux_to_index(hw) == clock->ext_clk_mux_index)
686 		mon_index = -1;
687 
688 	if (mon_index >= 0) {
689 		offset = GET_CLK_MON_OFFSET(mon_index);
690 		bitmask = BIT(clock->mon_bit);
691 
692 		if (!(readl(priv->base + offset) & bitmask))
693 			return 0;
694 	}
695 
696 	offset = GET_CLK_ON_OFFSET(clock->on_index);
697 	bitmask = BIT(clock->on_bit);
698 
699 	return readl(priv->base + offset) & bitmask;
700 }
701 
702 static int rzv2h_mod_clock_endisable(struct clk_hw *hw, bool enable)
703 {
704 	bool enabled = rzv2h_mod_clock_is_enabled(hw);
705 	struct mod_clock *clock = to_mod_clock(hw);
706 	unsigned int reg = GET_CLK_ON_OFFSET(clock->on_index);
707 	struct rzv2h_cpg_priv *priv = clock->priv;
708 	u32 bitmask = BIT(clock->on_bit);
709 	struct device *dev = priv->dev;
710 	u32 value;
711 	int error;
712 
713 	dev_dbg(dev, "CLK_ON 0x%x/%pC %s\n", reg, hw->clk,
714 		str_on_off(enable));
715 
716 	if (enabled == enable)
717 		return 0;
718 
719 	value = bitmask << 16;
720 	if (enable) {
721 		value |= bitmask;
722 		writel(value, priv->base + reg);
723 		if (clock->mstop_data != BUS_MSTOP_NONE)
724 			rzv2h_mod_clock_mstop_enable(priv, clock->mstop_data);
725 	} else {
726 		if (clock->mstop_data != BUS_MSTOP_NONE)
727 			rzv2h_mod_clock_mstop_disable(priv, clock->mstop_data);
728 		writel(value, priv->base + reg);
729 	}
730 
731 	if (!enable || clock->mon_index < 0)
732 		return 0;
733 
734 	reg = GET_CLK_MON_OFFSET(clock->mon_index);
735 	bitmask = BIT(clock->mon_bit);
736 	error = readl_poll_timeout_atomic(priv->base + reg, value,
737 					  value & bitmask, 0, 10);
738 	if (error)
739 		dev_err(dev, "Failed to enable CLK_ON 0x%x/%pC\n",
740 			GET_CLK_ON_OFFSET(clock->on_index), hw->clk);
741 
742 	return error;
743 }
744 
745 static int rzv2h_mod_clock_enable(struct clk_hw *hw)
746 {
747 	return rzv2h_mod_clock_endisable(hw, true);
748 }
749 
750 static void rzv2h_mod_clock_disable(struct clk_hw *hw)
751 {
752 	rzv2h_mod_clock_endisable(hw, false);
753 }
754 
755 static const struct clk_ops rzv2h_mod_clock_ops = {
756 	.enable = rzv2h_mod_clock_enable,
757 	.disable = rzv2h_mod_clock_disable,
758 	.is_enabled = rzv2h_mod_clock_is_enabled,
759 };
760 
761 static void __init
762 rzv2h_cpg_register_mod_clk(const struct rzv2h_mod_clk *mod,
763 			   struct rzv2h_cpg_priv *priv)
764 {
765 	struct mod_clock *clock = NULL;
766 	struct device *dev = priv->dev;
767 	struct clk_init_data init;
768 	struct clk *parent, *clk;
769 	const char *parent_name;
770 	unsigned int id;
771 	int ret;
772 
773 	id = GET_MOD_CLK_ID(priv->num_core_clks, mod->on_index, mod->on_bit);
774 	WARN_DEBUG(id >= priv->num_core_clks + priv->num_mod_clks);
775 	WARN_DEBUG(mod->parent >= priv->num_core_clks + priv->num_mod_clks);
776 	WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT);
777 
778 	parent = priv->clks[mod->parent];
779 	if (IS_ERR(parent)) {
780 		clk = parent;
781 		goto fail;
782 	}
783 
784 	clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL);
785 	if (!clock) {
786 		clk = ERR_PTR(-ENOMEM);
787 		goto fail;
788 	}
789 
790 	init.name = mod->name;
791 	init.ops = &rzv2h_mod_clock_ops;
792 	init.flags = CLK_SET_RATE_PARENT;
793 	if (mod->critical)
794 		init.flags |= CLK_IS_CRITICAL;
795 
796 	parent_name = __clk_get_name(parent);
797 	init.parent_names = &parent_name;
798 	init.num_parents = 1;
799 
800 	clock->on_index = mod->on_index;
801 	clock->on_bit = mod->on_bit;
802 	clock->mon_index = mod->mon_index;
803 	clock->mon_bit = mod->mon_bit;
804 	clock->no_pm = mod->no_pm;
805 	clock->ext_clk_mux_index = mod->ext_clk_mux_index;
806 	clock->priv = priv;
807 	clock->hw.init = &init;
808 	clock->mstop_data = mod->mstop_data;
809 
810 	ret = devm_clk_hw_register(dev, &clock->hw);
811 	if (ret) {
812 		clk = ERR_PTR(ret);
813 		goto fail;
814 	}
815 
816 	priv->clks[id] = clock->hw.clk;
817 
818 	/*
819 	 * Ensure the module clocks and MSTOP bits are synchronized when they are
820 	 * turned ON by the bootloader. Enable MSTOP bits for module clocks that were
821 	 * turned ON in an earlier boot stage.
822 	 */
823 	if (clock->mstop_data != BUS_MSTOP_NONE &&
824 	    !mod->critical && rzv2h_mod_clock_is_enabled(&clock->hw)) {
825 		rzv2h_mod_clock_mstop_enable(priv, clock->mstop_data);
826 	} else if (clock->mstop_data != BUS_MSTOP_NONE && mod->critical) {
827 		unsigned long mstop_mask = FIELD_GET(BUS_MSTOP_BITS_MASK, clock->mstop_data);
828 		u16 mstop_index = FIELD_GET(BUS_MSTOP_IDX_MASK, clock->mstop_data);
829 		atomic_t *mstop = &priv->mstop_count[mstop_index * 16];
830 		unsigned long flags;
831 		unsigned int i;
832 		u32 val = 0;
833 
834 		/*
835 		 * Critical clocks are turned ON immediately upon registration, and the
836 		 * MSTOP counter is updated through the rzv2h_mod_clock_enable() path.
837 		 * However, if the critical clocks were already turned ON by the initial
838 		 * bootloader, synchronize the atomic counter here and clear the MSTOP bit.
839 		 */
840 		spin_lock_irqsave(&priv->rmw_lock, flags);
841 		for_each_set_bit(i, &mstop_mask, 16) {
842 			if (atomic_read(&mstop[i]))
843 				continue;
844 			val |= BIT(i) << 16;
845 			atomic_inc(&mstop[i]);
846 		}
847 		if (val)
848 			writel(val, priv->base + CPG_BUS_MSTOP(mstop_index));
849 		spin_unlock_irqrestore(&priv->rmw_lock, flags);
850 	}
851 
852 	return;
853 
854 fail:
855 	dev_err(dev, "Failed to register module clock %s: %ld\n",
856 		mod->name, PTR_ERR(clk));
857 }
858 
859 static int __rzv2h_cpg_assert(struct reset_controller_dev *rcdev,
860 			      unsigned long id, bool assert)
861 {
862 	struct rzv2h_cpg_priv *priv = rcdev_to_priv(rcdev);
863 	unsigned int reg = GET_RST_OFFSET(priv->resets[id].reset_index);
864 	u32 mask = BIT(priv->resets[id].reset_bit);
865 	u8 monbit = priv->resets[id].mon_bit;
866 	u32 value = mask << 16;
867 
868 	dev_dbg(rcdev->dev, "%s id:%ld offset:0x%x\n",
869 		assert ? "assert" : "deassert", id, reg);
870 
871 	if (!assert)
872 		value |= mask;
873 	writel(value, priv->base + reg);
874 
875 	reg = GET_RST_MON_OFFSET(priv->resets[id].mon_index);
876 	mask = BIT(monbit);
877 
878 	return readl_poll_timeout_atomic(priv->base + reg, value,
879 					 assert ? (value & mask) : !(value & mask),
880 					 10, 200);
881 }
882 
883 static int rzv2h_cpg_assert(struct reset_controller_dev *rcdev,
884 			    unsigned long id)
885 {
886 	return __rzv2h_cpg_assert(rcdev, id, true);
887 }
888 
889 static int rzv2h_cpg_deassert(struct reset_controller_dev *rcdev,
890 			      unsigned long id)
891 {
892 	return __rzv2h_cpg_assert(rcdev, id, false);
893 }
894 
895 static int rzv2h_cpg_reset(struct reset_controller_dev *rcdev,
896 			   unsigned long id)
897 {
898 	int ret;
899 
900 	ret = rzv2h_cpg_assert(rcdev, id);
901 	if (ret)
902 		return ret;
903 
904 	return rzv2h_cpg_deassert(rcdev, id);
905 }
906 
907 static int rzv2h_cpg_status(struct reset_controller_dev *rcdev,
908 			    unsigned long id)
909 {
910 	struct rzv2h_cpg_priv *priv = rcdev_to_priv(rcdev);
911 	unsigned int reg = GET_RST_MON_OFFSET(priv->resets[id].mon_index);
912 	u8 monbit = priv->resets[id].mon_bit;
913 
914 	return !!(readl(priv->base + reg) & BIT(monbit));
915 }
916 
917 static const struct reset_control_ops rzv2h_cpg_reset_ops = {
918 	.reset = rzv2h_cpg_reset,
919 	.assert = rzv2h_cpg_assert,
920 	.deassert = rzv2h_cpg_deassert,
921 	.status = rzv2h_cpg_status,
922 };
923 
924 static int rzv2h_cpg_reset_xlate(struct reset_controller_dev *rcdev,
925 				 const struct of_phandle_args *reset_spec)
926 {
927 	struct rzv2h_cpg_priv *priv = rcdev_to_priv(rcdev);
928 	unsigned int id = reset_spec->args[0];
929 	u8 rst_index = id / 16;
930 	u8 rst_bit = id % 16;
931 	unsigned int i;
932 
933 	for (i = 0; i < rcdev->nr_resets; i++) {
934 		if (rst_index == priv->resets[i].reset_index &&
935 		    rst_bit == priv->resets[i].reset_bit)
936 			return i;
937 	}
938 
939 	return -EINVAL;
940 }
941 
942 static int rzv2h_cpg_reset_controller_register(struct rzv2h_cpg_priv *priv)
943 {
944 	priv->rcdev.ops = &rzv2h_cpg_reset_ops;
945 	priv->rcdev.of_node = priv->dev->of_node;
946 	priv->rcdev.dev = priv->dev;
947 	priv->rcdev.of_reset_n_cells = 1;
948 	priv->rcdev.of_xlate = rzv2h_cpg_reset_xlate;
949 	priv->rcdev.nr_resets = priv->num_resets;
950 
951 	return devm_reset_controller_register(priv->dev, &priv->rcdev);
952 }
953 
954 /**
955  * struct rzv2h_cpg_pd - RZ/V2H power domain data structure
956  * @priv: pointer to CPG private data structure
957  * @genpd: generic PM domain
958  */
959 struct rzv2h_cpg_pd {
960 	struct rzv2h_cpg_priv *priv;
961 	struct generic_pm_domain genpd;
962 };
963 
964 static bool rzv2h_cpg_is_pm_clk(struct rzv2h_cpg_pd *pd,
965 				const struct of_phandle_args *clkspec)
966 {
967 	if (clkspec->np != pd->genpd.dev.of_node || clkspec->args_count != 2)
968 		return false;
969 
970 	switch (clkspec->args[0]) {
971 	case CPG_MOD: {
972 		struct rzv2h_cpg_priv *priv = pd->priv;
973 		unsigned int id = clkspec->args[1];
974 		struct mod_clock *clock;
975 
976 		if (id >= priv->num_mod_clks)
977 			return false;
978 
979 		if (priv->clks[priv->num_core_clks + id] == ERR_PTR(-ENOENT))
980 			return false;
981 
982 		clock = to_mod_clock(__clk_get_hw(priv->clks[priv->num_core_clks + id]));
983 
984 		return !clock->no_pm;
985 	}
986 
987 	case CPG_CORE:
988 	default:
989 		return false;
990 	}
991 }
992 
993 static int rzv2h_cpg_attach_dev(struct generic_pm_domain *domain, struct device *dev)
994 {
995 	struct rzv2h_cpg_pd *pd = container_of(domain, struct rzv2h_cpg_pd, genpd);
996 	struct device_node *np = dev->of_node;
997 	struct of_phandle_args clkspec;
998 	bool once = true;
999 	struct clk *clk;
1000 	unsigned int i;
1001 	int error;
1002 
1003 	for (i = 0; !of_parse_phandle_with_args(np, "clocks", "#clock-cells", i, &clkspec); i++) {
1004 		if (!rzv2h_cpg_is_pm_clk(pd, &clkspec)) {
1005 			of_node_put(clkspec.np);
1006 			continue;
1007 		}
1008 
1009 		if (once) {
1010 			once = false;
1011 			error = pm_clk_create(dev);
1012 			if (error) {
1013 				of_node_put(clkspec.np);
1014 				goto err;
1015 			}
1016 		}
1017 		clk = of_clk_get_from_provider(&clkspec);
1018 		of_node_put(clkspec.np);
1019 		if (IS_ERR(clk)) {
1020 			error = PTR_ERR(clk);
1021 			goto fail_destroy;
1022 		}
1023 
1024 		error = pm_clk_add_clk(dev, clk);
1025 		if (error) {
1026 			dev_err(dev, "pm_clk_add_clk failed %d\n",
1027 				error);
1028 			goto fail_put;
1029 		}
1030 	}
1031 
1032 	return 0;
1033 
1034 fail_put:
1035 	clk_put(clk);
1036 
1037 fail_destroy:
1038 	pm_clk_destroy(dev);
1039 err:
1040 	return error;
1041 }
1042 
1043 static void rzv2h_cpg_detach_dev(struct generic_pm_domain *unused, struct device *dev)
1044 {
1045 	if (!pm_clk_no_clocks(dev))
1046 		pm_clk_destroy(dev);
1047 }
1048 
1049 static void rzv2h_cpg_genpd_remove_simple(void *data)
1050 {
1051 	pm_genpd_remove(data);
1052 }
1053 
1054 static int __init rzv2h_cpg_add_pm_domains(struct rzv2h_cpg_priv *priv)
1055 {
1056 	struct device *dev = priv->dev;
1057 	struct device_node *np = dev->of_node;
1058 	struct rzv2h_cpg_pd *pd;
1059 	int ret;
1060 
1061 	pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1062 	if (!pd)
1063 		return -ENOMEM;
1064 
1065 	pd->genpd.name = np->name;
1066 	pd->priv = priv;
1067 	pd->genpd.flags |= GENPD_FLAG_ALWAYS_ON | GENPD_FLAG_PM_CLK | GENPD_FLAG_ACTIVE_WAKEUP;
1068 	pd->genpd.attach_dev = rzv2h_cpg_attach_dev;
1069 	pd->genpd.detach_dev = rzv2h_cpg_detach_dev;
1070 	ret = pm_genpd_init(&pd->genpd, &pm_domain_always_on_gov, false);
1071 	if (ret)
1072 		return ret;
1073 
1074 	ret = devm_add_action_or_reset(dev, rzv2h_cpg_genpd_remove_simple, &pd->genpd);
1075 	if (ret)
1076 		return ret;
1077 
1078 	return of_genpd_add_provider_simple(np, &pd->genpd);
1079 }
1080 
1081 static void rzv2h_cpg_del_clk_provider(void *data)
1082 {
1083 	of_clk_del_provider(data);
1084 }
1085 
1086 static int __init rzv2h_cpg_probe(struct platform_device *pdev)
1087 {
1088 	struct device *dev = &pdev->dev;
1089 	struct device_node *np = dev->of_node;
1090 	const struct rzv2h_cpg_info *info;
1091 	struct rzv2h_cpg_priv *priv;
1092 	unsigned int nclks, i;
1093 	struct clk **clks;
1094 	int error;
1095 
1096 	info = of_device_get_match_data(dev);
1097 
1098 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1099 	if (!priv)
1100 		return -ENOMEM;
1101 
1102 	spin_lock_init(&priv->rmw_lock);
1103 
1104 	priv->dev = dev;
1105 
1106 	priv->base = devm_platform_ioremap_resource(pdev, 0);
1107 	if (IS_ERR(priv->base))
1108 		return PTR_ERR(priv->base);
1109 
1110 	nclks = info->num_total_core_clks + info->num_hw_mod_clks;
1111 	clks = devm_kmalloc_array(dev, nclks, sizeof(*clks), GFP_KERNEL);
1112 	if (!clks)
1113 		return -ENOMEM;
1114 
1115 	priv->mstop_count = devm_kcalloc(dev, info->num_mstop_bits,
1116 					 sizeof(*priv->mstop_count), GFP_KERNEL);
1117 	if (!priv->mstop_count)
1118 		return -ENOMEM;
1119 
1120 	/* Adjust for CPG_BUS_m_MSTOP starting from m = 1 */
1121 	priv->mstop_count -= 16;
1122 
1123 	priv->resets = devm_kmemdup_array(dev, info->resets, info->num_resets,
1124 					  sizeof(*info->resets), GFP_KERNEL);
1125 	if (!priv->resets)
1126 		return -ENOMEM;
1127 
1128 	dev_set_drvdata(dev, priv);
1129 	priv->clks = clks;
1130 	priv->num_core_clks = info->num_total_core_clks;
1131 	priv->num_mod_clks = info->num_hw_mod_clks;
1132 	priv->last_dt_core_clk = info->last_dt_core_clk;
1133 	priv->num_resets = info->num_resets;
1134 
1135 	for (i = 0; i < nclks; i++)
1136 		clks[i] = ERR_PTR(-ENOENT);
1137 
1138 	for (i = 0; i < info->num_core_clks; i++)
1139 		rzv2h_cpg_register_core_clk(&info->core_clks[i], priv);
1140 
1141 	for (i = 0; i < info->num_mod_clks; i++)
1142 		rzv2h_cpg_register_mod_clk(&info->mod_clks[i], priv);
1143 
1144 	error = of_clk_add_provider(np, rzv2h_cpg_clk_src_twocell_get, priv);
1145 	if (error)
1146 		return error;
1147 
1148 	error = devm_add_action_or_reset(dev, rzv2h_cpg_del_clk_provider, np);
1149 	if (error)
1150 		return error;
1151 
1152 	error = rzv2h_cpg_add_pm_domains(priv);
1153 	if (error)
1154 		return error;
1155 
1156 	error = rzv2h_cpg_reset_controller_register(priv);
1157 	if (error)
1158 		return error;
1159 
1160 	return 0;
1161 }
1162 
1163 static const struct of_device_id rzv2h_cpg_match[] = {
1164 #ifdef CONFIG_CLK_R9A09G047
1165 	{
1166 		.compatible = "renesas,r9a09g047-cpg",
1167 		.data = &r9a09g047_cpg_info,
1168 	},
1169 #endif
1170 #ifdef CONFIG_CLK_R9A09G056
1171 	{
1172 		.compatible = "renesas,r9a09g056-cpg",
1173 		.data = &r9a09g056_cpg_info,
1174 	},
1175 #endif
1176 #ifdef CONFIG_CLK_R9A09G057
1177 	{
1178 		.compatible = "renesas,r9a09g057-cpg",
1179 		.data = &r9a09g057_cpg_info,
1180 	},
1181 #endif
1182 	{ /* sentinel */ }
1183 };
1184 
1185 static struct platform_driver rzv2h_cpg_driver = {
1186 	.driver		= {
1187 		.name	= "rzv2h-cpg",
1188 		.of_match_table = rzv2h_cpg_match,
1189 	},
1190 };
1191 
1192 static int __init rzv2h_cpg_init(void)
1193 {
1194 	return platform_driver_probe(&rzv2h_cpg_driver, rzv2h_cpg_probe);
1195 }
1196 
1197 subsys_initcall(rzv2h_cpg_init);
1198 
1199 MODULE_DESCRIPTION("Renesas RZ/V2H CPG Driver");
1200