1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RZ/G2L Clock Pulse Generator 4 * 5 * Copyright (C) 2021 Renesas Electronics Corp. 6 * 7 * Based on renesas-cpg-mssr.c 8 * 9 * Copyright (C) 2015 Glider bvba 10 * Copyright (C) 2013 Ideas On Board SPRL 11 * Copyright (C) 2015 Renesas Electronics Corp. 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/clk.h> 16 #include <linux/clk-provider.h> 17 #include <linux/clk/renesas.h> 18 #include <linux/delay.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/iopoll.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/module.h> 24 #include <linux/of.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_clock.h> 27 #include <linux/pm_domain.h> 28 #include <linux/reset-controller.h> 29 #include <linux/slab.h> 30 #include <linux/units.h> 31 32 #include <dt-bindings/clock/renesas-cpg-mssr.h> 33 34 #include "rzg2l-cpg.h" 35 36 #ifdef DEBUG 37 #define WARN_DEBUG(x) WARN_ON(x) 38 #else 39 #define WARN_DEBUG(x) do { } while (0) 40 #endif 41 42 #define GET_SHIFT(val) ((val >> 12) & 0xff) 43 #define GET_WIDTH(val) ((val >> 8) & 0xf) 44 45 #define KDIV(val) ((s16)FIELD_GET(GENMASK(31, 16), val)) 46 #define MDIV(val) FIELD_GET(GENMASK(15, 6), val) 47 #define PDIV(val) FIELD_GET(GENMASK(5, 0), val) 48 #define SDIV(val) FIELD_GET(GENMASK(2, 0), val) 49 50 #define RZG3S_DIV_P GENMASK(28, 26) 51 #define RZG3S_DIV_M GENMASK(25, 22) 52 #define RZG3S_DIV_NI GENMASK(21, 13) 53 #define RZG3S_DIV_NF GENMASK(12, 1) 54 55 #define CLK_ON_R(reg) (reg) 56 #define CLK_MON_R(reg) (0x180 + (reg)) 57 #define CLK_RST_R(reg) (reg) 58 #define CLK_MRST_R(reg) (0x180 + (reg)) 59 60 #define GET_REG_OFFSET(val) ((val >> 20) & 0xfff) 61 #define GET_REG_SAMPLL_CLK1(val) ((val >> 22) & 0xfff) 62 #define GET_REG_SAMPLL_CLK2(val) ((val >> 12) & 0xfff) 63 64 #define CPG_WEN_BIT BIT(16) 65 66 #define MAX_VCLK_FREQ (148500000) 67 68 /** 69 * struct clk_hw_data - clock hardware data 70 * @hw: clock hw 71 * @conf: clock configuration (register offset, shift, width) 72 * @sconf: clock status configuration (register offset, shift, width) 73 * @priv: CPG private data structure 74 */ 75 struct clk_hw_data { 76 struct clk_hw hw; 77 u32 conf; 78 u32 sconf; 79 struct rzg2l_cpg_priv *priv; 80 }; 81 82 #define to_clk_hw_data(_hw) container_of(_hw, struct clk_hw_data, hw) 83 84 /** 85 * struct sd_mux_hw_data - SD MUX clock hardware data 86 * @hw_data: clock hw data 87 * @mtable: clock mux table 88 */ 89 struct sd_mux_hw_data { 90 struct clk_hw_data hw_data; 91 const u32 *mtable; 92 }; 93 94 #define to_sd_mux_hw_data(_hw) container_of(_hw, struct sd_mux_hw_data, hw_data) 95 96 /** 97 * struct div_hw_data - divider clock hardware data 98 * @hw_data: clock hw data 99 * @dtable: pointer to divider table 100 * @invalid_rate: invalid rate for divider 101 * @max_rate: maximum rate for divider 102 * @width: divider width 103 */ 104 struct div_hw_data { 105 struct clk_hw_data hw_data; 106 const struct clk_div_table *dtable; 107 unsigned long invalid_rate; 108 unsigned long max_rate; 109 u32 width; 110 }; 111 112 #define to_div_hw_data(_hw) container_of(_hw, struct div_hw_data, hw_data) 113 114 struct rzg2l_pll5_param { 115 u32 pl5_fracin; 116 u8 pl5_refdiv; 117 u8 pl5_intin; 118 u8 pl5_postdiv1; 119 u8 pl5_postdiv2; 120 u8 pl5_spread; 121 }; 122 123 struct rzg2l_pll5_mux_dsi_div_param { 124 u8 clksrc; 125 u8 dsi_div_a; 126 u8 dsi_div_b; 127 }; 128 129 /** 130 * struct rzg2l_cpg_priv - Clock Pulse Generator Private Data 131 * 132 * @rcdev: Reset controller entity 133 * @dev: CPG device 134 * @base: CPG register block base address 135 * @rmw_lock: protects register accesses 136 * @clks: Array containing all Core and Module Clocks 137 * @num_core_clks: Number of Core Clocks in clks[] 138 * @num_mod_clks: Number of Module Clocks in clks[] 139 * @num_resets: Number of Module Resets in info->resets[] 140 * @last_dt_core_clk: ID of the last Core Clock exported to DT 141 * @info: Pointer to platform data 142 * @genpd: PM domain 143 * @mux_dsi_div_params: pll5 mux and dsi div parameters 144 */ 145 struct rzg2l_cpg_priv { 146 struct reset_controller_dev rcdev; 147 struct device *dev; 148 void __iomem *base; 149 spinlock_t rmw_lock; 150 151 struct clk **clks; 152 unsigned int num_core_clks; 153 unsigned int num_mod_clks; 154 unsigned int num_resets; 155 unsigned int last_dt_core_clk; 156 157 const struct rzg2l_cpg_info *info; 158 159 struct generic_pm_domain genpd; 160 161 struct rzg2l_pll5_mux_dsi_div_param mux_dsi_div_params; 162 }; 163 164 static void rzg2l_cpg_del_clk_provider(void *data) 165 { 166 of_clk_del_provider(data); 167 } 168 169 /* Must be called in atomic context. */ 170 static int rzg2l_cpg_wait_clk_update_done(void __iomem *base, u32 conf) 171 { 172 u32 bitmask = GENMASK(GET_WIDTH(conf) - 1, 0) << GET_SHIFT(conf); 173 u32 off = GET_REG_OFFSET(conf); 174 u32 val; 175 176 return readl_poll_timeout_atomic(base + off, val, !(val & bitmask), 10, 200); 177 } 178 179 int rzg2l_cpg_sd_clk_mux_notifier(struct notifier_block *nb, unsigned long event, 180 void *data) 181 { 182 struct clk_notifier_data *cnd = data; 183 struct clk_hw *hw = __clk_get_hw(cnd->clk); 184 struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); 185 struct rzg2l_cpg_priv *priv = clk_hw_data->priv; 186 u32 off = GET_REG_OFFSET(clk_hw_data->conf); 187 u32 shift = GET_SHIFT(clk_hw_data->conf); 188 const u32 clk_src_266 = 3; 189 unsigned long flags; 190 int ret; 191 192 if (event != PRE_RATE_CHANGE || (cnd->new_rate / MEGA == 266)) 193 return NOTIFY_DONE; 194 195 spin_lock_irqsave(&priv->rmw_lock, flags); 196 197 /* 198 * As per the HW manual, we should not directly switch from 533 MHz to 199 * 400 MHz and vice versa. To change the setting from 2’b01 (533 MHz) 200 * to 2’b10 (400 MHz) or vice versa, Switch to 2’b11 (266 MHz) first, 201 * and then switch to the target setting (2’b01 (533 MHz) or 2’b10 202 * (400 MHz)). 203 * Setting a value of '0' to the SEL_SDHI0_SET or SEL_SDHI1_SET clock 204 * switching register is prohibited. 205 * The clock mux has 3 input clocks(533 MHz, 400 MHz, and 266 MHz), and 206 * the index to value mapping is done by adding 1 to the index. 207 */ 208 209 writel((CPG_WEN_BIT | clk_src_266) << shift, priv->base + off); 210 211 /* Wait for the update done. */ 212 ret = rzg2l_cpg_wait_clk_update_done(priv->base, clk_hw_data->sconf); 213 214 spin_unlock_irqrestore(&priv->rmw_lock, flags); 215 216 if (ret) 217 dev_err(priv->dev, "failed to switch to safe clk source\n"); 218 219 return notifier_from_errno(ret); 220 } 221 222 int rzg3s_cpg_div_clk_notifier(struct notifier_block *nb, unsigned long event, 223 void *data) 224 { 225 struct clk_notifier_data *cnd = data; 226 struct clk_hw *hw = __clk_get_hw(cnd->clk); 227 struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); 228 struct div_hw_data *div_hw_data = to_div_hw_data(clk_hw_data); 229 struct rzg2l_cpg_priv *priv = clk_hw_data->priv; 230 u32 off = GET_REG_OFFSET(clk_hw_data->conf); 231 u32 shift = GET_SHIFT(clk_hw_data->conf); 232 unsigned long flags; 233 int ret = 0; 234 u32 val; 235 236 if (event != PRE_RATE_CHANGE || !div_hw_data->invalid_rate || 237 div_hw_data->invalid_rate % cnd->new_rate) 238 return NOTIFY_DONE; 239 240 spin_lock_irqsave(&priv->rmw_lock, flags); 241 242 val = readl(priv->base + off); 243 val >>= shift; 244 val &= GENMASK(GET_WIDTH(clk_hw_data->conf) - 1, 0); 245 246 /* 247 * There are different constraints for the user of this notifiers as follows: 248 * 1/ SD div cannot be 1 (val == 0) if parent rate is 800MHz 249 * 2/ OCTA / SPI div cannot be 1 (val == 0) if parent rate is 400MHz 250 * As SD can have only one parent having 800MHz and OCTA div can have 251 * only one parent having 400MHz we took into account the parent rate 252 * at the beginning of function (by checking invalid_rate % new_rate). 253 * Now it is time to check the hardware divider and update it accordingly. 254 */ 255 if (!val) { 256 writel((CPG_WEN_BIT | 1) << shift, priv->base + off); 257 /* Wait for the update done. */ 258 ret = rzg2l_cpg_wait_clk_update_done(priv->base, clk_hw_data->sconf); 259 } 260 261 spin_unlock_irqrestore(&priv->rmw_lock, flags); 262 263 if (ret) 264 dev_err(priv->dev, "Failed to downgrade the div\n"); 265 266 return notifier_from_errno(ret); 267 } 268 269 static int rzg2l_register_notifier(struct clk_hw *hw, const struct cpg_core_clk *core, 270 struct rzg2l_cpg_priv *priv) 271 { 272 struct notifier_block *nb; 273 274 if (!core->notifier) 275 return 0; 276 277 nb = devm_kzalloc(priv->dev, sizeof(*nb), GFP_KERNEL); 278 if (!nb) 279 return -ENOMEM; 280 281 nb->notifier_call = core->notifier; 282 283 return clk_notifier_register(hw->clk, nb); 284 } 285 286 static unsigned long rzg3s_div_clk_recalc_rate(struct clk_hw *hw, 287 unsigned long parent_rate) 288 { 289 struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); 290 struct div_hw_data *div_hw_data = to_div_hw_data(clk_hw_data); 291 struct rzg2l_cpg_priv *priv = clk_hw_data->priv; 292 u32 val; 293 294 val = readl(priv->base + GET_REG_OFFSET(clk_hw_data->conf)); 295 val >>= GET_SHIFT(clk_hw_data->conf); 296 val &= GENMASK(GET_WIDTH(clk_hw_data->conf) - 1, 0); 297 298 return divider_recalc_rate(hw, parent_rate, val, div_hw_data->dtable, 299 CLK_DIVIDER_ROUND_CLOSEST, div_hw_data->width); 300 } 301 302 static int rzg3s_div_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) 303 { 304 struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); 305 struct div_hw_data *div_hw_data = to_div_hw_data(clk_hw_data); 306 307 if (div_hw_data->max_rate && req->rate > div_hw_data->max_rate) 308 req->rate = div_hw_data->max_rate; 309 310 return divider_determine_rate(hw, req, div_hw_data->dtable, div_hw_data->width, 311 CLK_DIVIDER_ROUND_CLOSEST); 312 } 313 314 static int rzg3s_div_clk_set_rate(struct clk_hw *hw, unsigned long rate, 315 unsigned long parent_rate) 316 { 317 struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); 318 struct div_hw_data *div_hw_data = to_div_hw_data(clk_hw_data); 319 struct rzg2l_cpg_priv *priv = clk_hw_data->priv; 320 u32 off = GET_REG_OFFSET(clk_hw_data->conf); 321 u32 shift = GET_SHIFT(clk_hw_data->conf); 322 unsigned long flags; 323 u32 val; 324 int ret; 325 326 val = divider_get_val(rate, parent_rate, div_hw_data->dtable, div_hw_data->width, 327 CLK_DIVIDER_ROUND_CLOSEST); 328 329 spin_lock_irqsave(&priv->rmw_lock, flags); 330 writel((CPG_WEN_BIT | val) << shift, priv->base + off); 331 /* Wait for the update done. */ 332 ret = rzg2l_cpg_wait_clk_update_done(priv->base, clk_hw_data->sconf); 333 spin_unlock_irqrestore(&priv->rmw_lock, flags); 334 335 return ret; 336 } 337 338 static const struct clk_ops rzg3s_div_clk_ops = { 339 .recalc_rate = rzg3s_div_clk_recalc_rate, 340 .determine_rate = rzg3s_div_clk_determine_rate, 341 .set_rate = rzg3s_div_clk_set_rate, 342 }; 343 344 static struct clk * __init 345 rzg3s_cpg_div_clk_register(const struct cpg_core_clk *core, struct clk **clks, 346 void __iomem *base, struct rzg2l_cpg_priv *priv) 347 { 348 struct div_hw_data *div_hw_data; 349 struct clk_init_data init = {}; 350 const struct clk_div_table *clkt; 351 struct clk_hw *clk_hw; 352 const struct clk *parent; 353 const char *parent_name; 354 u32 max = 0; 355 int ret; 356 357 parent = clks[core->parent & 0xffff]; 358 if (IS_ERR(parent)) 359 return ERR_CAST(parent); 360 361 parent_name = __clk_get_name(parent); 362 363 div_hw_data = devm_kzalloc(priv->dev, sizeof(*div_hw_data), GFP_KERNEL); 364 if (!div_hw_data) 365 return ERR_PTR(-ENOMEM); 366 367 init.name = core->name; 368 init.flags = core->flag; 369 init.ops = &rzg3s_div_clk_ops; 370 init.parent_names = &parent_name; 371 init.num_parents = 1; 372 373 /* Get the maximum divider to retrieve div width. */ 374 for (clkt = core->dtable; clkt->div; clkt++) { 375 if (max < clkt->div) 376 max = clkt->div; 377 } 378 379 div_hw_data->hw_data.priv = priv; 380 div_hw_data->hw_data.conf = core->conf; 381 div_hw_data->hw_data.sconf = core->sconf; 382 div_hw_data->dtable = core->dtable; 383 div_hw_data->invalid_rate = core->invalid_rate; 384 div_hw_data->max_rate = core->max_rate; 385 div_hw_data->width = fls(max) - 1; 386 387 clk_hw = &div_hw_data->hw_data.hw; 388 clk_hw->init = &init; 389 390 ret = devm_clk_hw_register(priv->dev, clk_hw); 391 if (ret) 392 return ERR_PTR(ret); 393 394 ret = rzg2l_register_notifier(clk_hw, core, priv); 395 if (ret) { 396 dev_err(priv->dev, "Failed to register notifier for %s\n", 397 core->name); 398 return ERR_PTR(ret); 399 } 400 401 return clk_hw->clk; 402 } 403 404 static struct clk * __init 405 rzg2l_cpg_div_clk_register(const struct cpg_core_clk *core, 406 struct clk **clks, 407 void __iomem *base, 408 struct rzg2l_cpg_priv *priv) 409 { 410 struct device *dev = priv->dev; 411 const struct clk *parent; 412 const char *parent_name; 413 struct clk_hw *clk_hw; 414 415 parent = clks[core->parent & 0xffff]; 416 if (IS_ERR(parent)) 417 return ERR_CAST(parent); 418 419 parent_name = __clk_get_name(parent); 420 421 if (core->dtable) 422 clk_hw = clk_hw_register_divider_table(dev, core->name, 423 parent_name, 0, 424 base + GET_REG_OFFSET(core->conf), 425 GET_SHIFT(core->conf), 426 GET_WIDTH(core->conf), 427 core->flag, 428 core->dtable, 429 &priv->rmw_lock); 430 else 431 clk_hw = clk_hw_register_divider(dev, core->name, 432 parent_name, 0, 433 base + GET_REG_OFFSET(core->conf), 434 GET_SHIFT(core->conf), 435 GET_WIDTH(core->conf), 436 core->flag, &priv->rmw_lock); 437 438 if (IS_ERR(clk_hw)) 439 return ERR_CAST(clk_hw); 440 441 return clk_hw->clk; 442 } 443 444 static struct clk * __init 445 rzg2l_cpg_mux_clk_register(const struct cpg_core_clk *core, 446 void __iomem *base, 447 struct rzg2l_cpg_priv *priv) 448 { 449 const struct clk_hw *clk_hw; 450 451 clk_hw = devm_clk_hw_register_mux(priv->dev, core->name, 452 core->parent_names, core->num_parents, 453 core->flag, 454 base + GET_REG_OFFSET(core->conf), 455 GET_SHIFT(core->conf), 456 GET_WIDTH(core->conf), 457 core->mux_flags, &priv->rmw_lock); 458 if (IS_ERR(clk_hw)) 459 return ERR_CAST(clk_hw); 460 461 return clk_hw->clk; 462 } 463 464 static int rzg2l_cpg_sd_clk_mux_set_parent(struct clk_hw *hw, u8 index) 465 { 466 struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); 467 struct sd_mux_hw_data *sd_mux_hw_data = to_sd_mux_hw_data(clk_hw_data); 468 struct rzg2l_cpg_priv *priv = clk_hw_data->priv; 469 u32 off = GET_REG_OFFSET(clk_hw_data->conf); 470 u32 shift = GET_SHIFT(clk_hw_data->conf); 471 unsigned long flags; 472 u32 val; 473 int ret; 474 475 val = clk_mux_index_to_val(sd_mux_hw_data->mtable, CLK_MUX_ROUND_CLOSEST, index); 476 477 spin_lock_irqsave(&priv->rmw_lock, flags); 478 479 writel((CPG_WEN_BIT | val) << shift, priv->base + off); 480 481 /* Wait for the update done. */ 482 ret = rzg2l_cpg_wait_clk_update_done(priv->base, clk_hw_data->sconf); 483 484 spin_unlock_irqrestore(&priv->rmw_lock, flags); 485 486 if (ret) 487 dev_err(priv->dev, "Failed to switch parent\n"); 488 489 return ret; 490 } 491 492 static u8 rzg2l_cpg_sd_clk_mux_get_parent(struct clk_hw *hw) 493 { 494 struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); 495 struct sd_mux_hw_data *sd_mux_hw_data = to_sd_mux_hw_data(clk_hw_data); 496 struct rzg2l_cpg_priv *priv = clk_hw_data->priv; 497 u32 val; 498 499 val = readl(priv->base + GET_REG_OFFSET(clk_hw_data->conf)); 500 val >>= GET_SHIFT(clk_hw_data->conf); 501 val &= GENMASK(GET_WIDTH(clk_hw_data->conf) - 1, 0); 502 503 return clk_mux_val_to_index(hw, sd_mux_hw_data->mtable, CLK_MUX_ROUND_CLOSEST, val); 504 } 505 506 static const struct clk_ops rzg2l_cpg_sd_clk_mux_ops = { 507 .determine_rate = __clk_mux_determine_rate_closest, 508 .set_parent = rzg2l_cpg_sd_clk_mux_set_parent, 509 .get_parent = rzg2l_cpg_sd_clk_mux_get_parent, 510 }; 511 512 static struct clk * __init 513 rzg2l_cpg_sd_mux_clk_register(const struct cpg_core_clk *core, 514 void __iomem *base, 515 struct rzg2l_cpg_priv *priv) 516 { 517 struct sd_mux_hw_data *sd_mux_hw_data; 518 struct clk_init_data init; 519 struct clk_hw *clk_hw; 520 int ret; 521 522 sd_mux_hw_data = devm_kzalloc(priv->dev, sizeof(*sd_mux_hw_data), GFP_KERNEL); 523 if (!sd_mux_hw_data) 524 return ERR_PTR(-ENOMEM); 525 526 sd_mux_hw_data->hw_data.priv = priv; 527 sd_mux_hw_data->hw_data.conf = core->conf; 528 sd_mux_hw_data->hw_data.sconf = core->sconf; 529 sd_mux_hw_data->mtable = core->mtable; 530 531 init.name = core->name; 532 init.ops = &rzg2l_cpg_sd_clk_mux_ops; 533 init.flags = core->flag; 534 init.num_parents = core->num_parents; 535 init.parent_names = core->parent_names; 536 537 clk_hw = &sd_mux_hw_data->hw_data.hw; 538 clk_hw->init = &init; 539 540 ret = devm_clk_hw_register(priv->dev, clk_hw); 541 if (ret) 542 return ERR_PTR(ret); 543 544 ret = rzg2l_register_notifier(clk_hw, core, priv); 545 if (ret) { 546 dev_err(priv->dev, "Failed to register notifier for %s\n", 547 core->name); 548 return ERR_PTR(ret); 549 } 550 551 return clk_hw->clk; 552 } 553 554 static unsigned long 555 rzg2l_cpg_get_foutpostdiv_rate(struct rzg2l_pll5_param *params, 556 unsigned long rate) 557 { 558 unsigned long foutpostdiv_rate; 559 560 params->pl5_intin = rate / MEGA; 561 params->pl5_fracin = div_u64(((u64)rate % MEGA) << 24, MEGA); 562 params->pl5_refdiv = 2; 563 params->pl5_postdiv1 = 1; 564 params->pl5_postdiv2 = 1; 565 params->pl5_spread = 0x16; 566 567 foutpostdiv_rate = 568 EXTAL_FREQ_IN_MEGA_HZ * MEGA / params->pl5_refdiv * 569 ((((params->pl5_intin << 24) + params->pl5_fracin)) >> 24) / 570 (params->pl5_postdiv1 * params->pl5_postdiv2); 571 572 return foutpostdiv_rate; 573 } 574 575 struct dsi_div_hw_data { 576 struct clk_hw hw; 577 u32 conf; 578 unsigned long rate; 579 struct rzg2l_cpg_priv *priv; 580 }; 581 582 #define to_dsi_div_hw_data(_hw) container_of(_hw, struct dsi_div_hw_data, hw) 583 584 static unsigned long rzg2l_cpg_dsi_div_recalc_rate(struct clk_hw *hw, 585 unsigned long parent_rate) 586 { 587 struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw); 588 unsigned long rate = dsi_div->rate; 589 590 if (!rate) 591 rate = parent_rate; 592 593 return rate; 594 } 595 596 static unsigned long rzg2l_cpg_get_vclk_parent_rate(struct clk_hw *hw, 597 unsigned long rate) 598 { 599 struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw); 600 struct rzg2l_cpg_priv *priv = dsi_div->priv; 601 struct rzg2l_pll5_param params; 602 unsigned long parent_rate; 603 604 parent_rate = rzg2l_cpg_get_foutpostdiv_rate(¶ms, rate); 605 606 if (priv->mux_dsi_div_params.clksrc) 607 parent_rate /= 2; 608 609 return parent_rate; 610 } 611 612 static int rzg2l_cpg_dsi_div_determine_rate(struct clk_hw *hw, 613 struct clk_rate_request *req) 614 { 615 if (req->rate > MAX_VCLK_FREQ) 616 req->rate = MAX_VCLK_FREQ; 617 618 req->best_parent_rate = rzg2l_cpg_get_vclk_parent_rate(hw, req->rate); 619 620 return 0; 621 } 622 623 static int rzg2l_cpg_dsi_div_set_rate(struct clk_hw *hw, 624 unsigned long rate, 625 unsigned long parent_rate) 626 { 627 struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw); 628 struct rzg2l_cpg_priv *priv = dsi_div->priv; 629 630 /* 631 * MUX -->DIV_DSI_{A,B} -->M3 -->VCLK 632 * 633 * Based on the dot clock, the DSI divider clock sets the divider value, 634 * calculates the pll parameters for generating FOUTPOSTDIV and the clk 635 * source for the MUX and propagates that info to the parents. 636 */ 637 638 if (!rate || rate > MAX_VCLK_FREQ) 639 return -EINVAL; 640 641 dsi_div->rate = rate; 642 writel(CPG_PL5_SDIV_DIV_DSI_A_WEN | CPG_PL5_SDIV_DIV_DSI_B_WEN | 643 (priv->mux_dsi_div_params.dsi_div_a << 0) | 644 (priv->mux_dsi_div_params.dsi_div_b << 8), 645 priv->base + CPG_PL5_SDIV); 646 647 return 0; 648 } 649 650 static const struct clk_ops rzg2l_cpg_dsi_div_ops = { 651 .recalc_rate = rzg2l_cpg_dsi_div_recalc_rate, 652 .determine_rate = rzg2l_cpg_dsi_div_determine_rate, 653 .set_rate = rzg2l_cpg_dsi_div_set_rate, 654 }; 655 656 static struct clk * __init 657 rzg2l_cpg_dsi_div_clk_register(const struct cpg_core_clk *core, 658 struct clk **clks, 659 struct rzg2l_cpg_priv *priv) 660 { 661 struct dsi_div_hw_data *clk_hw_data; 662 const struct clk *parent; 663 const char *parent_name; 664 struct clk_init_data init; 665 struct clk_hw *clk_hw; 666 int ret; 667 668 parent = clks[core->parent & 0xffff]; 669 if (IS_ERR(parent)) 670 return ERR_CAST(parent); 671 672 clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL); 673 if (!clk_hw_data) 674 return ERR_PTR(-ENOMEM); 675 676 clk_hw_data->priv = priv; 677 678 parent_name = __clk_get_name(parent); 679 init.name = core->name; 680 init.ops = &rzg2l_cpg_dsi_div_ops; 681 init.flags = CLK_SET_RATE_PARENT; 682 init.parent_names = &parent_name; 683 init.num_parents = 1; 684 685 clk_hw = &clk_hw_data->hw; 686 clk_hw->init = &init; 687 688 ret = devm_clk_hw_register(priv->dev, clk_hw); 689 if (ret) 690 return ERR_PTR(ret); 691 692 return clk_hw->clk; 693 } 694 695 struct pll5_mux_hw_data { 696 struct clk_hw hw; 697 u32 conf; 698 unsigned long rate; 699 struct rzg2l_cpg_priv *priv; 700 }; 701 702 #define to_pll5_mux_hw_data(_hw) container_of(_hw, struct pll5_mux_hw_data, hw) 703 704 static int rzg2l_cpg_pll5_4_clk_mux_determine_rate(struct clk_hw *hw, 705 struct clk_rate_request *req) 706 { 707 struct clk_hw *parent; 708 struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw); 709 struct rzg2l_cpg_priv *priv = hwdata->priv; 710 711 parent = clk_hw_get_parent_by_index(hw, priv->mux_dsi_div_params.clksrc); 712 req->best_parent_hw = parent; 713 req->best_parent_rate = req->rate; 714 715 return 0; 716 } 717 718 static int rzg2l_cpg_pll5_4_clk_mux_set_parent(struct clk_hw *hw, u8 index) 719 { 720 struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw); 721 struct rzg2l_cpg_priv *priv = hwdata->priv; 722 723 /* 724 * FOUTPOSTDIV--->| 725 * | | -->MUX -->DIV_DSIA_B -->M3 -->VCLK 726 * |--FOUT1PH0-->| 727 * 728 * Based on the dot clock, the DSI divider clock calculates the parent 729 * rate and clk source for the MUX. It propagates that info to 730 * pll5_4_clk_mux which sets the clock source for DSI divider clock. 731 */ 732 733 writel(CPG_OTHERFUNC1_REG_RES0_ON_WEN | index, 734 priv->base + CPG_OTHERFUNC1_REG); 735 736 return 0; 737 } 738 739 static u8 rzg2l_cpg_pll5_4_clk_mux_get_parent(struct clk_hw *hw) 740 { 741 struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw); 742 struct rzg2l_cpg_priv *priv = hwdata->priv; 743 744 return readl(priv->base + GET_REG_OFFSET(hwdata->conf)); 745 } 746 747 static const struct clk_ops rzg2l_cpg_pll5_4_clk_mux_ops = { 748 .determine_rate = rzg2l_cpg_pll5_4_clk_mux_determine_rate, 749 .set_parent = rzg2l_cpg_pll5_4_clk_mux_set_parent, 750 .get_parent = rzg2l_cpg_pll5_4_clk_mux_get_parent, 751 }; 752 753 static struct clk * __init 754 rzg2l_cpg_pll5_4_mux_clk_register(const struct cpg_core_clk *core, 755 struct rzg2l_cpg_priv *priv) 756 { 757 struct pll5_mux_hw_data *clk_hw_data; 758 struct clk_init_data init; 759 struct clk_hw *clk_hw; 760 int ret; 761 762 clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL); 763 if (!clk_hw_data) 764 return ERR_PTR(-ENOMEM); 765 766 clk_hw_data->priv = priv; 767 clk_hw_data->conf = core->conf; 768 769 init.name = core->name; 770 init.ops = &rzg2l_cpg_pll5_4_clk_mux_ops; 771 init.flags = CLK_SET_RATE_PARENT; 772 init.num_parents = core->num_parents; 773 init.parent_names = core->parent_names; 774 775 clk_hw = &clk_hw_data->hw; 776 clk_hw->init = &init; 777 778 ret = devm_clk_hw_register(priv->dev, clk_hw); 779 if (ret) 780 return ERR_PTR(ret); 781 782 return clk_hw->clk; 783 } 784 785 struct sipll5 { 786 struct clk_hw hw; 787 u32 conf; 788 unsigned long foutpostdiv_rate; 789 struct rzg2l_cpg_priv *priv; 790 }; 791 792 #define to_sipll5(_hw) container_of(_hw, struct sipll5, hw) 793 794 static unsigned long rzg2l_cpg_get_vclk_rate(struct clk_hw *hw, 795 unsigned long rate) 796 { 797 struct sipll5 *sipll5 = to_sipll5(hw); 798 struct rzg2l_cpg_priv *priv = sipll5->priv; 799 unsigned long vclk; 800 801 vclk = rate / ((1 << priv->mux_dsi_div_params.dsi_div_a) * 802 (priv->mux_dsi_div_params.dsi_div_b + 1)); 803 804 if (priv->mux_dsi_div_params.clksrc) 805 vclk /= 2; 806 807 return vclk; 808 } 809 810 static unsigned long rzg2l_cpg_sipll5_recalc_rate(struct clk_hw *hw, 811 unsigned long parent_rate) 812 { 813 struct sipll5 *sipll5 = to_sipll5(hw); 814 unsigned long pll5_rate = sipll5->foutpostdiv_rate; 815 816 if (!pll5_rate) 817 pll5_rate = parent_rate; 818 819 return pll5_rate; 820 } 821 822 static long rzg2l_cpg_sipll5_round_rate(struct clk_hw *hw, 823 unsigned long rate, 824 unsigned long *parent_rate) 825 { 826 return rate; 827 } 828 829 static int rzg2l_cpg_sipll5_set_rate(struct clk_hw *hw, 830 unsigned long rate, 831 unsigned long parent_rate) 832 { 833 struct sipll5 *sipll5 = to_sipll5(hw); 834 struct rzg2l_cpg_priv *priv = sipll5->priv; 835 struct rzg2l_pll5_param params; 836 unsigned long vclk_rate; 837 int ret; 838 u32 val; 839 840 /* 841 * OSC --> PLL5 --> FOUTPOSTDIV-->| 842 * | | -->MUX -->DIV_DSIA_B -->M3 -->VCLK 843 * |--FOUT1PH0-->| 844 * 845 * Based on the dot clock, the DSI divider clock calculates the parent 846 * rate and the pll5 parameters for generating FOUTPOSTDIV. It propagates 847 * that info to sipll5 which sets parameters for generating FOUTPOSTDIV. 848 * 849 * OSC --> PLL5 --> FOUTPOSTDIV 850 */ 851 852 if (!rate) 853 return -EINVAL; 854 855 vclk_rate = rzg2l_cpg_get_vclk_rate(hw, rate); 856 sipll5->foutpostdiv_rate = 857 rzg2l_cpg_get_foutpostdiv_rate(¶ms, vclk_rate); 858 859 /* Put PLL5 into standby mode */ 860 writel(CPG_SIPLL5_STBY_RESETB_WEN, priv->base + CPG_SIPLL5_STBY); 861 ret = readl_poll_timeout(priv->base + CPG_SIPLL5_MON, val, 862 !(val & CPG_SIPLL5_MON_PLL5_LOCK), 100, 250000); 863 if (ret) { 864 dev_err(priv->dev, "failed to release pll5 lock"); 865 return ret; 866 } 867 868 /* Output clock setting 1 */ 869 writel((params.pl5_postdiv1 << 0) | (params.pl5_postdiv2 << 4) | 870 (params.pl5_refdiv << 8), priv->base + CPG_SIPLL5_CLK1); 871 872 /* Output clock setting, SSCG modulation value setting 3 */ 873 writel((params.pl5_fracin << 8), priv->base + CPG_SIPLL5_CLK3); 874 875 /* Output clock setting 4 */ 876 writel(CPG_SIPLL5_CLK4_RESV_LSB | (params.pl5_intin << 16), 877 priv->base + CPG_SIPLL5_CLK4); 878 879 /* Output clock setting 5 */ 880 writel(params.pl5_spread, priv->base + CPG_SIPLL5_CLK5); 881 882 /* PLL normal mode setting */ 883 writel(CPG_SIPLL5_STBY_DOWNSPREAD_WEN | CPG_SIPLL5_STBY_SSCG_EN_WEN | 884 CPG_SIPLL5_STBY_RESETB_WEN | CPG_SIPLL5_STBY_RESETB, 885 priv->base + CPG_SIPLL5_STBY); 886 887 /* PLL normal mode transition, output clock stability check */ 888 ret = readl_poll_timeout(priv->base + CPG_SIPLL5_MON, val, 889 (val & CPG_SIPLL5_MON_PLL5_LOCK), 100, 250000); 890 if (ret) { 891 dev_err(priv->dev, "failed to lock pll5"); 892 return ret; 893 } 894 895 return 0; 896 } 897 898 static const struct clk_ops rzg2l_cpg_sipll5_ops = { 899 .recalc_rate = rzg2l_cpg_sipll5_recalc_rate, 900 .round_rate = rzg2l_cpg_sipll5_round_rate, 901 .set_rate = rzg2l_cpg_sipll5_set_rate, 902 }; 903 904 static struct clk * __init 905 rzg2l_cpg_sipll5_register(const struct cpg_core_clk *core, 906 struct clk **clks, 907 struct rzg2l_cpg_priv *priv) 908 { 909 const struct clk *parent; 910 struct clk_init_data init; 911 const char *parent_name; 912 struct sipll5 *sipll5; 913 struct clk_hw *clk_hw; 914 int ret; 915 916 parent = clks[core->parent & 0xffff]; 917 if (IS_ERR(parent)) 918 return ERR_CAST(parent); 919 920 sipll5 = devm_kzalloc(priv->dev, sizeof(*sipll5), GFP_KERNEL); 921 if (!sipll5) 922 return ERR_PTR(-ENOMEM); 923 924 init.name = core->name; 925 parent_name = __clk_get_name(parent); 926 init.ops = &rzg2l_cpg_sipll5_ops; 927 init.flags = 0; 928 init.parent_names = &parent_name; 929 init.num_parents = 1; 930 931 sipll5->hw.init = &init; 932 sipll5->conf = core->conf; 933 sipll5->priv = priv; 934 935 writel(CPG_SIPLL5_STBY_SSCG_EN_WEN | CPG_SIPLL5_STBY_RESETB_WEN | 936 CPG_SIPLL5_STBY_RESETB, priv->base + CPG_SIPLL5_STBY); 937 938 clk_hw = &sipll5->hw; 939 clk_hw->init = &init; 940 941 ret = devm_clk_hw_register(priv->dev, clk_hw); 942 if (ret) 943 return ERR_PTR(ret); 944 945 priv->mux_dsi_div_params.clksrc = 1; /* Use clk src 1 for DSI */ 946 priv->mux_dsi_div_params.dsi_div_a = 1; /* Divided by 2 */ 947 priv->mux_dsi_div_params.dsi_div_b = 2; /* Divided by 3 */ 948 949 return clk_hw->clk; 950 } 951 952 struct pll_clk { 953 struct clk_hw hw; 954 unsigned int conf; 955 unsigned int type; 956 void __iomem *base; 957 struct rzg2l_cpg_priv *priv; 958 }; 959 960 #define to_pll(_hw) container_of(_hw, struct pll_clk, hw) 961 962 static unsigned long rzg2l_cpg_pll_clk_recalc_rate(struct clk_hw *hw, 963 unsigned long parent_rate) 964 { 965 struct pll_clk *pll_clk = to_pll(hw); 966 struct rzg2l_cpg_priv *priv = pll_clk->priv; 967 unsigned int val1, val2; 968 u64 rate; 969 970 if (pll_clk->type != CLK_TYPE_SAM_PLL) 971 return parent_rate; 972 973 val1 = readl(priv->base + GET_REG_SAMPLL_CLK1(pll_clk->conf)); 974 val2 = readl(priv->base + GET_REG_SAMPLL_CLK2(pll_clk->conf)); 975 976 rate = mul_u64_u32_shr(parent_rate, (MDIV(val1) << 16) + KDIV(val1), 977 16 + SDIV(val2)); 978 979 return DIV_ROUND_CLOSEST_ULL(rate, PDIV(val1)); 980 } 981 982 static const struct clk_ops rzg2l_cpg_pll_ops = { 983 .recalc_rate = rzg2l_cpg_pll_clk_recalc_rate, 984 }; 985 986 static unsigned long rzg3s_cpg_pll_clk_recalc_rate(struct clk_hw *hw, 987 unsigned long parent_rate) 988 { 989 struct pll_clk *pll_clk = to_pll(hw); 990 struct rzg2l_cpg_priv *priv = pll_clk->priv; 991 u32 nir, nfr, mr, pr, val; 992 u64 rate; 993 994 if (pll_clk->type != CLK_TYPE_G3S_PLL) 995 return parent_rate; 996 997 val = readl(priv->base + GET_REG_SAMPLL_CLK1(pll_clk->conf)); 998 999 pr = 1 << FIELD_GET(RZG3S_DIV_P, val); 1000 /* Hardware interprets values higher than 8 as p = 16. */ 1001 if (pr > 8) 1002 pr = 16; 1003 1004 mr = FIELD_GET(RZG3S_DIV_M, val) + 1; 1005 nir = FIELD_GET(RZG3S_DIV_NI, val) + 1; 1006 nfr = FIELD_GET(RZG3S_DIV_NF, val); 1007 1008 rate = mul_u64_u32_shr(parent_rate, 4096 * nir + nfr, 12); 1009 1010 return DIV_ROUND_CLOSEST_ULL(rate, (mr * pr)); 1011 } 1012 1013 static const struct clk_ops rzg3s_cpg_pll_ops = { 1014 .recalc_rate = rzg3s_cpg_pll_clk_recalc_rate, 1015 }; 1016 1017 static struct clk * __init 1018 rzg2l_cpg_pll_clk_register(const struct cpg_core_clk *core, 1019 struct clk **clks, 1020 void __iomem *base, 1021 struct rzg2l_cpg_priv *priv, 1022 const struct clk_ops *ops) 1023 { 1024 struct device *dev = priv->dev; 1025 const struct clk *parent; 1026 struct clk_init_data init; 1027 const char *parent_name; 1028 struct pll_clk *pll_clk; 1029 1030 parent = clks[core->parent & 0xffff]; 1031 if (IS_ERR(parent)) 1032 return ERR_CAST(parent); 1033 1034 pll_clk = devm_kzalloc(dev, sizeof(*pll_clk), GFP_KERNEL); 1035 if (!pll_clk) 1036 return ERR_PTR(-ENOMEM); 1037 1038 parent_name = __clk_get_name(parent); 1039 init.name = core->name; 1040 init.ops = ops; 1041 init.flags = 0; 1042 init.parent_names = &parent_name; 1043 init.num_parents = 1; 1044 1045 pll_clk->hw.init = &init; 1046 pll_clk->conf = core->conf; 1047 pll_clk->base = base; 1048 pll_clk->priv = priv; 1049 pll_clk->type = core->type; 1050 1051 return clk_register(NULL, &pll_clk->hw); 1052 } 1053 1054 static struct clk 1055 *rzg2l_cpg_clk_src_twocell_get(struct of_phandle_args *clkspec, 1056 void *data) 1057 { 1058 unsigned int clkidx = clkspec->args[1]; 1059 struct rzg2l_cpg_priv *priv = data; 1060 struct device *dev = priv->dev; 1061 const char *type; 1062 struct clk *clk; 1063 1064 switch (clkspec->args[0]) { 1065 case CPG_CORE: 1066 type = "core"; 1067 if (clkidx > priv->last_dt_core_clk) { 1068 dev_err(dev, "Invalid %s clock index %u\n", type, clkidx); 1069 return ERR_PTR(-EINVAL); 1070 } 1071 clk = priv->clks[clkidx]; 1072 break; 1073 1074 case CPG_MOD: 1075 type = "module"; 1076 if (clkidx >= priv->num_mod_clks) { 1077 dev_err(dev, "Invalid %s clock index %u\n", type, 1078 clkidx); 1079 return ERR_PTR(-EINVAL); 1080 } 1081 clk = priv->clks[priv->num_core_clks + clkidx]; 1082 break; 1083 1084 default: 1085 dev_err(dev, "Invalid CPG clock type %u\n", clkspec->args[0]); 1086 return ERR_PTR(-EINVAL); 1087 } 1088 1089 if (IS_ERR(clk)) 1090 dev_err(dev, "Cannot get %s clock %u: %ld", type, clkidx, 1091 PTR_ERR(clk)); 1092 else 1093 dev_dbg(dev, "clock (%u, %u) is %pC at %lu Hz\n", 1094 clkspec->args[0], clkspec->args[1], clk, 1095 clk_get_rate(clk)); 1096 return clk; 1097 } 1098 1099 static void __init 1100 rzg2l_cpg_register_core_clk(const struct cpg_core_clk *core, 1101 const struct rzg2l_cpg_info *info, 1102 struct rzg2l_cpg_priv *priv) 1103 { 1104 struct clk *clk = ERR_PTR(-EOPNOTSUPP), *parent; 1105 struct device *dev = priv->dev; 1106 unsigned int id = core->id, div = core->div; 1107 const char *parent_name; 1108 1109 WARN_DEBUG(id >= priv->num_core_clks); 1110 WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT); 1111 1112 if (!core->name) { 1113 /* Skip NULLified clock */ 1114 return; 1115 } 1116 1117 switch (core->type) { 1118 case CLK_TYPE_IN: 1119 clk = of_clk_get_by_name(priv->dev->of_node, core->name); 1120 break; 1121 case CLK_TYPE_FF: 1122 WARN_DEBUG(core->parent >= priv->num_core_clks); 1123 parent = priv->clks[core->parent]; 1124 if (IS_ERR(parent)) { 1125 clk = parent; 1126 goto fail; 1127 } 1128 1129 parent_name = __clk_get_name(parent); 1130 clk = clk_register_fixed_factor(NULL, core->name, 1131 parent_name, CLK_SET_RATE_PARENT, 1132 core->mult, div); 1133 break; 1134 case CLK_TYPE_SAM_PLL: 1135 clk = rzg2l_cpg_pll_clk_register(core, priv->clks, priv->base, priv, 1136 &rzg2l_cpg_pll_ops); 1137 break; 1138 case CLK_TYPE_G3S_PLL: 1139 clk = rzg2l_cpg_pll_clk_register(core, priv->clks, priv->base, priv, 1140 &rzg3s_cpg_pll_ops); 1141 break; 1142 case CLK_TYPE_SIPLL5: 1143 clk = rzg2l_cpg_sipll5_register(core, priv->clks, priv); 1144 break; 1145 case CLK_TYPE_DIV: 1146 clk = rzg2l_cpg_div_clk_register(core, priv->clks, 1147 priv->base, priv); 1148 break; 1149 case CLK_TYPE_G3S_DIV: 1150 clk = rzg3s_cpg_div_clk_register(core, priv->clks, priv->base, priv); 1151 break; 1152 case CLK_TYPE_MUX: 1153 clk = rzg2l_cpg_mux_clk_register(core, priv->base, priv); 1154 break; 1155 case CLK_TYPE_SD_MUX: 1156 clk = rzg2l_cpg_sd_mux_clk_register(core, priv->base, priv); 1157 break; 1158 case CLK_TYPE_PLL5_4_MUX: 1159 clk = rzg2l_cpg_pll5_4_mux_clk_register(core, priv); 1160 break; 1161 case CLK_TYPE_DSI_DIV: 1162 clk = rzg2l_cpg_dsi_div_clk_register(core, priv->clks, priv); 1163 break; 1164 default: 1165 goto fail; 1166 } 1167 1168 if (IS_ERR_OR_NULL(clk)) 1169 goto fail; 1170 1171 dev_dbg(dev, "Core clock %pC at %lu Hz\n", clk, clk_get_rate(clk)); 1172 priv->clks[id] = clk; 1173 return; 1174 1175 fail: 1176 dev_err(dev, "Failed to register %s clock %s: %ld\n", "core", 1177 core->name, PTR_ERR(clk)); 1178 } 1179 1180 /** 1181 * struct mstp_clock - MSTP gating clock 1182 * 1183 * @hw: handle between common and hardware-specific interfaces 1184 * @off: register offset 1185 * @bit: ON/MON bit 1186 * @enabled: soft state of the clock, if it is coupled with another clock 1187 * @priv: CPG/MSTP private data 1188 * @sibling: pointer to the other coupled clock 1189 */ 1190 struct mstp_clock { 1191 struct clk_hw hw; 1192 u16 off; 1193 u8 bit; 1194 bool enabled; 1195 struct rzg2l_cpg_priv *priv; 1196 struct mstp_clock *sibling; 1197 }; 1198 1199 #define to_mod_clock(_hw) container_of(_hw, struct mstp_clock, hw) 1200 1201 static int rzg2l_mod_clock_endisable(struct clk_hw *hw, bool enable) 1202 { 1203 struct mstp_clock *clock = to_mod_clock(hw); 1204 struct rzg2l_cpg_priv *priv = clock->priv; 1205 unsigned int reg = clock->off; 1206 struct device *dev = priv->dev; 1207 u32 bitmask = BIT(clock->bit); 1208 u32 value; 1209 int error; 1210 1211 if (!clock->off) { 1212 dev_dbg(dev, "%pC does not support ON/OFF\n", hw->clk); 1213 return 0; 1214 } 1215 1216 dev_dbg(dev, "CLK_ON 0x%x/%pC %s\n", CLK_ON_R(reg), hw->clk, 1217 enable ? "ON" : "OFF"); 1218 1219 value = bitmask << 16; 1220 if (enable) 1221 value |= bitmask; 1222 1223 writel(value, priv->base + CLK_ON_R(reg)); 1224 1225 if (!enable) 1226 return 0; 1227 1228 if (!priv->info->has_clk_mon_regs) 1229 return 0; 1230 1231 error = readl_poll_timeout_atomic(priv->base + CLK_MON_R(reg), value, 1232 value & bitmask, 0, 10); 1233 if (error) 1234 dev_err(dev, "Failed to enable CLK_ON %p\n", 1235 priv->base + CLK_ON_R(reg)); 1236 1237 return error; 1238 } 1239 1240 static int rzg2l_mod_clock_enable(struct clk_hw *hw) 1241 { 1242 struct mstp_clock *clock = to_mod_clock(hw); 1243 1244 if (clock->sibling) { 1245 struct rzg2l_cpg_priv *priv = clock->priv; 1246 unsigned long flags; 1247 bool enabled; 1248 1249 spin_lock_irqsave(&priv->rmw_lock, flags); 1250 enabled = clock->sibling->enabled; 1251 clock->enabled = true; 1252 spin_unlock_irqrestore(&priv->rmw_lock, flags); 1253 if (enabled) 1254 return 0; 1255 } 1256 1257 return rzg2l_mod_clock_endisable(hw, true); 1258 } 1259 1260 static void rzg2l_mod_clock_disable(struct clk_hw *hw) 1261 { 1262 struct mstp_clock *clock = to_mod_clock(hw); 1263 1264 if (clock->sibling) { 1265 struct rzg2l_cpg_priv *priv = clock->priv; 1266 unsigned long flags; 1267 bool enabled; 1268 1269 spin_lock_irqsave(&priv->rmw_lock, flags); 1270 enabled = clock->sibling->enabled; 1271 clock->enabled = false; 1272 spin_unlock_irqrestore(&priv->rmw_lock, flags); 1273 if (enabled) 1274 return; 1275 } 1276 1277 rzg2l_mod_clock_endisable(hw, false); 1278 } 1279 1280 static int rzg2l_mod_clock_is_enabled(struct clk_hw *hw) 1281 { 1282 struct mstp_clock *clock = to_mod_clock(hw); 1283 struct rzg2l_cpg_priv *priv = clock->priv; 1284 u32 bitmask = BIT(clock->bit); 1285 u32 value; 1286 1287 if (!clock->off) { 1288 dev_dbg(priv->dev, "%pC does not support ON/OFF\n", hw->clk); 1289 return 1; 1290 } 1291 1292 if (clock->sibling) 1293 return clock->enabled; 1294 1295 if (priv->info->has_clk_mon_regs) 1296 value = readl(priv->base + CLK_MON_R(clock->off)); 1297 else 1298 value = readl(priv->base + clock->off); 1299 1300 return value & bitmask; 1301 } 1302 1303 static const struct clk_ops rzg2l_mod_clock_ops = { 1304 .enable = rzg2l_mod_clock_enable, 1305 .disable = rzg2l_mod_clock_disable, 1306 .is_enabled = rzg2l_mod_clock_is_enabled, 1307 }; 1308 1309 static struct mstp_clock 1310 *rzg2l_mod_clock_get_sibling(struct mstp_clock *clock, 1311 struct rzg2l_cpg_priv *priv) 1312 { 1313 struct clk_hw *hw; 1314 unsigned int i; 1315 1316 for (i = 0; i < priv->num_mod_clks; i++) { 1317 struct mstp_clock *clk; 1318 1319 if (priv->clks[priv->num_core_clks + i] == ERR_PTR(-ENOENT)) 1320 continue; 1321 1322 hw = __clk_get_hw(priv->clks[priv->num_core_clks + i]); 1323 clk = to_mod_clock(hw); 1324 if (clock->off == clk->off && clock->bit == clk->bit) 1325 return clk; 1326 } 1327 1328 return NULL; 1329 } 1330 1331 static void __init 1332 rzg2l_cpg_register_mod_clk(const struct rzg2l_mod_clk *mod, 1333 const struct rzg2l_cpg_info *info, 1334 struct rzg2l_cpg_priv *priv) 1335 { 1336 struct mstp_clock *clock = NULL; 1337 struct device *dev = priv->dev; 1338 unsigned int id = mod->id; 1339 struct clk_init_data init; 1340 struct clk *parent, *clk; 1341 const char *parent_name; 1342 unsigned int i; 1343 1344 WARN_DEBUG(id < priv->num_core_clks); 1345 WARN_DEBUG(id >= priv->num_core_clks + priv->num_mod_clks); 1346 WARN_DEBUG(mod->parent >= priv->num_core_clks + priv->num_mod_clks); 1347 WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT); 1348 1349 if (!mod->name) { 1350 /* Skip NULLified clock */ 1351 return; 1352 } 1353 1354 parent = priv->clks[mod->parent]; 1355 if (IS_ERR(parent)) { 1356 clk = parent; 1357 goto fail; 1358 } 1359 1360 clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL); 1361 if (!clock) { 1362 clk = ERR_PTR(-ENOMEM); 1363 goto fail; 1364 } 1365 1366 init.name = mod->name; 1367 init.ops = &rzg2l_mod_clock_ops; 1368 init.flags = CLK_SET_RATE_PARENT; 1369 for (i = 0; i < info->num_crit_mod_clks; i++) 1370 if (id == info->crit_mod_clks[i]) { 1371 dev_dbg(dev, "CPG %s setting CLK_IS_CRITICAL\n", 1372 mod->name); 1373 init.flags |= CLK_IS_CRITICAL; 1374 break; 1375 } 1376 1377 parent_name = __clk_get_name(parent); 1378 init.parent_names = &parent_name; 1379 init.num_parents = 1; 1380 1381 clock->off = mod->off; 1382 clock->bit = mod->bit; 1383 clock->priv = priv; 1384 clock->hw.init = &init; 1385 1386 clk = clk_register(NULL, &clock->hw); 1387 if (IS_ERR(clk)) 1388 goto fail; 1389 1390 dev_dbg(dev, "Module clock %pC at %lu Hz\n", clk, clk_get_rate(clk)); 1391 priv->clks[id] = clk; 1392 1393 if (mod->is_coupled) { 1394 struct mstp_clock *sibling; 1395 1396 clock->enabled = rzg2l_mod_clock_is_enabled(&clock->hw); 1397 sibling = rzg2l_mod_clock_get_sibling(clock, priv); 1398 if (sibling) { 1399 clock->sibling = sibling; 1400 sibling->sibling = clock; 1401 } 1402 } 1403 1404 return; 1405 1406 fail: 1407 dev_err(dev, "Failed to register %s clock %s: %ld\n", "module", 1408 mod->name, PTR_ERR(clk)); 1409 } 1410 1411 #define rcdev_to_priv(x) container_of(x, struct rzg2l_cpg_priv, rcdev) 1412 1413 static int rzg2l_cpg_assert(struct reset_controller_dev *rcdev, 1414 unsigned long id) 1415 { 1416 struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); 1417 const struct rzg2l_cpg_info *info = priv->info; 1418 unsigned int reg = info->resets[id].off; 1419 u32 mask = BIT(info->resets[id].bit); 1420 s8 monbit = info->resets[id].monbit; 1421 u32 value = mask << 16; 1422 1423 dev_dbg(rcdev->dev, "assert id:%ld offset:0x%x\n", id, CLK_RST_R(reg)); 1424 1425 writel(value, priv->base + CLK_RST_R(reg)); 1426 1427 if (info->has_clk_mon_regs) { 1428 reg = CLK_MRST_R(reg); 1429 } else if (monbit >= 0) { 1430 reg = CPG_RST_MON; 1431 mask = BIT(monbit); 1432 } else { 1433 /* Wait for at least one cycle of the RCLK clock (@ ca. 32 kHz) */ 1434 udelay(35); 1435 return 0; 1436 } 1437 1438 return readl_poll_timeout_atomic(priv->base + reg, value, 1439 value & mask, 10, 200); 1440 } 1441 1442 static int rzg2l_cpg_deassert(struct reset_controller_dev *rcdev, 1443 unsigned long id) 1444 { 1445 struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); 1446 const struct rzg2l_cpg_info *info = priv->info; 1447 unsigned int reg = info->resets[id].off; 1448 u32 mask = BIT(info->resets[id].bit); 1449 s8 monbit = info->resets[id].monbit; 1450 u32 value = (mask << 16) | mask; 1451 1452 dev_dbg(rcdev->dev, "deassert id:%ld offset:0x%x\n", id, 1453 CLK_RST_R(reg)); 1454 1455 writel(value, priv->base + CLK_RST_R(reg)); 1456 1457 if (info->has_clk_mon_regs) { 1458 reg = CLK_MRST_R(reg); 1459 } else if (monbit >= 0) { 1460 reg = CPG_RST_MON; 1461 mask = BIT(monbit); 1462 } else { 1463 /* Wait for at least one cycle of the RCLK clock (@ ca. 32 kHz) */ 1464 udelay(35); 1465 return 0; 1466 } 1467 1468 return readl_poll_timeout_atomic(priv->base + reg, value, 1469 !(value & mask), 10, 200); 1470 } 1471 1472 static int rzg2l_cpg_reset(struct reset_controller_dev *rcdev, 1473 unsigned long id) 1474 { 1475 int ret; 1476 1477 ret = rzg2l_cpg_assert(rcdev, id); 1478 if (ret) 1479 return ret; 1480 1481 return rzg2l_cpg_deassert(rcdev, id); 1482 } 1483 1484 static int rzg2l_cpg_status(struct reset_controller_dev *rcdev, 1485 unsigned long id) 1486 { 1487 struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); 1488 const struct rzg2l_cpg_info *info = priv->info; 1489 s8 monbit = info->resets[id].monbit; 1490 unsigned int reg; 1491 u32 bitmask; 1492 1493 if (info->has_clk_mon_regs) { 1494 reg = CLK_MRST_R(info->resets[id].off); 1495 bitmask = BIT(info->resets[id].bit); 1496 } else if (monbit >= 0) { 1497 reg = CPG_RST_MON; 1498 bitmask = BIT(monbit); 1499 } else { 1500 return -ENOTSUPP; 1501 } 1502 1503 return !!(readl(priv->base + reg) & bitmask); 1504 } 1505 1506 static const struct reset_control_ops rzg2l_cpg_reset_ops = { 1507 .reset = rzg2l_cpg_reset, 1508 .assert = rzg2l_cpg_assert, 1509 .deassert = rzg2l_cpg_deassert, 1510 .status = rzg2l_cpg_status, 1511 }; 1512 1513 static int rzg2l_cpg_reset_xlate(struct reset_controller_dev *rcdev, 1514 const struct of_phandle_args *reset_spec) 1515 { 1516 struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); 1517 const struct rzg2l_cpg_info *info = priv->info; 1518 unsigned int id = reset_spec->args[0]; 1519 1520 if (id >= rcdev->nr_resets || !info->resets[id].off) { 1521 dev_err(rcdev->dev, "Invalid reset index %u\n", id); 1522 return -EINVAL; 1523 } 1524 1525 return id; 1526 } 1527 1528 static int rzg2l_cpg_reset_controller_register(struct rzg2l_cpg_priv *priv) 1529 { 1530 priv->rcdev.ops = &rzg2l_cpg_reset_ops; 1531 priv->rcdev.of_node = priv->dev->of_node; 1532 priv->rcdev.dev = priv->dev; 1533 priv->rcdev.of_reset_n_cells = 1; 1534 priv->rcdev.of_xlate = rzg2l_cpg_reset_xlate; 1535 priv->rcdev.nr_resets = priv->num_resets; 1536 1537 return devm_reset_controller_register(priv->dev, &priv->rcdev); 1538 } 1539 1540 static bool rzg2l_cpg_is_pm_clk(struct rzg2l_cpg_priv *priv, 1541 const struct of_phandle_args *clkspec) 1542 { 1543 const struct rzg2l_cpg_info *info = priv->info; 1544 unsigned int id; 1545 unsigned int i; 1546 1547 if (clkspec->args_count != 2) 1548 return false; 1549 1550 if (clkspec->args[0] != CPG_MOD) 1551 return false; 1552 1553 id = clkspec->args[1] + info->num_total_core_clks; 1554 for (i = 0; i < info->num_no_pm_mod_clks; i++) { 1555 if (info->no_pm_mod_clks[i] == id) 1556 return false; 1557 } 1558 1559 return true; 1560 } 1561 1562 static int rzg2l_cpg_attach_dev(struct generic_pm_domain *domain, struct device *dev) 1563 { 1564 struct rzg2l_cpg_priv *priv = container_of(domain, struct rzg2l_cpg_priv, genpd); 1565 struct device_node *np = dev->of_node; 1566 struct of_phandle_args clkspec; 1567 bool once = true; 1568 struct clk *clk; 1569 int error; 1570 int i = 0; 1571 1572 while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i, 1573 &clkspec)) { 1574 if (rzg2l_cpg_is_pm_clk(priv, &clkspec)) { 1575 if (once) { 1576 once = false; 1577 error = pm_clk_create(dev); 1578 if (error) { 1579 of_node_put(clkspec.np); 1580 goto err; 1581 } 1582 } 1583 clk = of_clk_get_from_provider(&clkspec); 1584 of_node_put(clkspec.np); 1585 if (IS_ERR(clk)) { 1586 error = PTR_ERR(clk); 1587 goto fail_destroy; 1588 } 1589 1590 error = pm_clk_add_clk(dev, clk); 1591 if (error) { 1592 dev_err(dev, "pm_clk_add_clk failed %d\n", 1593 error); 1594 goto fail_put; 1595 } 1596 } else { 1597 of_node_put(clkspec.np); 1598 } 1599 i++; 1600 } 1601 1602 return 0; 1603 1604 fail_put: 1605 clk_put(clk); 1606 1607 fail_destroy: 1608 pm_clk_destroy(dev); 1609 err: 1610 return error; 1611 } 1612 1613 static void rzg2l_cpg_detach_dev(struct generic_pm_domain *unused, struct device *dev) 1614 { 1615 if (!pm_clk_no_clocks(dev)) 1616 pm_clk_destroy(dev); 1617 } 1618 1619 static void rzg2l_cpg_genpd_remove(void *data) 1620 { 1621 pm_genpd_remove(data); 1622 } 1623 1624 static int __init rzg2l_cpg_add_clk_domain(struct rzg2l_cpg_priv *priv) 1625 { 1626 struct device *dev = priv->dev; 1627 struct device_node *np = dev->of_node; 1628 struct generic_pm_domain *genpd = &priv->genpd; 1629 int ret; 1630 1631 genpd->name = np->name; 1632 genpd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON | 1633 GENPD_FLAG_ACTIVE_WAKEUP; 1634 genpd->attach_dev = rzg2l_cpg_attach_dev; 1635 genpd->detach_dev = rzg2l_cpg_detach_dev; 1636 ret = pm_genpd_init(genpd, &pm_domain_always_on_gov, false); 1637 if (ret) 1638 return ret; 1639 1640 ret = devm_add_action_or_reset(dev, rzg2l_cpg_genpd_remove, genpd); 1641 if (ret) 1642 return ret; 1643 1644 return of_genpd_add_provider_simple(np, genpd); 1645 } 1646 1647 static int __init rzg2l_cpg_probe(struct platform_device *pdev) 1648 { 1649 struct device *dev = &pdev->dev; 1650 struct device_node *np = dev->of_node; 1651 const struct rzg2l_cpg_info *info; 1652 struct rzg2l_cpg_priv *priv; 1653 unsigned int nclks, i; 1654 struct clk **clks; 1655 int error; 1656 1657 info = of_device_get_match_data(dev); 1658 1659 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 1660 if (!priv) 1661 return -ENOMEM; 1662 1663 priv->dev = dev; 1664 priv->info = info; 1665 spin_lock_init(&priv->rmw_lock); 1666 1667 priv->base = devm_platform_ioremap_resource(pdev, 0); 1668 if (IS_ERR(priv->base)) 1669 return PTR_ERR(priv->base); 1670 1671 nclks = info->num_total_core_clks + info->num_hw_mod_clks; 1672 clks = devm_kmalloc_array(dev, nclks, sizeof(*clks), GFP_KERNEL); 1673 if (!clks) 1674 return -ENOMEM; 1675 1676 dev_set_drvdata(dev, priv); 1677 priv->clks = clks; 1678 priv->num_core_clks = info->num_total_core_clks; 1679 priv->num_mod_clks = info->num_hw_mod_clks; 1680 priv->num_resets = info->num_resets; 1681 priv->last_dt_core_clk = info->last_dt_core_clk; 1682 1683 for (i = 0; i < nclks; i++) 1684 clks[i] = ERR_PTR(-ENOENT); 1685 1686 for (i = 0; i < info->num_core_clks; i++) 1687 rzg2l_cpg_register_core_clk(&info->core_clks[i], info, priv); 1688 1689 for (i = 0; i < info->num_mod_clks; i++) 1690 rzg2l_cpg_register_mod_clk(&info->mod_clks[i], info, priv); 1691 1692 error = of_clk_add_provider(np, rzg2l_cpg_clk_src_twocell_get, priv); 1693 if (error) 1694 return error; 1695 1696 error = devm_add_action_or_reset(dev, rzg2l_cpg_del_clk_provider, np); 1697 if (error) 1698 return error; 1699 1700 error = rzg2l_cpg_add_clk_domain(priv); 1701 if (error) 1702 return error; 1703 1704 error = rzg2l_cpg_reset_controller_register(priv); 1705 if (error) 1706 return error; 1707 1708 return 0; 1709 } 1710 1711 static const struct of_device_id rzg2l_cpg_match[] = { 1712 #ifdef CONFIG_CLK_R9A07G043 1713 { 1714 .compatible = "renesas,r9a07g043-cpg", 1715 .data = &r9a07g043_cpg_info, 1716 }, 1717 #endif 1718 #ifdef CONFIG_CLK_R9A07G044 1719 { 1720 .compatible = "renesas,r9a07g044-cpg", 1721 .data = &r9a07g044_cpg_info, 1722 }, 1723 #endif 1724 #ifdef CONFIG_CLK_R9A07G054 1725 { 1726 .compatible = "renesas,r9a07g054-cpg", 1727 .data = &r9a07g054_cpg_info, 1728 }, 1729 #endif 1730 #ifdef CONFIG_CLK_R9A08G045 1731 { 1732 .compatible = "renesas,r9a08g045-cpg", 1733 .data = &r9a08g045_cpg_info, 1734 }, 1735 #endif 1736 #ifdef CONFIG_CLK_R9A09G011 1737 { 1738 .compatible = "renesas,r9a09g011-cpg", 1739 .data = &r9a09g011_cpg_info, 1740 }, 1741 #endif 1742 { /* sentinel */ } 1743 }; 1744 1745 static struct platform_driver rzg2l_cpg_driver = { 1746 .driver = { 1747 .name = "rzg2l-cpg", 1748 .of_match_table = rzg2l_cpg_match, 1749 }, 1750 }; 1751 1752 static int __init rzg2l_cpg_init(void) 1753 { 1754 return platform_driver_probe(&rzg2l_cpg_driver, rzg2l_cpg_probe); 1755 } 1756 1757 subsys_initcall(rzg2l_cpg_init); 1758 1759 MODULE_DESCRIPTION("Renesas RZ/G2L CPG Driver"); 1760