xref: /linux/drivers/clk/renesas/rcar-gen3-cpg.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * R-Car Gen3 Clock Pulse Generator
4  *
5  * Copyright (C) 2015-2018 Glider bvba
6  * Copyright (C) 2019 Renesas Electronics Corp.
7  *
8  * Based on clk-rcar-gen3.c
9  *
10  * Copyright (C) 2015 Renesas Electronics Corp.
11  */
12 
13 #include <linux/bug.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/clk-provider.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/sys_soc.h>
24 
25 #include "renesas-cpg-mssr.h"
26 #include "rcar-gen3-cpg.h"
27 
28 #define CPG_PLL0CR		0x00d8
29 #define CPG_PLL2CR		0x002c
30 #define CPG_PLL4CR		0x01f4
31 
32 #define CPG_RCKCR_CKSEL	BIT(15)	/* RCLK Clock Source Select */
33 
34 static spinlock_t cpg_lock;
35 
36 static void cpg_reg_modify(void __iomem *reg, u32 clear, u32 set)
37 {
38 	unsigned long flags;
39 	u32 val;
40 
41 	spin_lock_irqsave(&cpg_lock, flags);
42 	val = readl(reg);
43 	val &= ~clear;
44 	val |= set;
45 	writel(val, reg);
46 	spin_unlock_irqrestore(&cpg_lock, flags);
47 };
48 
49 struct cpg_simple_notifier {
50 	struct notifier_block nb;
51 	void __iomem *reg;
52 	u32 saved;
53 };
54 
55 static int cpg_simple_notifier_call(struct notifier_block *nb,
56 				    unsigned long action, void *data)
57 {
58 	struct cpg_simple_notifier *csn =
59 		container_of(nb, struct cpg_simple_notifier, nb);
60 
61 	switch (action) {
62 	case PM_EVENT_SUSPEND:
63 		csn->saved = readl(csn->reg);
64 		return NOTIFY_OK;
65 
66 	case PM_EVENT_RESUME:
67 		writel(csn->saved, csn->reg);
68 		return NOTIFY_OK;
69 	}
70 	return NOTIFY_DONE;
71 }
72 
73 static void cpg_simple_notifier_register(struct raw_notifier_head *notifiers,
74 					 struct cpg_simple_notifier *csn)
75 {
76 	csn->nb.notifier_call = cpg_simple_notifier_call;
77 	raw_notifier_chain_register(notifiers, &csn->nb);
78 }
79 
80 /*
81  * Z Clock & Z2 Clock
82  *
83  * Traits of this clock:
84  * prepare - clk_prepare only ensures that parents are prepared
85  * enable - clk_enable only ensures that parents are enabled
86  * rate - rate is adjustable.  clk->rate = (parent->rate * mult / 32 ) / 2
87  * parent - fixed parent.  No clk_set_parent support
88  */
89 #define CPG_FRQCRB			0x00000004
90 #define CPG_FRQCRB_KICK			BIT(31)
91 #define CPG_FRQCRC			0x000000e0
92 
93 struct cpg_z_clk {
94 	struct clk_hw hw;
95 	void __iomem *reg;
96 	void __iomem *kick_reg;
97 	unsigned long mask;
98 	unsigned int fixed_div;
99 };
100 
101 #define to_z_clk(_hw)	container_of(_hw, struct cpg_z_clk, hw)
102 
103 static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
104 					   unsigned long parent_rate)
105 {
106 	struct cpg_z_clk *zclk = to_z_clk(hw);
107 	unsigned int mult;
108 	u32 val;
109 
110 	val = readl(zclk->reg) & zclk->mask;
111 	mult = 32 - (val >> __ffs(zclk->mask));
112 
113 	return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult,
114 				     32 * zclk->fixed_div);
115 }
116 
117 static int cpg_z_clk_determine_rate(struct clk_hw *hw,
118 				    struct clk_rate_request *req)
119 {
120 	struct cpg_z_clk *zclk = to_z_clk(hw);
121 	unsigned int min_mult, max_mult, mult;
122 	unsigned long prate;
123 
124 	prate = req->best_parent_rate / zclk->fixed_div;
125 	min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL);
126 	max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL);
127 	if (max_mult < min_mult)
128 		return -EINVAL;
129 
130 	mult = div64_ul(req->rate * 32ULL, prate);
131 	mult = clamp(mult, min_mult, max_mult);
132 
133 	req->rate = div_u64((u64)prate * mult, 32);
134 	return 0;
135 }
136 
137 static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
138 			      unsigned long parent_rate)
139 {
140 	struct cpg_z_clk *zclk = to_z_clk(hw);
141 	unsigned int mult;
142 	unsigned int i;
143 
144 	mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div,
145 				       parent_rate);
146 	mult = clamp(mult, 1U, 32U);
147 
148 	if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
149 		return -EBUSY;
150 
151 	cpg_reg_modify(zclk->reg, zclk->mask,
152 		       ((32 - mult) << __ffs(zclk->mask)) & zclk->mask);
153 
154 	/*
155 	 * Set KICK bit in FRQCRB to update hardware setting and wait for
156 	 * clock change completion.
157 	 */
158 	cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK);
159 
160 	/*
161 	 * Note: There is no HW information about the worst case latency.
162 	 *
163 	 * Using experimental measurements, it seems that no more than
164 	 * ~10 iterations are needed, independently of the CPU rate.
165 	 * Since this value might be dependent of external xtal rate, pll1
166 	 * rate or even the other emulation clocks rate, use 1000 as a
167 	 * "super" safe value.
168 	 */
169 	for (i = 1000; i; i--) {
170 		if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
171 			return 0;
172 
173 		cpu_relax();
174 	}
175 
176 	return -ETIMEDOUT;
177 }
178 
179 static const struct clk_ops cpg_z_clk_ops = {
180 	.recalc_rate = cpg_z_clk_recalc_rate,
181 	.determine_rate = cpg_z_clk_determine_rate,
182 	.set_rate = cpg_z_clk_set_rate,
183 };
184 
185 static struct clk * __init cpg_z_clk_register(const char *name,
186 					      const char *parent_name,
187 					      void __iomem *reg,
188 					      unsigned int div,
189 					      unsigned int offset)
190 {
191 	struct clk_init_data init;
192 	struct cpg_z_clk *zclk;
193 	struct clk *clk;
194 
195 	zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
196 	if (!zclk)
197 		return ERR_PTR(-ENOMEM);
198 
199 	init.name = name;
200 	init.ops = &cpg_z_clk_ops;
201 	init.flags = 0;
202 	init.parent_names = &parent_name;
203 	init.num_parents = 1;
204 
205 	zclk->reg = reg + CPG_FRQCRC;
206 	zclk->kick_reg = reg + CPG_FRQCRB;
207 	zclk->hw.init = &init;
208 	zclk->mask = GENMASK(offset + 4, offset);
209 	zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */
210 
211 	clk = clk_register(NULL, &zclk->hw);
212 	if (IS_ERR(clk))
213 		kfree(zclk);
214 
215 	return clk;
216 }
217 
218 /*
219  * SDn Clock
220  */
221 #define CPG_SD_STP_HCK		BIT(9)
222 #define CPG_SD_STP_CK		BIT(8)
223 
224 #define CPG_SD_STP_MASK		(CPG_SD_STP_HCK | CPG_SD_STP_CK)
225 #define CPG_SD_FC_MASK		(0x7 << 2 | 0x3 << 0)
226 
227 #define CPG_SD_DIV_TABLE_DATA(stp_hck, stp_ck, sd_srcfc, sd_fc, sd_div) \
228 { \
229 	.val = ((stp_hck) ? CPG_SD_STP_HCK : 0) | \
230 	       ((stp_ck) ? CPG_SD_STP_CK : 0) | \
231 	       ((sd_srcfc) << 2) | \
232 	       ((sd_fc) << 0), \
233 	.div = (sd_div), \
234 }
235 
236 struct sd_div_table {
237 	u32 val;
238 	unsigned int div;
239 };
240 
241 struct sd_clock {
242 	struct clk_hw hw;
243 	const struct sd_div_table *div_table;
244 	struct cpg_simple_notifier csn;
245 	unsigned int div_num;
246 	unsigned int cur_div_idx;
247 };
248 
249 /* SDn divider
250  *                     sd_srcfc   sd_fc   div
251  * stp_hck   stp_ck    (div)      (div)     = sd_srcfc x sd_fc
252  *-------------------------------------------------------------------
253  *  0         0         0 (1)      1 (4)      4 : SDR104 / HS200 / HS400 (8 TAP)
254  *  0         0         1 (2)      1 (4)      8 : SDR50
255  *  1         0         2 (4)      1 (4)     16 : HS / SDR25
256  *  1         0         3 (8)      1 (4)     32 : NS / SDR12
257  *  1         0         4 (16)     1 (4)     64
258  *  0         0         0 (1)      0 (2)      2
259  *  0         0         1 (2)      0 (2)      4 : SDR104 / HS200 / HS400 (4 TAP)
260  *  1         0         2 (4)      0 (2)      8
261  *  1         0         3 (8)      0 (2)     16
262  *  1         0         4 (16)     0 (2)     32
263  *
264  *  NOTE: There is a quirk option to ignore the first row of the dividers
265  *  table when searching for suitable settings. This is because HS400 on
266  *  early ES versions of H3 and M3-W requires a specific setting to work.
267  */
268 static const struct sd_div_table cpg_sd_div_table[] = {
269 /*	CPG_SD_DIV_TABLE_DATA(stp_hck,  stp_ck,   sd_srcfc,   sd_fc,  sd_div) */
270 	CPG_SD_DIV_TABLE_DATA(0,        0,        0,          1,        4),
271 	CPG_SD_DIV_TABLE_DATA(0,        0,        1,          1,        8),
272 	CPG_SD_DIV_TABLE_DATA(1,        0,        2,          1,       16),
273 	CPG_SD_DIV_TABLE_DATA(1,        0,        3,          1,       32),
274 	CPG_SD_DIV_TABLE_DATA(1,        0,        4,          1,       64),
275 	CPG_SD_DIV_TABLE_DATA(0,        0,        0,          0,        2),
276 	CPG_SD_DIV_TABLE_DATA(0,        0,        1,          0,        4),
277 	CPG_SD_DIV_TABLE_DATA(1,        0,        2,          0,        8),
278 	CPG_SD_DIV_TABLE_DATA(1,        0,        3,          0,       16),
279 	CPG_SD_DIV_TABLE_DATA(1,        0,        4,          0,       32),
280 };
281 
282 #define to_sd_clock(_hw) container_of(_hw, struct sd_clock, hw)
283 
284 static int cpg_sd_clock_enable(struct clk_hw *hw)
285 {
286 	struct sd_clock *clock = to_sd_clock(hw);
287 
288 	cpg_reg_modify(clock->csn.reg, CPG_SD_STP_MASK,
289 		       clock->div_table[clock->cur_div_idx].val &
290 		       CPG_SD_STP_MASK);
291 
292 	return 0;
293 }
294 
295 static void cpg_sd_clock_disable(struct clk_hw *hw)
296 {
297 	struct sd_clock *clock = to_sd_clock(hw);
298 
299 	cpg_reg_modify(clock->csn.reg, 0, CPG_SD_STP_MASK);
300 }
301 
302 static int cpg_sd_clock_is_enabled(struct clk_hw *hw)
303 {
304 	struct sd_clock *clock = to_sd_clock(hw);
305 
306 	return !(readl(clock->csn.reg) & CPG_SD_STP_MASK);
307 }
308 
309 static unsigned long cpg_sd_clock_recalc_rate(struct clk_hw *hw,
310 						unsigned long parent_rate)
311 {
312 	struct sd_clock *clock = to_sd_clock(hw);
313 
314 	return DIV_ROUND_CLOSEST(parent_rate,
315 				 clock->div_table[clock->cur_div_idx].div);
316 }
317 
318 static int cpg_sd_clock_determine_rate(struct clk_hw *hw,
319 				       struct clk_rate_request *req)
320 {
321 	unsigned long best_rate = ULONG_MAX, diff_min = ULONG_MAX;
322 	struct sd_clock *clock = to_sd_clock(hw);
323 	unsigned long calc_rate, diff;
324 	unsigned int i;
325 
326 	for (i = 0; i < clock->div_num; i++) {
327 		calc_rate = DIV_ROUND_CLOSEST(req->best_parent_rate,
328 					      clock->div_table[i].div);
329 		if (calc_rate < req->min_rate || calc_rate > req->max_rate)
330 			continue;
331 
332 		diff = calc_rate > req->rate ? calc_rate - req->rate
333 					     : req->rate - calc_rate;
334 		if (diff < diff_min) {
335 			best_rate = calc_rate;
336 			diff_min = diff;
337 		}
338 	}
339 
340 	if (best_rate == ULONG_MAX)
341 		return -EINVAL;
342 
343 	req->rate = best_rate;
344 	return 0;
345 }
346 
347 static int cpg_sd_clock_set_rate(struct clk_hw *hw, unsigned long rate,
348 				 unsigned long parent_rate)
349 {
350 	struct sd_clock *clock = to_sd_clock(hw);
351 	unsigned int i;
352 
353 	for (i = 0; i < clock->div_num; i++)
354 		if (rate == DIV_ROUND_CLOSEST(parent_rate,
355 					      clock->div_table[i].div))
356 			break;
357 
358 	if (i >= clock->div_num)
359 		return -EINVAL;
360 
361 	clock->cur_div_idx = i;
362 
363 	cpg_reg_modify(clock->csn.reg, CPG_SD_STP_MASK | CPG_SD_FC_MASK,
364 		       clock->div_table[i].val &
365 		       (CPG_SD_STP_MASK | CPG_SD_FC_MASK));
366 
367 	return 0;
368 }
369 
370 static const struct clk_ops cpg_sd_clock_ops = {
371 	.enable = cpg_sd_clock_enable,
372 	.disable = cpg_sd_clock_disable,
373 	.is_enabled = cpg_sd_clock_is_enabled,
374 	.recalc_rate = cpg_sd_clock_recalc_rate,
375 	.determine_rate = cpg_sd_clock_determine_rate,
376 	.set_rate = cpg_sd_clock_set_rate,
377 };
378 
379 static u32 cpg_quirks __initdata;
380 
381 #define PLL_ERRATA	BIT(0)		/* Missing PLL0/2/4 post-divider */
382 #define RCKCR_CKSEL	BIT(1)		/* Manual RCLK parent selection */
383 #define SD_SKIP_FIRST	BIT(2)		/* Skip first clock in SD table */
384 
385 static struct clk * __init cpg_sd_clk_register(const char *name,
386 	void __iomem *base, unsigned int offset, const char *parent_name,
387 	struct raw_notifier_head *notifiers)
388 {
389 	struct clk_init_data init;
390 	struct sd_clock *clock;
391 	struct clk *clk;
392 	u32 val;
393 
394 	clock = kzalloc(sizeof(*clock), GFP_KERNEL);
395 	if (!clock)
396 		return ERR_PTR(-ENOMEM);
397 
398 	init.name = name;
399 	init.ops = &cpg_sd_clock_ops;
400 	init.flags = CLK_SET_RATE_PARENT;
401 	init.parent_names = &parent_name;
402 	init.num_parents = 1;
403 
404 	clock->csn.reg = base + offset;
405 	clock->hw.init = &init;
406 	clock->div_table = cpg_sd_div_table;
407 	clock->div_num = ARRAY_SIZE(cpg_sd_div_table);
408 
409 	if (cpg_quirks & SD_SKIP_FIRST) {
410 		clock->div_table++;
411 		clock->div_num--;
412 	}
413 
414 	val = readl(clock->csn.reg) & ~CPG_SD_FC_MASK;
415 	val |= CPG_SD_STP_MASK | (clock->div_table[0].val & CPG_SD_FC_MASK);
416 	writel(val, clock->csn.reg);
417 
418 	clk = clk_register(NULL, &clock->hw);
419 	if (IS_ERR(clk))
420 		goto free_clock;
421 
422 	cpg_simple_notifier_register(notifiers, &clock->csn);
423 	return clk;
424 
425 free_clock:
426 	kfree(clock);
427 	return clk;
428 }
429 
430 struct rpc_clock {
431 	struct clk_divider div;
432 	struct clk_gate gate;
433 	/*
434 	 * One notifier covers both RPC and RPCD2 clocks as they are both
435 	 * controlled by the same RPCCKCR register...
436 	 */
437 	struct cpg_simple_notifier csn;
438 };
439 
440 static const struct clk_div_table cpg_rpcsrc_div_table[] = {
441 	{ 2, 5 }, { 3, 6 }, { 0, 0 },
442 };
443 
444 static const struct clk_div_table cpg_rpc_div_table[] = {
445 	{ 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 }, { 0, 0 },
446 };
447 
448 static struct clk * __init cpg_rpc_clk_register(const char *name,
449 	void __iomem *base, const char *parent_name,
450 	struct raw_notifier_head *notifiers)
451 {
452 	struct rpc_clock *rpc;
453 	struct clk *clk;
454 
455 	rpc = kzalloc(sizeof(*rpc), GFP_KERNEL);
456 	if (!rpc)
457 		return ERR_PTR(-ENOMEM);
458 
459 	rpc->div.reg = base + CPG_RPCCKCR;
460 	rpc->div.width = 3;
461 	rpc->div.table = cpg_rpc_div_table;
462 	rpc->div.lock = &cpg_lock;
463 
464 	rpc->gate.reg = base + CPG_RPCCKCR;
465 	rpc->gate.bit_idx = 8;
466 	rpc->gate.flags = CLK_GATE_SET_TO_DISABLE;
467 	rpc->gate.lock = &cpg_lock;
468 
469 	rpc->csn.reg = base + CPG_RPCCKCR;
470 
471 	clk = clk_register_composite(NULL, name, &parent_name, 1, NULL, NULL,
472 				     &rpc->div.hw,  &clk_divider_ops,
473 				     &rpc->gate.hw, &clk_gate_ops, 0);
474 	if (IS_ERR(clk)) {
475 		kfree(rpc);
476 		return clk;
477 	}
478 
479 	cpg_simple_notifier_register(notifiers, &rpc->csn);
480 	return clk;
481 }
482 
483 struct rpcd2_clock {
484 	struct clk_fixed_factor fixed;
485 	struct clk_gate gate;
486 };
487 
488 static struct clk * __init cpg_rpcd2_clk_register(const char *name,
489 						  void __iomem *base,
490 						  const char *parent_name)
491 {
492 	struct rpcd2_clock *rpcd2;
493 	struct clk *clk;
494 
495 	rpcd2 = kzalloc(sizeof(*rpcd2), GFP_KERNEL);
496 	if (!rpcd2)
497 		return ERR_PTR(-ENOMEM);
498 
499 	rpcd2->fixed.mult = 1;
500 	rpcd2->fixed.div = 2;
501 
502 	rpcd2->gate.reg = base + CPG_RPCCKCR;
503 	rpcd2->gate.bit_idx = 9;
504 	rpcd2->gate.flags = CLK_GATE_SET_TO_DISABLE;
505 	rpcd2->gate.lock = &cpg_lock;
506 
507 	clk = clk_register_composite(NULL, name, &parent_name, 1, NULL, NULL,
508 				     &rpcd2->fixed.hw, &clk_fixed_factor_ops,
509 				     &rpcd2->gate.hw, &clk_gate_ops, 0);
510 	if (IS_ERR(clk))
511 		kfree(rpcd2);
512 
513 	return clk;
514 }
515 
516 
517 static const struct rcar_gen3_cpg_pll_config *cpg_pll_config __initdata;
518 static unsigned int cpg_clk_extalr __initdata;
519 static u32 cpg_mode __initdata;
520 
521 static const struct soc_device_attribute cpg_quirks_match[] __initconst = {
522 	{
523 		.soc_id = "r8a7795", .revision = "ES1.0",
524 		.data = (void *)(PLL_ERRATA | RCKCR_CKSEL | SD_SKIP_FIRST),
525 	},
526 	{
527 		.soc_id = "r8a7795", .revision = "ES1.*",
528 		.data = (void *)(RCKCR_CKSEL | SD_SKIP_FIRST),
529 	},
530 	{
531 		.soc_id = "r8a7795", .revision = "ES2.0",
532 		.data = (void *)SD_SKIP_FIRST,
533 	},
534 	{
535 		.soc_id = "r8a7796", .revision = "ES1.0",
536 		.data = (void *)(RCKCR_CKSEL | SD_SKIP_FIRST),
537 	},
538 	{
539 		.soc_id = "r8a7796", .revision = "ES1.1",
540 		.data = (void *)SD_SKIP_FIRST,
541 	},
542 	{ /* sentinel */ }
543 };
544 
545 struct clk * __init rcar_gen3_cpg_clk_register(struct device *dev,
546 	const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
547 	struct clk **clks, void __iomem *base,
548 	struct raw_notifier_head *notifiers)
549 {
550 	const struct clk *parent;
551 	unsigned int mult = 1;
552 	unsigned int div = 1;
553 	u32 value;
554 
555 	parent = clks[core->parent & 0xffff];	/* some types use high bits */
556 	if (IS_ERR(parent))
557 		return ERR_CAST(parent);
558 
559 	switch (core->type) {
560 	case CLK_TYPE_GEN3_MAIN:
561 		div = cpg_pll_config->extal_div;
562 		break;
563 
564 	case CLK_TYPE_GEN3_PLL0:
565 		/*
566 		 * PLL0 is a configurable multiplier clock. Register it as a
567 		 * fixed factor clock for now as there's no generic multiplier
568 		 * clock implementation and we currently have no need to change
569 		 * the multiplier value.
570 		 */
571 		value = readl(base + CPG_PLL0CR);
572 		mult = (((value >> 24) & 0x7f) + 1) * 2;
573 		if (cpg_quirks & PLL_ERRATA)
574 			mult *= 2;
575 		break;
576 
577 	case CLK_TYPE_GEN3_PLL1:
578 		mult = cpg_pll_config->pll1_mult;
579 		div = cpg_pll_config->pll1_div;
580 		break;
581 
582 	case CLK_TYPE_GEN3_PLL2:
583 		/*
584 		 * PLL2 is a configurable multiplier clock. Register it as a
585 		 * fixed factor clock for now as there's no generic multiplier
586 		 * clock implementation and we currently have no need to change
587 		 * the multiplier value.
588 		 */
589 		value = readl(base + CPG_PLL2CR);
590 		mult = (((value >> 24) & 0x7f) + 1) * 2;
591 		if (cpg_quirks & PLL_ERRATA)
592 			mult *= 2;
593 		break;
594 
595 	case CLK_TYPE_GEN3_PLL3:
596 		mult = cpg_pll_config->pll3_mult;
597 		div = cpg_pll_config->pll3_div;
598 		break;
599 
600 	case CLK_TYPE_GEN3_PLL4:
601 		/*
602 		 * PLL4 is a configurable multiplier clock. Register it as a
603 		 * fixed factor clock for now as there's no generic multiplier
604 		 * clock implementation and we currently have no need to change
605 		 * the multiplier value.
606 		 */
607 		value = readl(base + CPG_PLL4CR);
608 		mult = (((value >> 24) & 0x7f) + 1) * 2;
609 		if (cpg_quirks & PLL_ERRATA)
610 			mult *= 2;
611 		break;
612 
613 	case CLK_TYPE_GEN3_SD:
614 		return cpg_sd_clk_register(core->name, base, core->offset,
615 					   __clk_get_name(parent), notifiers);
616 
617 	case CLK_TYPE_GEN3_R:
618 		if (cpg_quirks & RCKCR_CKSEL) {
619 			struct cpg_simple_notifier *csn;
620 
621 			csn = kzalloc(sizeof(*csn), GFP_KERNEL);
622 			if (!csn)
623 				return ERR_PTR(-ENOMEM);
624 
625 			csn->reg = base + CPG_RCKCR;
626 
627 			/*
628 			 * RINT is default.
629 			 * Only if EXTALR is populated, we switch to it.
630 			 */
631 			value = readl(csn->reg) & 0x3f;
632 
633 			if (clk_get_rate(clks[cpg_clk_extalr])) {
634 				parent = clks[cpg_clk_extalr];
635 				value |= CPG_RCKCR_CKSEL;
636 			}
637 
638 			writel(value, csn->reg);
639 			cpg_simple_notifier_register(notifiers, csn);
640 			break;
641 		}
642 
643 		/* Select parent clock of RCLK by MD28 */
644 		if (cpg_mode & BIT(28))
645 			parent = clks[cpg_clk_extalr];
646 		break;
647 
648 	case CLK_TYPE_GEN3_MDSEL:
649 		/*
650 		 * Clock selectable between two parents and two fixed dividers
651 		 * using a mode pin
652 		 */
653 		if (cpg_mode & BIT(core->offset)) {
654 			div = core->div & 0xffff;
655 		} else {
656 			parent = clks[core->parent >> 16];
657 			if (IS_ERR(parent))
658 				return ERR_CAST(parent);
659 			div = core->div >> 16;
660 		}
661 		mult = 1;
662 		break;
663 
664 	case CLK_TYPE_GEN3_Z:
665 		return cpg_z_clk_register(core->name, __clk_get_name(parent),
666 					  base, core->div, core->offset);
667 
668 	case CLK_TYPE_GEN3_OSC:
669 		/*
670 		 * Clock combining OSC EXTAL predivider and a fixed divider
671 		 */
672 		div = cpg_pll_config->osc_prediv * core->div;
673 		break;
674 
675 	case CLK_TYPE_GEN3_RCKSEL:
676 		/*
677 		 * Clock selectable between two parents and two fixed dividers
678 		 * using RCKCR.CKSEL
679 		 */
680 		if (readl(base + CPG_RCKCR) & CPG_RCKCR_CKSEL) {
681 			div = core->div & 0xffff;
682 		} else {
683 			parent = clks[core->parent >> 16];
684 			if (IS_ERR(parent))
685 				return ERR_CAST(parent);
686 			div = core->div >> 16;
687 		}
688 		break;
689 
690 	case CLK_TYPE_GEN3_RPCSRC:
691 		return clk_register_divider_table(NULL, core->name,
692 						  __clk_get_name(parent), 0,
693 						  base + CPG_RPCCKCR, 3, 2, 0,
694 						  cpg_rpcsrc_div_table,
695 						  &cpg_lock);
696 
697 	case CLK_TYPE_GEN3_RPC:
698 		return cpg_rpc_clk_register(core->name, base,
699 					    __clk_get_name(parent), notifiers);
700 
701 	case CLK_TYPE_GEN3_RPCD2:
702 		return cpg_rpcd2_clk_register(core->name, base,
703 					      __clk_get_name(parent));
704 
705 	default:
706 		return ERR_PTR(-EINVAL);
707 	}
708 
709 	return clk_register_fixed_factor(NULL, core->name,
710 					 __clk_get_name(parent), 0, mult, div);
711 }
712 
713 int __init rcar_gen3_cpg_init(const struct rcar_gen3_cpg_pll_config *config,
714 			      unsigned int clk_extalr, u32 mode)
715 {
716 	const struct soc_device_attribute *attr;
717 
718 	cpg_pll_config = config;
719 	cpg_clk_extalr = clk_extalr;
720 	cpg_mode = mode;
721 	attr = soc_device_match(cpg_quirks_match);
722 	if (attr)
723 		cpg_quirks = (uintptr_t)attr->data;
724 	pr_debug("%s: mode = 0x%x quirks = 0x%x\n", __func__, mode, cpg_quirks);
725 
726 	spin_lock_init(&cpg_lock);
727 
728 	return 0;
729 }
730