xref: /linux/drivers/clk/renesas/r9a06g032-clocks.c (revision f2745dc0ba3dadd8fa2b2c33f48253d78e133a12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * R9A06G032 clock driver
4  *
5  * Copyright (C) 2018 Renesas Electronics Europe Limited
6  *
7  * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_clock.h>
22 #include <linux/pm_domain.h>
23 #include <linux/slab.h>
24 #include <linux/soc/renesas/r9a06g032-sysctrl.h>
25 #include <linux/spinlock.h>
26 #include <dt-bindings/clock/r9a06g032-sysctrl.h>
27 
28 #define R9A06G032_SYSCTRL_DMAMUX 0xA0
29 
30 struct r9a06g032_gate {
31 	u16 gate, reset, ready, midle,
32 		scon, mirack, mistat;
33 };
34 
35 /* This is used to describe a clock for instantiation */
36 struct r9a06g032_clkdesc {
37 	const char *name;
38 	uint32_t managed: 1;
39 	uint32_t type: 3;
40 	uint32_t index: 8;
41 	uint32_t source : 8; /* source index + 1 (0 == none) */
42 	/* these are used to populate the bitsel struct */
43 	union {
44 		struct r9a06g032_gate gate;
45 		/* for dividers */
46 		struct {
47 			unsigned int div_min : 10, div_max : 10, reg: 10;
48 			u16 div_table[4];
49 		};
50 		/* For fixed-factor ones */
51 		struct {
52 			u16 div, mul;
53 		};
54 		unsigned int factor;
55 		unsigned int frequency;
56 		/* for dual gate */
57 		struct {
58 			uint16_t group : 1, index: 3;
59 			u16 sel, g1, r1, g2, r2;
60 		} dual;
61 	};
62 };
63 
64 #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
65 	{ .gate = _clk, .reset = _rst, \
66 		.ready = _rdy, .midle = _midle, \
67 		.scon = _scon, .mirack = _mirack, .mistat = _mistat }
68 #define D_GATE(_idx, _n, _src, ...) \
69 	{ .type = K_GATE, .index = R9A06G032_##_idx, \
70 		.source = 1 + R9A06G032_##_src, .name = _n, \
71 		.gate = I_GATE(__VA_ARGS__) }
72 #define D_MODULE(_idx, _n, _src, ...) \
73 	{ .type = K_GATE, .index = R9A06G032_##_idx, \
74 		.source = 1 + R9A06G032_##_src, .name = _n, \
75 		.managed = 1, .gate = I_GATE(__VA_ARGS__) }
76 #define D_ROOT(_idx, _n, _mul, _div) \
77 	{ .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
78 		.div = _div, .mul = _mul }
79 #define D_FFC(_idx, _n, _src, _div) \
80 	{ .type = K_FFC, .index = R9A06G032_##_idx, \
81 		.source = 1 + R9A06G032_##_src, .name = _n, \
82 		.div = _div, .mul = 1}
83 #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
84 	{ .type = K_DIV, .index = R9A06G032_##_idx, \
85 		.source = 1 + R9A06G032_##_src, .name = _n, \
86 		.reg = _reg, .div_min = _min, .div_max = _max, \
87 		.div_table = { __VA_ARGS__ } }
88 #define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \
89 	{ .type = K_DUALGATE, .index = R9A06G032_##_idx, \
90 		.source = 1 + R9A06G032_##_src, .name = _n, \
91 		.dual = { .group = _g, .index = _gi, \
92 			.g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
93 
94 enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE };
95 
96 /* Internal clock IDs */
97 #define R9A06G032_CLKOUT		0
98 #define R9A06G032_CLKOUT_D10		2
99 #define R9A06G032_CLKOUT_D16		3
100 #define R9A06G032_CLKOUT_D160		4
101 #define R9A06G032_CLKOUT_D1OR2		5
102 #define R9A06G032_CLKOUT_D20		6
103 #define R9A06G032_CLKOUT_D40		7
104 #define R9A06G032_CLKOUT_D5		8
105 #define R9A06G032_CLKOUT_D8		9
106 #define R9A06G032_DIV_ADC		10
107 #define R9A06G032_DIV_I2C		11
108 #define R9A06G032_DIV_NAND		12
109 #define R9A06G032_DIV_P1_PG		13
110 #define R9A06G032_DIV_P2_PG		14
111 #define R9A06G032_DIV_P3_PG		15
112 #define R9A06G032_DIV_P4_PG		16
113 #define R9A06G032_DIV_P5_PG		17
114 #define R9A06G032_DIV_P6_PG		18
115 #define R9A06G032_DIV_QSPI0		19
116 #define R9A06G032_DIV_QSPI1		20
117 #define R9A06G032_DIV_REF_SYNC		21
118 #define R9A06G032_DIV_SDIO0		22
119 #define R9A06G032_DIV_SDIO1		23
120 #define R9A06G032_DIV_SWITCH		24
121 #define R9A06G032_DIV_UART		25
122 #define R9A06G032_DIV_MOTOR		64
123 #define R9A06G032_CLK_DDRPHY_PLLCLK_D4	78
124 #define R9A06G032_CLK_ECAT100_D4	79
125 #define R9A06G032_CLK_HSR100_D2		80
126 #define R9A06G032_CLK_REF_SYNC_D4	81
127 #define R9A06G032_CLK_REF_SYNC_D8	82
128 #define R9A06G032_CLK_SERCOS100_D2	83
129 #define R9A06G032_DIV_CA7		84
130 
131 #define R9A06G032_UART_GROUP_012	154
132 #define R9A06G032_UART_GROUP_34567	155
133 
134 #define R9A06G032_CLOCK_COUNT		(R9A06G032_UART_GROUP_34567 + 1)
135 
136 static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
137 	D_ROOT(CLKOUT, "clkout", 25, 1),
138 	D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
139 	D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
140 	D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
141 	D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
142 	D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
143 	D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
144 	D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
145 	D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
146 	D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
147 	D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
148 	D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
149 	D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
150 	D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
151 	D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
152 	D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
153 	D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
154 	D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
155 	D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
156 	D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
157 	D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
158 	D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
159 	D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
160 	D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
161 	D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
162 	D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
163 	D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
164 	D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
165 	D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
166 	D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
167 	D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
168 	D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
169 	D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0),
170 	D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0),
171 	D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
172 	D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
173 	D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0),
174 	D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0),
175 	D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0),
176 	D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0),
177 	D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0),
178 	D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0),
179 	D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0),
180 	D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0),
181 	D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
182 	D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
183 	D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
184 	D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
185 	D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, 0xe6, 0, 0, 0, 0, 0, 0),
186 	D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
187 	D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0),
188 	D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0),
189 	D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0),
190 	D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0),
191 	D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0),
192 	D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0),
193 	D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0),
194 	D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
195 	D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
196 	D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
197 	D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
198 	D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0),
199 	D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0),
200 	D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0),
201 	D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
202 	D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
203 	D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
204 	D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
205 	D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
206 	D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
207 	D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
208 	D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
209 	D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
210 	D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
211 	D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
212 	D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0),
213 	D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
214 	D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
215 	D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
216 	D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
217 	D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
218 	D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
219 	D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
220 	D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
221 	D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
222 	D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
223 	D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
224 	D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
225 	D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
226 	D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
227 	D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
228 	D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
229 	D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
230 	D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
231 	D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0),
232 	D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0),
233 	D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0),
234 	D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0),
235 	D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0),
236 	D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
237 	D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
238 	D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
239 	D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
240 	D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
241 	D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
242 	D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
243 	D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
244 	D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
245 	D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0),
246 	D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0),
247 	D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
248 	D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
249 	D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
250 	D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
251 	D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
252 	D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
253 	D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
254 	D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
255 	D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
256 	D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
257 	D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
258 	D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
259 	D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
260 	D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
261 	D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
262 	D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
263 	D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0xa03, 0, 0xa02, 0, 0, 0),
264 	D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
265 	D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
266 	D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
267 	D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0),
268 	D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0),
269 	D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0),
270 	D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
271 	D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
272 	D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
273 	D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0),
274 	D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
275 	D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
276 	D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
277 	D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
278 	D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
279 	D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
280 	D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0),
281 	D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0),
282 	D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0),
283 	/*
284 	 * These are not hardware clocks, but are needed to handle the special
285 	 * case where we have a 'selector bit' that doesn't just change the
286 	 * parent for a clock, but also the gate it's supposed to use.
287 	 */
288 	{
289 		.index = R9A06G032_UART_GROUP_012,
290 		.name = "uart_group_012",
291 		.type = K_BITSEL,
292 		.source = 1 + R9A06G032_DIV_UART,
293 		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
294 		.dual.sel = ((0xec / 4) << 5) | 24,
295 		.dual.group = 0,
296 	},
297 	{
298 		.index = R9A06G032_UART_GROUP_34567,
299 		.name = "uart_group_34567",
300 		.type = K_BITSEL,
301 		.source = 1 + R9A06G032_DIV_P2_PG,
302 		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
303 		.dual.sel = ((0x34 / 4) << 5) | 30,
304 		.dual.group = 1,
305 	},
306 	D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
307 	D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
308 	D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
309 	D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0, 0x760, 0x761, 0x762, 0x763),
310 	D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 1, 0x764, 0x765, 0x766, 0x767),
311 	D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 2, 0x768, 0x769, 0x76a, 0x76b),
312 	D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f),
313 	D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 4, 0x770, 0x771, 0x772, 0x773),
314 };
315 
316 struct r9a06g032_priv {
317 	struct clk_onecell_data data;
318 	spinlock_t lock; /* protects concurrent access to gates */
319 	void __iomem *reg;
320 };
321 
322 static struct r9a06g032_priv *sysctrl_priv;
323 
324 /* Exported helper to access the DMAMUX register */
325 int r9a06g032_sysctrl_set_dmamux(u32 mask, u32 val)
326 {
327 	unsigned long flags;
328 	u32 dmamux;
329 
330 	if (!sysctrl_priv)
331 		return -EPROBE_DEFER;
332 
333 	spin_lock_irqsave(&sysctrl_priv->lock, flags);
334 
335 	dmamux = readl(sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
336 	dmamux &= ~mask;
337 	dmamux |= val & mask;
338 	writel(dmamux, sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
339 
340 	spin_unlock_irqrestore(&sysctrl_priv->lock, flags);
341 
342 	return 0;
343 }
344 EXPORT_SYMBOL_GPL(r9a06g032_sysctrl_set_dmamux);
345 
346 /* register/bit pairs are encoded as an uint16_t */
347 static void
348 clk_rdesc_set(struct r9a06g032_priv *clocks,
349 	      u16 one, unsigned int on)
350 {
351 	u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
352 	u32 val = readl(reg);
353 
354 	val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f));
355 	writel(val, reg);
356 }
357 
358 static int
359 clk_rdesc_get(struct r9a06g032_priv *clocks,
360 	      uint16_t one)
361 {
362 	u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
363 	u32 val = readl(reg);
364 
365 	return !!(val & (1U << (one & 0x1f)));
366 }
367 
368 /*
369  * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
370  * clock gate framework as the gates on the R9A06G032 have a special enabling
371  * sequence, therefore we use this little proxy.
372  */
373 struct r9a06g032_clk_gate {
374 	struct clk_hw hw;
375 	struct r9a06g032_priv *clocks;
376 	u16 index;
377 
378 	struct r9a06g032_gate gate;
379 };
380 
381 #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
382 
383 static int create_add_module_clock(struct of_phandle_args *clkspec,
384 				   struct device *dev)
385 {
386 	struct clk *clk;
387 	int error;
388 
389 	clk = of_clk_get_from_provider(clkspec);
390 	if (IS_ERR(clk))
391 		return PTR_ERR(clk);
392 
393 	error = pm_clk_create(dev);
394 	if (error) {
395 		clk_put(clk);
396 		return error;
397 	}
398 
399 	error = pm_clk_add_clk(dev, clk);
400 	if (error) {
401 		pm_clk_destroy(dev);
402 		clk_put(clk);
403 	}
404 
405 	return error;
406 }
407 
408 static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
409 				struct device *dev)
410 {
411 	struct device_node *np = dev->of_node;
412 	struct of_phandle_args clkspec;
413 	int i = 0;
414 	int error;
415 	int index;
416 
417 	while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i,
418 					   &clkspec)) {
419 		if (clkspec.np != pd->dev.of_node)
420 			continue;
421 
422 		index = clkspec.args[0];
423 		if (index < R9A06G032_CLOCK_COUNT &&
424 		    r9a06g032_clocks[index].managed) {
425 			error = create_add_module_clock(&clkspec, dev);
426 			of_node_put(clkspec.np);
427 			if (error)
428 				return error;
429 		}
430 		i++;
431 	}
432 
433 	return 0;
434 }
435 
436 static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
437 {
438 	if (!pm_clk_no_clocks(dev))
439 		pm_clk_destroy(dev);
440 }
441 
442 static int r9a06g032_add_clk_domain(struct device *dev)
443 {
444 	struct device_node *np = dev->of_node;
445 	struct generic_pm_domain *pd;
446 
447 	pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
448 	if (!pd)
449 		return -ENOMEM;
450 
451 	pd->name = np->name;
452 	pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
453 		    GENPD_FLAG_ACTIVE_WAKEUP;
454 	pd->attach_dev = r9a06g032_attach_dev;
455 	pd->detach_dev = r9a06g032_detach_dev;
456 	pm_genpd_init(pd, &pm_domain_always_on_gov, false);
457 
458 	of_genpd_add_provider_simple(np, pd);
459 	return 0;
460 }
461 
462 static void
463 r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
464 		       struct r9a06g032_gate *g, int on)
465 {
466 	unsigned long flags;
467 
468 	WARN_ON(!g->gate);
469 
470 	spin_lock_irqsave(&clocks->lock, flags);
471 	clk_rdesc_set(clocks, g->gate, on);
472 	/* De-assert reset */
473 	if (g->reset)
474 		clk_rdesc_set(clocks, g->reset, 1);
475 	spin_unlock_irqrestore(&clocks->lock, flags);
476 
477 	/* Hardware manual recommends 5us delay after enabling clock & reset */
478 	udelay(5);
479 
480 	/* If the peripheral is memory mapped (i.e. an AXI slave), there is an
481 	 * associated SLVRDY bit in the System Controller that needs to be set
482 	 * so that the FlexWAY bus fabric passes on the read/write requests.
483 	 */
484 	if (g->ready || g->midle) {
485 		spin_lock_irqsave(&clocks->lock, flags);
486 		if (g->ready)
487 			clk_rdesc_set(clocks, g->ready, on);
488 		/* Clear 'Master Idle Request' bit */
489 		if (g->midle)
490 			clk_rdesc_set(clocks, g->midle, !on);
491 		spin_unlock_irqrestore(&clocks->lock, flags);
492 	}
493 	/* Note: We don't wait for FlexWAY Socket Connection signal */
494 }
495 
496 static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
497 {
498 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
499 
500 	r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
501 	return 0;
502 }
503 
504 static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
505 {
506 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
507 
508 	r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
509 }
510 
511 static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
512 {
513 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
514 
515 	/* if clock is in reset, the gate might be on, and still not 'be' on */
516 	if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset))
517 		return 0;
518 
519 	return clk_rdesc_get(g->clocks, g->gate.gate);
520 }
521 
522 static const struct clk_ops r9a06g032_clk_gate_ops = {
523 	.enable = r9a06g032_clk_gate_enable,
524 	.disable = r9a06g032_clk_gate_disable,
525 	.is_enabled = r9a06g032_clk_gate_is_enabled,
526 };
527 
528 static struct clk *
529 r9a06g032_register_gate(struct r9a06g032_priv *clocks,
530 			const char *parent_name,
531 			const struct r9a06g032_clkdesc *desc)
532 {
533 	struct clk *clk;
534 	struct r9a06g032_clk_gate *g;
535 	struct clk_init_data init = {};
536 
537 	g = kzalloc(sizeof(*g), GFP_KERNEL);
538 	if (!g)
539 		return NULL;
540 
541 	init.name = desc->name;
542 	init.ops = &r9a06g032_clk_gate_ops;
543 	init.flags = CLK_SET_RATE_PARENT;
544 	init.parent_names = parent_name ? &parent_name : NULL;
545 	init.num_parents = parent_name ? 1 : 0;
546 
547 	g->clocks = clocks;
548 	g->index = desc->index;
549 	g->gate = desc->gate;
550 	g->hw.init = &init;
551 
552 	/*
553 	 * important here, some clocks are already in use by the CM3, we
554 	 * have to assume they are not Linux's to play with and try to disable
555 	 * at the end of the boot!
556 	 */
557 	if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
558 		init.flags |= CLK_IS_CRITICAL;
559 		pr_debug("%s was enabled, making read-only\n", desc->name);
560 	}
561 
562 	clk = clk_register(NULL, &g->hw);
563 	if (IS_ERR(clk)) {
564 		kfree(g);
565 		return NULL;
566 	}
567 	return clk;
568 }
569 
570 struct r9a06g032_clk_div {
571 	struct clk_hw hw;
572 	struct r9a06g032_priv *clocks;
573 	u16 index;
574 	u16 reg;
575 	u16 min, max;
576 	u8 table_size;
577 	u16 table[8];	/* we know there are no more than 8 */
578 };
579 
580 #define to_r9a06g032_div(_hw) \
581 		container_of(_hw, struct r9a06g032_clk_div, hw)
582 
583 static unsigned long
584 r9a06g032_div_recalc_rate(struct clk_hw *hw,
585 			  unsigned long parent_rate)
586 {
587 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
588 	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
589 	u32 div = readl(reg);
590 
591 	if (div < clk->min)
592 		div = clk->min;
593 	else if (div > clk->max)
594 		div = clk->max;
595 	return DIV_ROUND_UP(parent_rate, div);
596 }
597 
598 /*
599  * Attempts to find a value that is in range of min,max,
600  * and if a table of set dividers was specified for this
601  * register, try to find the fixed divider that is the closest
602  * to the target frequency
603  */
604 static long
605 r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
606 			unsigned long rate, unsigned long prate)
607 {
608 	/* + 1 to cope with rates that have the remainder dropped */
609 	u32 div = DIV_ROUND_UP(prate, rate + 1);
610 	int i;
611 
612 	if (div <= clk->min)
613 		return clk->min;
614 	if (div >= clk->max)
615 		return clk->max;
616 
617 	for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
618 		if (div >= clk->table[i] && div <= clk->table[i + 1]) {
619 			unsigned long m = rate -
620 				DIV_ROUND_UP(prate, clk->table[i]);
621 			unsigned long p =
622 				DIV_ROUND_UP(prate, clk->table[i + 1]) -
623 				rate;
624 			/*
625 			 * select the divider that generates
626 			 * the value closest to the ideal frequency
627 			 */
628 			div = p >= m ? clk->table[i] : clk->table[i + 1];
629 			return div;
630 		}
631 	}
632 	return div;
633 }
634 
635 static int
636 r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
637 {
638 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
639 	u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate);
640 
641 	pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
642 		 hw->clk, req->rate, req->best_parent_rate, div);
643 	pr_devel("   min %d (%ld) max %d (%ld)\n",
644 		 clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min),
645 		 clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max));
646 
647 	div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate);
648 	/*
649 	 * this is a hack. Currently the serial driver asks for a clock rate
650 	 * that is 16 times the baud rate -- and that is wildly outside the
651 	 * range of the UART divider, somehow there is no provision for that
652 	 * case of 'let the divider as is if outside range'.
653 	 * The serial driver *shouldn't* play with these clocks anyway, there's
654 	 * several uarts attached to this divider, and changing this impacts
655 	 * everyone.
656 	 */
657 	if (clk->index == R9A06G032_DIV_UART ||
658 	    clk->index == R9A06G032_DIV_P2_PG) {
659 		pr_devel("%s div uart hack!\n", __func__);
660 		req->rate = clk_get_rate(hw->clk);
661 		return 0;
662 	}
663 	req->rate = DIV_ROUND_UP(req->best_parent_rate, div);
664 	pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
665 		 req->best_parent_rate, div, req->rate);
666 	return 0;
667 }
668 
669 static int
670 r9a06g032_div_set_rate(struct clk_hw *hw,
671 		       unsigned long rate, unsigned long parent_rate)
672 {
673 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
674 	/* + 1 to cope with rates that have the remainder dropped */
675 	u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
676 	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
677 
678 	pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
679 		 rate, parent_rate, div);
680 
681 	/*
682 	 * Need to write the bit 31 with the divider value to
683 	 * latch it. Technically we should wait until it has been
684 	 * cleared too.
685 	 * TODO: Find whether this callback is sleepable, in case
686 	 * the hardware /does/ require some sort of spinloop here.
687 	 */
688 	writel(div | BIT(31), reg);
689 
690 	return 0;
691 }
692 
693 static const struct clk_ops r9a06g032_clk_div_ops = {
694 	.recalc_rate = r9a06g032_div_recalc_rate,
695 	.determine_rate = r9a06g032_div_determine_rate,
696 	.set_rate = r9a06g032_div_set_rate,
697 };
698 
699 static struct clk *
700 r9a06g032_register_div(struct r9a06g032_priv *clocks,
701 		       const char *parent_name,
702 		       const struct r9a06g032_clkdesc *desc)
703 {
704 	struct r9a06g032_clk_div *div;
705 	struct clk *clk;
706 	struct clk_init_data init = {};
707 	unsigned int i;
708 
709 	div = kzalloc(sizeof(*div), GFP_KERNEL);
710 	if (!div)
711 		return NULL;
712 
713 	init.name = desc->name;
714 	init.ops = &r9a06g032_clk_div_ops;
715 	init.flags = CLK_SET_RATE_PARENT;
716 	init.parent_names = parent_name ? &parent_name : NULL;
717 	init.num_parents = parent_name ? 1 : 0;
718 
719 	div->clocks = clocks;
720 	div->index = desc->index;
721 	div->reg = desc->reg;
722 	div->hw.init = &init;
723 	div->min = desc->div_min;
724 	div->max = desc->div_max;
725 	/* populate (optional) divider table fixed values */
726 	for (i = 0; i < ARRAY_SIZE(div->table) &&
727 	     i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
728 		div->table[div->table_size++] = desc->div_table[i];
729 	}
730 
731 	clk = clk_register(NULL, &div->hw);
732 	if (IS_ERR(clk)) {
733 		kfree(div);
734 		return NULL;
735 	}
736 	return clk;
737 }
738 
739 /*
740  * This clock provider handles the case of the R9A06G032 where you have
741  * peripherals that have two potential clock source and two gates, one for
742  * each of the clock source - the used clock source (for all sub clocks)
743  * is selected by a single bit.
744  * That single bit affects all sub-clocks, and therefore needs to change the
745  * active gate (and turn the others off) and force a recalculation of the rates.
746  *
747  * This implements two clock providers, one 'bitselect' that
748  * handles the switch between both parents, and another 'dualgate'
749  * that knows which gate to poke at, depending on the parent's bit position.
750  */
751 struct r9a06g032_clk_bitsel {
752 	struct clk_hw	hw;
753 	struct r9a06g032_priv *clocks;
754 	u16 index;
755 	u16 selector;		/* selector register + bit */
756 };
757 
758 #define to_clk_bitselect(_hw) \
759 		container_of(_hw, struct r9a06g032_clk_bitsel, hw)
760 
761 static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
762 {
763 	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
764 
765 	return clk_rdesc_get(set->clocks, set->selector);
766 }
767 
768 static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
769 {
770 	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
771 
772 	/* a single bit in the register selects one of two parent clocks */
773 	clk_rdesc_set(set->clocks, set->selector, !!index);
774 
775 	return 0;
776 }
777 
778 static const struct clk_ops clk_bitselect_ops = {
779 	.get_parent = r9a06g032_clk_mux_get_parent,
780 	.set_parent = r9a06g032_clk_mux_set_parent,
781 };
782 
783 static struct clk *
784 r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
785 			  const char *parent_name,
786 			  const struct r9a06g032_clkdesc *desc)
787 {
788 	struct clk *clk;
789 	struct r9a06g032_clk_bitsel *g;
790 	struct clk_init_data init = {};
791 	const char *names[2];
792 
793 	/* allocate the gate */
794 	g = kzalloc(sizeof(*g), GFP_KERNEL);
795 	if (!g)
796 		return NULL;
797 
798 	names[0] = parent_name;
799 	names[1] = "clk_pll_usb";
800 
801 	init.name = desc->name;
802 	init.ops = &clk_bitselect_ops;
803 	init.flags = CLK_SET_RATE_PARENT;
804 	init.parent_names = names;
805 	init.num_parents = 2;
806 
807 	g->clocks = clocks;
808 	g->index = desc->index;
809 	g->selector = desc->dual.sel;
810 	g->hw.init = &init;
811 
812 	clk = clk_register(NULL, &g->hw);
813 	if (IS_ERR(clk)) {
814 		kfree(g);
815 		return NULL;
816 	}
817 	return clk;
818 }
819 
820 struct r9a06g032_clk_dualgate {
821 	struct clk_hw	hw;
822 	struct r9a06g032_priv *clocks;
823 	u16 index;
824 	u16 selector;		/* selector register + bit */
825 	struct r9a06g032_gate gate[2];
826 };
827 
828 #define to_clk_dualgate(_hw) \
829 		container_of(_hw, struct r9a06g032_clk_dualgate, hw)
830 
831 static int
832 r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
833 {
834 	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
835 
836 	/* we always turn off the 'other' gate, regardless */
837 	r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
838 	r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
839 
840 	return 0;
841 }
842 
843 static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
844 {
845 	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
846 
847 	r9a06g032_clk_dualgate_setenable(gate, 1);
848 
849 	return 0;
850 }
851 
852 static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
853 {
854 	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
855 
856 	r9a06g032_clk_dualgate_setenable(gate, 0);
857 }
858 
859 static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
860 {
861 	struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
862 	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
863 
864 	return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
865 }
866 
867 static const struct clk_ops r9a06g032_clk_dualgate_ops = {
868 	.enable = r9a06g032_clk_dualgate_enable,
869 	.disable = r9a06g032_clk_dualgate_disable,
870 	.is_enabled = r9a06g032_clk_dualgate_is_enabled,
871 };
872 
873 static struct clk *
874 r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
875 			    const char *parent_name,
876 			    const struct r9a06g032_clkdesc *desc,
877 			    uint16_t sel)
878 {
879 	struct r9a06g032_clk_dualgate *g;
880 	struct clk *clk;
881 	struct clk_init_data init = {};
882 
883 	/* allocate the gate */
884 	g = kzalloc(sizeof(*g), GFP_KERNEL);
885 	if (!g)
886 		return NULL;
887 	g->clocks = clocks;
888 	g->index = desc->index;
889 	g->selector = sel;
890 	g->gate[0].gate = desc->dual.g1;
891 	g->gate[0].reset = desc->dual.r1;
892 	g->gate[1].gate = desc->dual.g2;
893 	g->gate[1].reset = desc->dual.r2;
894 
895 	init.name = desc->name;
896 	init.ops = &r9a06g032_clk_dualgate_ops;
897 	init.flags = CLK_SET_RATE_PARENT;
898 	init.parent_names = &parent_name;
899 	init.num_parents = 1;
900 	g->hw.init = &init;
901 	/*
902 	 * important here, some clocks are already in use by the CM3, we
903 	 * have to assume they are not Linux's to play with and try to disable
904 	 * at the end of the boot!
905 	 */
906 	if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
907 		init.flags |= CLK_IS_CRITICAL;
908 		pr_debug("%s was enabled, making read-only\n", desc->name);
909 	}
910 
911 	clk = clk_register(NULL, &g->hw);
912 	if (IS_ERR(clk)) {
913 		kfree(g);
914 		return NULL;
915 	}
916 	return clk;
917 }
918 
919 static void r9a06g032_clocks_del_clk_provider(void *data)
920 {
921 	of_clk_del_provider(data);
922 }
923 
924 static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
925 {
926 	struct device *dev = &pdev->dev;
927 	struct device_node *np = dev->of_node;
928 	struct r9a06g032_priv *clocks;
929 	struct clk **clks;
930 	struct clk *mclk;
931 	unsigned int i;
932 	u16 uart_group_sel[2];
933 	int error;
934 
935 	clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
936 	clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
937 			    GFP_KERNEL);
938 	if (!clocks || !clks)
939 		return -ENOMEM;
940 
941 	spin_lock_init(&clocks->lock);
942 
943 	clocks->data.clks = clks;
944 	clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
945 
946 	mclk = devm_clk_get(dev, "mclk");
947 	if (IS_ERR(mclk))
948 		return PTR_ERR(mclk);
949 
950 	clocks->reg = of_iomap(np, 0);
951 	if (WARN_ON(!clocks->reg))
952 		return -ENOMEM;
953 	for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
954 		const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
955 		const char *parent_name = d->source ?
956 			__clk_get_name(clocks->data.clks[d->source - 1]) :
957 			__clk_get_name(mclk);
958 		struct clk *clk = NULL;
959 
960 		switch (d->type) {
961 		case K_FFC:
962 			clk = clk_register_fixed_factor(NULL, d->name,
963 							parent_name, 0,
964 							d->mul, d->div);
965 			break;
966 		case K_GATE:
967 			clk = r9a06g032_register_gate(clocks, parent_name, d);
968 			break;
969 		case K_DIV:
970 			clk = r9a06g032_register_div(clocks, parent_name, d);
971 			break;
972 		case K_BITSEL:
973 			/* keep that selector register around */
974 			uart_group_sel[d->dual.group] = d->dual.sel;
975 			clk = r9a06g032_register_bitsel(clocks, parent_name, d);
976 			break;
977 		case K_DUALGATE:
978 			clk = r9a06g032_register_dualgate(clocks, parent_name,
979 							  d,
980 							  uart_group_sel[d->dual.group]);
981 			break;
982 		}
983 		clocks->data.clks[d->index] = clk;
984 	}
985 	error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
986 	if (error)
987 		return error;
988 
989 	error = devm_add_action_or_reset(dev,
990 					r9a06g032_clocks_del_clk_provider, np);
991 	if (error)
992 		return error;
993 
994 	error = r9a06g032_add_clk_domain(dev);
995 	if (error)
996 		return error;
997 
998 	sysctrl_priv = clocks;
999 
1000 	error = of_platform_populate(np, NULL, NULL, dev);
1001 	if (error)
1002 		dev_err(dev, "Failed to populate children (%d)\n", error);
1003 
1004 	return 0;
1005 }
1006 
1007 static const struct of_device_id r9a06g032_match[] = {
1008 	{ .compatible = "renesas,r9a06g032-sysctrl" },
1009 	{ }
1010 };
1011 
1012 static struct platform_driver r9a06g032_clock_driver = {
1013 	.driver		= {
1014 		.name	= "renesas,r9a06g032-sysctrl",
1015 		.of_match_table = r9a06g032_match,
1016 	},
1017 };
1018 
1019 static int __init r9a06g032_clocks_init(void)
1020 {
1021 	return platform_driver_probe(&r9a06g032_clock_driver,
1022 			r9a06g032_clocks_probe);
1023 }
1024 
1025 subsys_initcall(r9a06g032_clocks_init);
1026