xref: /linux/drivers/clk/renesas/r9a06g032-clocks.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * R9A06G032 clock driver
4  *
5  * Copyright (C) 2018 Renesas Electronics Europe Limited
6  *
7  * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_clock.h>
22 #include <linux/pm_domain.h>
23 #include <linux/reboot.h>
24 #include <linux/slab.h>
25 #include <linux/soc/renesas/r9a06g032-sysctrl.h>
26 #include <linux/spinlock.h>
27 #include <dt-bindings/clock/r9a06g032-sysctrl.h>
28 
29 #define R9A06G032_SYSCTRL_USB    0x00
30 #define R9A06G032_SYSCTRL_USB_H2MODE BIT(1)
31 #define R9A06G032_SYSCTRL_DMAMUX 0xA0
32 
33 #define R9A06G032_SYSCTRL_RSTEN 0x120
34 #define R9A06G032_SYSCTRL_RSTEN_MRESET_EN BIT(0)
35 #define R9A06G032_SYSCTRL_RSTCTRL 0x198
36 /* These work for both reset registers */
37 #define R9A06G032_SYSCTRL_SWRST BIT(6)
38 #define R9A06G032_SYSCTRL_WDA7RST_1 BIT(2)
39 #define R9A06G032_SYSCTRL_WDA7RST_0 BIT(1)
40 
41 /**
42  * struct regbit - describe one bit in a register
43  * @reg: offset of register relative to base address,
44  *          expressed in units of 32-bit words (not bytes),
45  * @bit: which bit (0 to 31) in the register
46  *
47  * This structure is used to compactly encode the location
48  * of a single bit in a register. Five bits are needed to
49  * encode the bit number. With uint16_t data type, this
50  * leaves 11 bits to encode a register offset up to 2047.
51  *
52  * Since registers are aligned on 32-bit boundaries, the
53  * offset will be specified in 32-bit words rather than bytes.
54  * This allows encoding an offset up to 0x1FFC (8188) bytes.
55  *
56  * Helper macro RB() takes care of converting the register
57  * offset from bytes to 32-bit words.
58  */
59 struct regbit {
60 	u16 bit:5;
61 	u16 reg:11;
62 };
63 
64 #define RB(_reg, _bit) ((struct regbit) { \
65 	.reg = (_reg) / 4, \
66 	.bit = (_bit) \
67 })
68 
69 /**
70  * struct r9a06g032_gate - clock-related control bits
71  * @gate:   clock enable/disable
72  * @reset:  clock module reset (active low)
73  * @ready:  enables NoC forwarding of read/write requests to device,
74  *          (eg. device is ready to handle read/write requests)
75  * @midle:  request to idle the NoC interconnect
76  *
77  * Each of these fields describes a single bit in a register,
78  * which controls some aspect of clock gating. The @gate field
79  * is mandatory, this one enables/disables the clock. The
80  * other fields are optional, with zero indicating "not used".
81  *
82  * In most cases there is a @reset bit which needs to be
83  * de-asserted to bring the module out of reset.
84  *
85  * Modules may also need to signal when they are @ready to
86  * handle requests (read/writes) from the NoC interconnect.
87  *
88  * Similarly, the @midle bit is used to idle the master.
89  */
90 struct r9a06g032_gate {
91 	struct regbit gate, reset, ready, midle;
92 	/* Unused fields omitted to save space */
93 	/* struct regbit scon, mirack, mistat */;
94 };
95 
96 enum gate_type {
97 	K_GATE = 0,	/* gate which enable/disable */
98 	K_FFC,		/* fixed factor clock */
99 	K_DIV,		/* divisor */
100 	K_BITSEL,	/* special for UARTs */
101 	K_DUALGATE	/* special for UARTs */
102 };
103 
104 /**
105  * struct r9a06g032_clkdesc - describe a single clock
106  * @name:      string describing this clock
107  * @managed:   boolean indicating if this clock should be
108  *             started/stopped as part of power management
109  * @type:      see enum @gate_type
110  * @index:     the ID of this clock element
111  * @source:    the ID+1 of the parent clock element.
112  *             Root clock uses ID of ~0 (PARENT_ID);
113  * @gate:      clock enable/disable
114  * @div:       substructure for clock divider
115  * @div.min:   smallest permitted clock divider
116  * @div.max:   largest permitted clock divider
117  * @div.reg:   clock divider register offset, in 32-bit words
118  * @div.table: optional list of fixed clock divider values;
119  *             must be in ascending order, zero for unused
120  * @ffc:       substructure for fixed-factor clocks
121  * @ffc.div:   divisor for fixed-factor clock
122  * @ffc.mul:   multiplier for fixed-factor clock
123  * @dual:      substructure for dual clock gates
124  * @dual.group: UART group, 0=UART0/1/2, 1=UART3/4/5/6/7
125  * @dual.sel:  select either g1/r1 or g2/r2 as clock source
126  * @dual.g1:   1st source gate (clock enable/disable)
127  * @dual.r1:   1st source reset (module reset)
128  * @dual.g2:   2nd source gate (clock enable/disable)
129  * @dual.r2:   2nd source reset (module reset)
130  *
131  * Describes a single element in the clock tree hierarchy.
132  * As there are quite a large number of clock elements, this
133  * structure is packed tightly to conserve space.
134  */
135 struct r9a06g032_clkdesc {
136 	const char *name;
137 	uint32_t managed:1;
138 	enum gate_type type:3;
139 	uint32_t index:8;
140 	uint32_t source:8; /* source index + 1 (0 == none) */
141 	union {
142 		/* type = K_GATE */
143 		struct r9a06g032_gate gate;
144 		/* type = K_DIV  */
145 		struct {
146 			unsigned int min:10, max:10, reg:10;
147 			u16 table[4];
148 		} div;
149 		/* type = K_FFC */
150 		struct {
151 			u16 div, mul;
152 		} ffc;
153 		/* type = K_DUALGATE */
154 		struct {
155 			uint16_t group:1;
156 			struct regbit sel, g1, r1, g2, r2;
157 		} dual;
158 	};
159 };
160 
161 /*
162  * The last three arguments are not currently used,
163  * but are kept in the r9a06g032_clocks table below.
164  */
165 #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) { \
166 	.gate = _clk, \
167 	.reset = _rst, \
168 	.ready = _rdy, \
169 	.midle = _midle, \
170 	/* .scon = _scon, */ \
171 	/* .mirack = _mirack, */ \
172 	/* .mistat = _mistat */ \
173 }
174 #define D_GATE(_idx, _n, _src, ...) { \
175 	.type = K_GATE, \
176 	.index = R9A06G032_##_idx, \
177 	.source = 1 + R9A06G032_##_src, \
178 	.name = _n, \
179 	.gate = I_GATE(__VA_ARGS__) \
180 }
181 #define D_MODULE(_idx, _n, _src, ...) { \
182 	.type = K_GATE, \
183 	.index = R9A06G032_##_idx, \
184 	.source = 1 + R9A06G032_##_src, \
185 	.name = _n, \
186 	.managed = 1, \
187 	.gate = I_GATE(__VA_ARGS__) \
188 }
189 #define D_ROOT(_idx, _n, _mul, _div) { \
190 	.type = K_FFC, \
191 	.index = R9A06G032_##_idx, \
192 	.name = _n, \
193 	.ffc.div = _div, \
194 	.ffc.mul = _mul \
195 }
196 #define D_FFC(_idx, _n, _src, _div) { \
197 	.type = K_FFC, \
198 	.index = R9A06G032_##_idx, \
199 	.source = 1 + R9A06G032_##_src, \
200 	.name = _n, \
201 	.ffc.div = _div, \
202 	.ffc.mul = 1 \
203 }
204 #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) { \
205 	.type = K_DIV, \
206 	.index = R9A06G032_##_idx, \
207 	.source = 1 + R9A06G032_##_src, \
208 	.name = _n, \
209 	.div.reg = _reg, \
210 	.div.min = _min, \
211 	.div.max = _max, \
212 	.div.table = { __VA_ARGS__ } \
213 }
214 #define D_UGATE(_idx, _n, _src, _g, _g1, _r1, _g2, _r2) { \
215 	.type = K_DUALGATE, \
216 	.index = R9A06G032_##_idx, \
217 	.source = 1 + R9A06G032_##_src, \
218 	.name = _n, \
219 	.dual = { \
220 		.group = _g, \
221 		.g1 = _g1, \
222 		.r1 = _r1, \
223 		.g2 = _g2, \
224 		.r2 = _r2 \
225 	}, \
226 }
227 
228 /* Internal clock IDs */
229 #define R9A06G032_CLKOUT		0
230 #define R9A06G032_CLKOUT_D10		2
231 #define R9A06G032_CLKOUT_D16		3
232 #define R9A06G032_CLKOUT_D160		4
233 #define R9A06G032_CLKOUT_D1OR2		5
234 #define R9A06G032_CLKOUT_D20		6
235 #define R9A06G032_CLKOUT_D40		7
236 #define R9A06G032_CLKOUT_D5		8
237 #define R9A06G032_CLKOUT_D8		9
238 #define R9A06G032_DIV_ADC		10
239 #define R9A06G032_DIV_I2C		11
240 #define R9A06G032_DIV_NAND		12
241 #define R9A06G032_DIV_P1_PG		13
242 #define R9A06G032_DIV_P2_PG		14
243 #define R9A06G032_DIV_P3_PG		15
244 #define R9A06G032_DIV_P4_PG		16
245 #define R9A06G032_DIV_P5_PG		17
246 #define R9A06G032_DIV_P6_PG		18
247 #define R9A06G032_DIV_QSPI0		19
248 #define R9A06G032_DIV_QSPI1		20
249 #define R9A06G032_DIV_REF_SYNC		21
250 #define R9A06G032_DIV_SDIO0		22
251 #define R9A06G032_DIV_SDIO1		23
252 #define R9A06G032_DIV_SWITCH		24
253 #define R9A06G032_DIV_UART		25
254 #define R9A06G032_DIV_MOTOR		64
255 #define R9A06G032_CLK_DDRPHY_PLLCLK_D4	78
256 #define R9A06G032_CLK_ECAT100_D4	79
257 #define R9A06G032_CLK_HSR100_D2		80
258 #define R9A06G032_CLK_REF_SYNC_D4	81
259 #define R9A06G032_CLK_REF_SYNC_D8	82
260 #define R9A06G032_CLK_SERCOS100_D2	83
261 #define R9A06G032_DIV_CA7		84
262 
263 #define R9A06G032_UART_GROUP_012	154
264 #define R9A06G032_UART_GROUP_34567	155
265 
266 #define R9A06G032_CLOCK_COUNT		(R9A06G032_UART_GROUP_34567 + 1)
267 
268 static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
269 	D_ROOT(CLKOUT, "clkout", 25, 1),
270 	D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
271 	D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
272 	D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
273 	D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
274 	D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
275 	D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
276 	D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
277 	D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
278 	D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
279 	D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
280 	D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
281 	D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
282 	D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
283 	D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
284 	D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
285 	D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
286 	D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
287 	D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
288 	D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
289 	D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
290 	D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
291 	D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
292 	D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
293 	D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
294 	D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
295 	D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, RB(0xe8, 9),
296 	       RB(0xe8, 10), RB(0xe8, 11), RB(0x00, 0),
297 	       RB(0x15c, 3), RB(0x00, 0), RB(0x00, 0)),
298 	D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, RB(0xe8, 12),
299 	       RB(0xe8, 13), RB(0xe8, 14), RB(0x00, 0),
300 	       RB(0x15c, 4), RB(0x00, 0), RB(0x00, 0)),
301 	D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, RB(0xe8, 15),
302 	       RB(0xe8, 16), RB(0xe8, 17), RB(0x00, 0),
303 	       RB(0x15c, 5), RB(0x00, 0), RB(0x00, 0)),
304 	D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, RB(0xe8, 18),
305 	       RB(0xe8, 19), RB(0xe8, 20), RB(0x00, 0),
306 	       RB(0x15c, 6), RB(0x00, 0), RB(0x00, 0)),
307 	D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, RB(0xe8, 21),
308 	       RB(0xe8, 22), RB(0xe8, 23), RB(0x00, 0),
309 	       RB(0x15c, 7), RB(0x00, 0), RB(0x00, 0)),
310 	D_GATE(CLK_ADC, "clk_adc", DIV_ADC, RB(0x3c, 10),
311 	       RB(0x3c, 11), RB(0x00, 0), RB(0x00, 0),
312 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
313 	D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, RB(0x80, 5),
314 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
315 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
316 	D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, RB(0x90, 3),
317 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
318 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
319 	D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, RB(0x3c, 6),
320 	       RB(0x3c, 7), RB(0x00, 0), RB(0x00, 0),
321 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
322 	D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, RB(0x3c, 8),
323 	       RB(0x3c, 9), RB(0x00, 0), RB(0x00, 0),
324 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
325 	D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, RB(0x68, 2),
326 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
327 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
328 	D_GATE(CLK_NAND, "clk_nand", DIV_NAND, RB(0x50, 4),
329 	       RB(0x50, 5), RB(0x00, 0), RB(0x00, 0),
330 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
331 	D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, RB(0xec, 20),
332 	       RB(0xec, 21), RB(0x00, 0), RB(0x00, 0),
333 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
334 	D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, RB(0x10c, 2),
335 	       RB(0x10c, 3), RB(0x00, 0), RB(0x00, 0),
336 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
337 	D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, RB(0x10c, 4),
338 	       RB(0x10c, 5), RB(0x00, 0), RB(0x00, 0),
339 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
340 	D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, RB(0x10c, 6),
341 	       RB(0x10c, 7), RB(0x00, 0), RB(0x00, 0),
342 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
343 	D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, RB(0x104, 4),
344 	       RB(0x104, 5), RB(0x00, 0), RB(0x00, 0),
345 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
346 	D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, RB(0x104, 6),
347 	       RB(0x104, 7), RB(0x00, 0), RB(0x00, 0),
348 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
349 	D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, RB(0x114, 0),
350 	       RB(0x114, 1), RB(0x114, 2), RB(0x00, 0),
351 	       RB(0x16c, 0), RB(0x00, 0), RB(0x00, 0)),
352 	D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, RB(0x114, 3),
353 	       RB(0x114, 4), RB(0x114, 5), RB(0x00, 0),
354 	       RB(0x16c, 1), RB(0x00, 0), RB(0x00, 0)),
355 	D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, RB(0x114, 6),
356 	       RB(0x114, 7), RB(0x114, 8), RB(0x00, 0),
357 	       RB(0x16c, 2), RB(0x00, 0), RB(0x00, 0)),
358 	D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, RB(0x114, 9),
359 	       RB(0x114, 10), RB(0x114, 11), RB(0x00, 0),
360 	       RB(0x16c, 3), RB(0x00, 0), RB(0x00, 0)),
361 	D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, RB(0x1c, 6),
362 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
363 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
364 	D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, RB(0x54, 4),
365 	       RB(0x54, 5), RB(0x00, 0), RB(0x00, 0),
366 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
367 	D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, RB(0x90, 4),
368 	       RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
369 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
370 	D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, RB(0x68, 0),
371 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
372 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
373 	D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, RB(0x68, 1),
374 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
375 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
376 	D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, RB(0x0c, 4),
377 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
378 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
379 	D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, RB(0xc8, 4),
380 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
381 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
382 	D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, RB(0x84, 5),
383 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
384 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
385 	D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, RB(0x10c, 0),
386 	       RB(0x10c, 1), RB(0x00, 0), RB(0x00, 0),
387 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
388 	D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, RB(0xfc, 0),
389 	       RB(0xfc, 1), RB(0x00, 0), RB(0x00, 0),
390 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
391 	D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, RB(0xfc, 2),
392 	       RB(0xfc, 3), RB(0x00, 0), RB(0x00, 0),
393 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
394 	D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, RB(0xfc, 4),
395 	       RB(0xfc, 5), RB(0x00, 0), RB(0x00, 0),
396 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
397 	D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, RB(0xfc, 6),
398 	       RB(0xfc, 7), RB(0x00, 0), RB(0x00, 0),
399 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
400 	D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, RB(0x104, 0),
401 	       RB(0x104, 1), RB(0x00, 0), RB(0x00, 0),
402 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
403 	D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, RB(0x104, 2),
404 	       RB(0x104, 3), RB(0x00, 0), RB(0x00, 0),
405 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
406 	D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, RB(0x130, 2),
407 	       RB(0x130, 3), RB(0x00, 0), RB(0x00, 0),
408 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
409 	D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
410 	D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, RB(0x80, 0),
411 		 RB(0x80, 1), RB(0x00, 0), RB(0x80, 2),
412 		 RB(0x00, 0), RB(0x88, 0), RB(0x88, 1)),
413 	D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, RB(0xe8, 0),
414 		 RB(0xe8, 1), RB(0xe8, 2), RB(0x00, 0),
415 		 RB(0x15c, 0), RB(0x00, 0), RB(0x00, 0)),
416 	D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, RB(0x84, 0),
417 		 RB(0x84, 2), RB(0x00, 0), RB(0x84, 1),
418 		 RB(0x00, 0), RB(0x8c, 0), RB(0x8c, 1)),
419 	D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, RB(0x118, 3),
420 		 RB(0x118, 4), RB(0x118, 5), RB(0x00, 0),
421 		 RB(0x168, 1), RB(0x00, 0), RB(0x00, 0)),
422 	D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, RB(0x118, 6),
423 		 RB(0x118, 7), RB(0x118, 8), RB(0x00, 0),
424 		 RB(0x168, 2), RB(0x00, 0), RB(0x00, 0)),
425 	D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, RB(0x118, 9),
426 		 RB(0x118, 10), RB(0x118, 11), RB(0x00, 0),
427 		 RB(0x168, 3), RB(0x00, 0), RB(0x00, 0)),
428 	D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, RB(0xe8, 3),
429 		 RB(0xe8, 4), RB(0xe8, 5), RB(0x00, 0),
430 		 RB(0x15c, 1), RB(0x00, 0), RB(0x00, 0)),
431 	D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, RB(0xe8, 6),
432 		 RB(0xe8, 7), RB(0xe8, 8), RB(0x00, 0),
433 		 RB(0x15c, 2), RB(0x00, 0), RB(0x00, 0)),
434 	D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, RB(0x1c, 3),
435 		 RB(0x00, 0), RB(0x00, 0), RB(0x1c, 4),
436 		 RB(0x00, 0), RB(0x20, 2), RB(0x20, 3)),
437 	D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, RB(0x1c, 0),
438 		 RB(0x1c, 1), RB(0x00, 0), RB(0x1c, 2),
439 		 RB(0x00, 0), RB(0x20, 0), RB(0x20, 1)),
440 	D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, RB(0x1c, 5),
441 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
442 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
443 	D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, RB(0xf0, 12),
444 	       RB(0xf0, 13), RB(0x00, 0), RB(0xf0, 14),
445 	       RB(0x00, 0), RB(0x160, 4), RB(0x160, 5)),
446 	D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, RB(0xf0, 9),
447 	       RB(0xf0, 10), RB(0xf0, 11), RB(0x00, 0),
448 	       RB(0x160, 3), RB(0x00, 0), RB(0x00, 0)),
449 	D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
450 	D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
451 	D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
452 	D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
453 	D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
454 	D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
455 	D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
456 	D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, RB(0xf0, 3),
457 		 RB(0xf0, 4), RB(0xf0, 5), RB(0x00, 0),
458 		 RB(0x160, 1), RB(0x00, 0), RB(0x00, 0)),
459 	D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, RB(0xf0, 6),
460 		 RB(0xf0, 7), RB(0xf0, 8), RB(0x00, 0),
461 		 RB(0x160, 2), RB(0x00, 0), RB(0x00, 0)),
462 	D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, RB(0x3c, 15),
463 		 RB(0x3c, 16), RB(0x3c, 17), RB(0x00, 0),
464 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
465 	D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, RB(0x3c, 12),
466 		 RB(0x3c, 13), RB(0x3c, 14), RB(0x00, 0),
467 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
468 	D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, RB(0xf0, 0),
469 		 RB(0xf0, 1), RB(0xf0, 2), RB(0x00, 0),
470 		 RB(0x160, 0), RB(0x00, 0), RB(0x00, 0)),
471 	D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, RB(0x3c, 0),
472 		 RB(0x3c, 1), RB(0x3c, 2), RB(0x00, 0),
473 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
474 	D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, RB(0x3c, 3),
475 		 RB(0x3c, 4), RB(0x3c, 5), RB(0x00, 0),
476 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
477 	D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
478 	D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, RB(0x174, 0),
479 	       RB(0x174, 1), RB(0x00, 0), RB(0x174, 2),
480 	       RB(0x00, 0), RB(0x178, 0), RB(0x178, 1)),
481 	D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, RB(0x64, 3),
482 	       RB(0x64, 4), RB(0x00, 0), RB(0x00, 0),
483 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
484 	D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, RB(0x80, 3),
485 	       RB(0x80, 4), RB(0x00, 0), RB(0x00, 0),
486 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
487 	D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, RB(0x90, 4),
488 	       RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
489 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
490 	D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, RB(0x18c, 0),
491 	       RB(0x18c, 1), RB(0x00, 0), RB(0x00, 0),
492 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
493 	D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, RB(0x84, 4),
494 	       RB(0x84, 3), RB(0x00, 0), RB(0x00, 0),
495 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
496 	D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, RB(0x34, 15),
497 		 RB(0x34, 16), RB(0x34, 17), RB(0x00, 0),
498 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
499 	D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, RB(0x184, 0),
500 		 RB(0x184, 1), RB(0x184, 2), RB(0x00, 0),
501 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
502 	D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, RB(0x24, 3),
503 		 RB(0x24, 4), RB(0x24, 5), RB(0x00, 0),
504 		 RB(0x28, 2), RB(0x00, 0), RB(0x00, 0)),
505 	D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, RB(0x24, 0),
506 		 RB(0x24, 1), RB(0x00, 0), RB(0x24, 2),
507 		 RB(0x00, 0), RB(0x28, 0), RB(0x28, 1)),
508 	D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, RB(0x64, 0),
509 		 RB(0x64, 2), RB(0x00, 0), RB(0x64, 1),
510 		 RB(0x00, 0), RB(0x74, 0), RB(0x74, 1)),
511 	D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, RB(0x4c, 0),
512 		 RB(0x4c, 1), RB(0x4c, 2), RB(0x4c, 3),
513 		 RB(0x58, 0), RB(0x58, 1), RB(0x58, 2)),
514 	D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, RB(0x4c, 4),
515 		 RB(0x4c, 5), RB(0x4c, 6), RB(0x4c, 7),
516 		 RB(0x58, 3), RB(0x58, 4), RB(0x58, 5)),
517 	D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, RB(0x6c, 0),
518 		 RB(0x6c, 1), RB(0x6c, 2), RB(0x6c, 3),
519 		 RB(0x78, 0), RB(0x78, 1), RB(0x78, 2)),
520 	D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, RB(0x70, 0),
521 		 RB(0x70, 1), RB(0x70, 2), RB(0x70, 3),
522 		 RB(0x7c, 0), RB(0x7c, 1), RB(0x7c, 2)),
523 	D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, RB(0x40, 18),
524 		 RB(0x40, 19), RB(0x40, 20), RB(0x00, 0),
525 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
526 	D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, RB(0x40, 21),
527 		 RB(0x40, 22), RB(0x40, 23), RB(0x00, 0),
528 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
529 	D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, RB(0x44, 9),
530 		 RB(0x44, 10), RB(0x44, 11), RB(0x00, 0),
531 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
532 	D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, RB(0x90, 0),
533 		 RB(0x90, 2), RB(0x00, 0), RB(0x90, 1),
534 		 RB(0x00, 0), RB(0x98, 0), RB(0x98, 1)),
535 	D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, RB(0x34, 9),
536 		 RB(0x34, 10), RB(0x34, 11), RB(0x00, 0),
537 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
538 	D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, RB(0x34, 12),
539 		 RB(0x34, 13), RB(0x34, 14), RB(0x00, 0),
540 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
541 	D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, RB(0xf4, 0),
542 		 RB(0xf4, 1), RB(0xf4, 2), RB(0x00, 0),
543 		 RB(0x164, 0), RB(0x00, 0), RB(0x00, 0)),
544 	D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, RB(0x2c, 4),
545 		 RB(0x2c, 5), RB(0x2c, 6), RB(0x00, 0),
546 		 RB(0x30, 3), RB(0x00, 0), RB(0x00, 0)),
547 	D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, RB(0x2c, 0),
548 		 RB(0x2c, 1), RB(0x2c, 2), RB(0x2c, 3),
549 		 RB(0x30, 0), RB(0x30, 1), RB(0x30, 2)),
550 	D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, RB(0x50, 0),
551 		 RB(0x50, 1), RB(0x50, 2), RB(0x50, 3),
552 		 RB(0x5c, 0), RB(0x5c, 1), RB(0x5c, 2)),
553 	D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, RB(0xf4, 12),
554 		 RB(0xf4, 13), RB(0x00, 0), RB(0xf4, 14),
555 		 RB(0x00, 0), RB(0x164, 4), RB(0x164, 5)),
556 	D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, RB(0x44, 12),
557 		 RB(0x44, 13), RB(0x44, 14), RB(0x00, 0),
558 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
559 	D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, RB(0x44, 15),
560 		 RB(0x44, 16), RB(0x44, 17), RB(0x00, 0),
561 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
562 	D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, RB(0xf4, 6),
563 		 RB(0xf4, 7), RB(0xf4, 8), RB(0x00, 0),
564 		 RB(0x164, 2), RB(0x00, 0), RB(0x00, 0)),
565 	D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, RB(0xf4, 9),
566 		 RB(0xf4, 10), RB(0xf4, 11), RB(0x00, 0),
567 		 RB(0x164, 3), RB(0x00, 0), RB(0x00, 0)),
568 	D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, RB(0x54, 0),
569 		 RB(0x54, 1), RB(0x54, 2), RB(0x54, 3),
570 		 RB(0x60, 0), RB(0x60, 1), RB(0x60, 2)),
571 	D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, RB(0x90, 0),
572 		 RB(0x90, 1), RB(0x90, 2), RB(0x90, 3),
573 		 RB(0x98, 0), RB(0x98, 1), RB(0x98, 2)),
574 	D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, RB(0x154, 0),
575 		 RB(0x154, 1), RB(0x154, 2), RB(0x00, 0),
576 		 RB(0x170, 0), RB(0x00, 0), RB(0x00, 0)),
577 	D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, RB(0x140, 0),
578 		 RB(0x140, 3), RB(0x00, 0), RB(0x140, 2),
579 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
580 	D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, RB(0x0c, 0),
581 		 RB(0x0c, 1), RB(0x0c, 2), RB(0x0c, 3),
582 		 RB(0x10, 0), RB(0x10, 1), RB(0x10, 2)),
583 	D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, RB(0xc8, 0),
584 		 RB(0xc8, 1), RB(0xc8, 2), RB(0xc8, 3),
585 		 RB(0xcc, 0), RB(0xcc, 1), RB(0xcc, 2)),
586 	D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, RB(0xf4, 3),
587 		 RB(0xf4, 4), RB(0xf4, 5), RB(0x00, 0),
588 		 RB(0x164, 1), RB(0x00, 0), RB(0x00, 0)),
589 	D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, RB(0x40, 0),
590 		 RB(0x40, 1), RB(0x40, 2), RB(0x00, 0),
591 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
592 	D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, RB(0x40, 3),
593 		 RB(0x40, 4), RB(0x40, 5), RB(0x00, 0),
594 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
595 	D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, RB(0x40, 6),
596 		 RB(0x40, 7), RB(0x40, 8), RB(0x00, 0),
597 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
598 	D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, RB(0x40, 9),
599 		 RB(0x40, 10), RB(0x40, 11), RB(0x00, 0),
600 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
601 	D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, RB(0x40, 12),
602 		 RB(0x40, 13), RB(0x40, 14), RB(0x00, 0),
603 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
604 	D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, RB(0x40, 15),
605 		 RB(0x40, 16), RB(0x40, 17), RB(0x00, 0),
606 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
607 	D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, RB(0x130, 0),
608 		 RB(0x00, 0), RB(0x130, 1), RB(0x00, 0),
609 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
610 	D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, RB(0x188, 0),
611 		 RB(0x188, 1), RB(0x188, 2), RB(0x00, 0),
612 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
613 	D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, RB(0x34, 0),
614 		 RB(0x34, 1), RB(0x34, 2), RB(0x00, 0),
615 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
616 	D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, RB(0x34, 3),
617 		 RB(0x34, 4), RB(0x34, 5), RB(0x00, 0),
618 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
619 	D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, RB(0x34, 6),
620 		 RB(0x34, 7), RB(0x34, 8), RB(0x00, 0),
621 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
622 	D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, RB(0x40, 24),
623 		 RB(0x40, 25), RB(0x40, 26), RB(0x00, 0),
624 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
625 	D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, RB(0x40, 27),
626 		 RB(0x40, 28), RB(0x40, 29), RB(0x00, 0),
627 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
628 	D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, RB(0x44, 0),
629 		 RB(0x44, 1), RB(0x44, 2), RB(0x00, 0),
630 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
631 	D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, RB(0x44, 3),
632 		 RB(0x44, 4), RB(0x44, 5), RB(0x00, 0),
633 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
634 	D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, RB(0x44, 6),
635 		 RB(0x44, 7), RB(0x44, 8), RB(0x00, 0),
636 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
637 	/*
638 	 * These are not hardware clocks, but are needed to handle the special
639 	 * case where we have a 'selector bit' that doesn't just change the
640 	 * parent for a clock, but also the gate it's supposed to use.
641 	 */
642 	{
643 		.index = R9A06G032_UART_GROUP_012,
644 		.name = "uart_group_012",
645 		.type = K_BITSEL,
646 		.source = 1 + R9A06G032_DIV_UART,
647 		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
648 		.dual.sel = RB(0x34, 30),
649 		.dual.group = 0,
650 	},
651 	{
652 		.index = R9A06G032_UART_GROUP_34567,
653 		.name = "uart_group_34567",
654 		.type = K_BITSEL,
655 		.source = 1 + R9A06G032_DIV_P2_PG,
656 		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
657 		.dual.sel = RB(0xec, 24),
658 		.dual.group = 1,
659 	},
660 	D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0,
661 		RB(0x34, 18), RB(0x34, 19), RB(0x34, 20), RB(0x34, 21)),
662 	D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0,
663 		RB(0x34, 22), RB(0x34, 23), RB(0x34, 24), RB(0x34, 25)),
664 	D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0,
665 		RB(0x34, 26), RB(0x34, 27), RB(0x34, 28), RB(0x34, 29)),
666 	D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1,
667 		RB(0xec, 0), RB(0xec, 1), RB(0xec, 2), RB(0xec, 3)),
668 	D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1,
669 		RB(0xec, 4), RB(0xec, 5), RB(0xec, 6), RB(0xec, 7)),
670 	D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1,
671 		RB(0xec, 8), RB(0xec, 9), RB(0xec, 10), RB(0xec, 11)),
672 	D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1,
673 		RB(0xec, 12), RB(0xec, 13), RB(0xec, 14), RB(0xec, 15)),
674 	D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1,
675 		RB(0xec, 16), RB(0xec, 17), RB(0xec, 18), RB(0xec, 19)),
676 };
677 
678 struct r9a06g032_priv {
679 	struct clk_onecell_data data;
680 	spinlock_t lock; /* protects concurrent access to gates */
681 	void __iomem *reg;
682 };
683 
684 static struct r9a06g032_priv *sysctrl_priv;
685 
686 /* Exported helper to access the DMAMUX register */
687 int r9a06g032_sysctrl_set_dmamux(u32 mask, u32 val)
688 {
689 	unsigned long flags;
690 	u32 dmamux;
691 
692 	if (!sysctrl_priv)
693 		return -EPROBE_DEFER;
694 
695 	spin_lock_irqsave(&sysctrl_priv->lock, flags);
696 
697 	dmamux = readl(sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
698 	dmamux &= ~mask;
699 	dmamux |= val & mask;
700 	writel(dmamux, sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
701 
702 	spin_unlock_irqrestore(&sysctrl_priv->lock, flags);
703 
704 	return 0;
705 }
706 EXPORT_SYMBOL_GPL(r9a06g032_sysctrl_set_dmamux);
707 
708 static void clk_rdesc_set(struct r9a06g032_priv *clocks,
709 			  struct regbit rb, unsigned int on)
710 {
711 	u32 __iomem *reg = clocks->reg + (rb.reg * 4);
712 	u32 val;
713 
714 	if (!rb.reg && !rb.bit)
715 		return;
716 
717 	val = readl(reg);
718 	val = (val & ~BIT(rb.bit)) | ((!!on) << rb.bit);
719 	writel(val, reg);
720 }
721 
722 static int clk_rdesc_get(struct r9a06g032_priv *clocks, struct regbit rb)
723 {
724 	u32 __iomem *reg = clocks->reg + (rb.reg * 4);
725 	u32 val = readl(reg);
726 
727 	return !!(val & BIT(rb.bit));
728 }
729 
730 /*
731  * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
732  * clock gate framework as the gates on the R9A06G032 have a special enabling
733  * sequence, therefore we use this little proxy.
734  */
735 struct r9a06g032_clk_gate {
736 	struct clk_hw hw;
737 	struct r9a06g032_priv *clocks;
738 	u16 index;
739 
740 	struct r9a06g032_gate gate;
741 };
742 
743 #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
744 
745 static int create_add_module_clock(struct of_phandle_args *clkspec,
746 				   struct device *dev)
747 {
748 	struct clk *clk;
749 	int error;
750 
751 	clk = of_clk_get_from_provider(clkspec);
752 	if (IS_ERR(clk))
753 		return PTR_ERR(clk);
754 
755 	error = pm_clk_create(dev);
756 	if (error) {
757 		clk_put(clk);
758 		return error;
759 	}
760 
761 	error = pm_clk_add_clk(dev, clk);
762 	if (error) {
763 		pm_clk_destroy(dev);
764 		clk_put(clk);
765 	}
766 
767 	return error;
768 }
769 
770 static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
771 				struct device *dev)
772 {
773 	struct device_node *np = dev->of_node;
774 	struct of_phandle_args clkspec;
775 	int i = 0;
776 	int error;
777 	int index;
778 
779 	while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i++,
780 					   &clkspec)) {
781 		if (clkspec.np != pd->dev.of_node)
782 			continue;
783 
784 		index = clkspec.args[0];
785 		if (index < R9A06G032_CLOCK_COUNT &&
786 		    r9a06g032_clocks[index].managed) {
787 			error = create_add_module_clock(&clkspec, dev);
788 			of_node_put(clkspec.np);
789 			if (error)
790 				return error;
791 		}
792 	}
793 
794 	return 0;
795 }
796 
797 static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
798 {
799 	if (!pm_clk_no_clocks(dev))
800 		pm_clk_destroy(dev);
801 }
802 
803 static int r9a06g032_add_clk_domain(struct device *dev)
804 {
805 	struct device_node *np = dev->of_node;
806 	struct generic_pm_domain *pd;
807 
808 	pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
809 	if (!pd)
810 		return -ENOMEM;
811 
812 	pd->name = np->name;
813 	pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
814 		    GENPD_FLAG_ACTIVE_WAKEUP;
815 	pd->attach_dev = r9a06g032_attach_dev;
816 	pd->detach_dev = r9a06g032_detach_dev;
817 	pm_genpd_init(pd, &pm_domain_always_on_gov, false);
818 
819 	of_genpd_add_provider_simple(np, pd);
820 	return 0;
821 }
822 
823 static void
824 r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
825 		       struct r9a06g032_gate *g, int on)
826 {
827 	unsigned long flags;
828 
829 	WARN_ON(!g->gate.reg && !g->gate.bit);
830 
831 	spin_lock_irqsave(&clocks->lock, flags);
832 	clk_rdesc_set(clocks, g->gate, on);
833 	/* De-assert reset */
834 	clk_rdesc_set(clocks, g->reset, 1);
835 	spin_unlock_irqrestore(&clocks->lock, flags);
836 
837 	/* Hardware manual recommends 5us delay after enabling clock & reset */
838 	udelay(5);
839 
840 	/* If the peripheral is memory mapped (i.e. an AXI slave), there is an
841 	 * associated SLVRDY bit in the System Controller that needs to be set
842 	 * so that the FlexWAY bus fabric passes on the read/write requests.
843 	 */
844 	spin_lock_irqsave(&clocks->lock, flags);
845 	clk_rdesc_set(clocks, g->ready, on);
846 	/* Clear 'Master Idle Request' bit */
847 	clk_rdesc_set(clocks, g->midle, !on);
848 	spin_unlock_irqrestore(&clocks->lock, flags);
849 
850 	/* Note: We don't wait for FlexWAY Socket Connection signal */
851 }
852 
853 static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
854 {
855 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
856 
857 	r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
858 	return 0;
859 }
860 
861 static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
862 {
863 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
864 
865 	r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
866 }
867 
868 static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
869 {
870 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
871 
872 	/* if clock is in reset, the gate might be on, and still not 'be' on */
873 	if (g->gate.reset.reg && !clk_rdesc_get(g->clocks, g->gate.reset))
874 		return 0;
875 
876 	return clk_rdesc_get(g->clocks, g->gate.gate);
877 }
878 
879 static const struct clk_ops r9a06g032_clk_gate_ops = {
880 	.enable = r9a06g032_clk_gate_enable,
881 	.disable = r9a06g032_clk_gate_disable,
882 	.is_enabled = r9a06g032_clk_gate_is_enabled,
883 };
884 
885 static struct clk *
886 r9a06g032_register_gate(struct r9a06g032_priv *clocks,
887 			const char *parent_name,
888 			const struct r9a06g032_clkdesc *desc)
889 {
890 	struct clk *clk;
891 	struct r9a06g032_clk_gate *g;
892 	struct clk_init_data init = {};
893 
894 	g = kzalloc(sizeof(*g), GFP_KERNEL);
895 	if (!g)
896 		return NULL;
897 
898 	init.name = desc->name;
899 	init.ops = &r9a06g032_clk_gate_ops;
900 	init.flags = CLK_SET_RATE_PARENT;
901 	init.parent_names = parent_name ? &parent_name : NULL;
902 	init.num_parents = parent_name ? 1 : 0;
903 
904 	g->clocks = clocks;
905 	g->index = desc->index;
906 	g->gate = desc->gate;
907 	g->hw.init = &init;
908 
909 	/*
910 	 * important here, some clocks are already in use by the CM3, we
911 	 * have to assume they are not Linux's to play with and try to disable
912 	 * at the end of the boot!
913 	 */
914 	if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
915 		init.flags |= CLK_IS_CRITICAL;
916 		pr_debug("%s was enabled, making read-only\n", desc->name);
917 	}
918 
919 	clk = clk_register(NULL, &g->hw);
920 	if (IS_ERR(clk)) {
921 		kfree(g);
922 		return NULL;
923 	}
924 	return clk;
925 }
926 
927 struct r9a06g032_clk_div {
928 	struct clk_hw hw;
929 	struct r9a06g032_priv *clocks;
930 	u16 index;
931 	u16 reg;
932 	u16 min, max;
933 	u8 table_size;
934 	u16 table[8];	/* we know there are no more than 8 */
935 };
936 
937 #define to_r9a06g032_div(_hw) \
938 		container_of(_hw, struct r9a06g032_clk_div, hw)
939 
940 static unsigned long
941 r9a06g032_div_recalc_rate(struct clk_hw *hw,
942 			  unsigned long parent_rate)
943 {
944 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
945 	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
946 	u32 div = readl(reg);
947 
948 	if (div < clk->min)
949 		div = clk->min;
950 	else if (div > clk->max)
951 		div = clk->max;
952 	return DIV_ROUND_UP(parent_rate, div);
953 }
954 
955 /*
956  * Attempts to find a value that is in range of min,max,
957  * and if a table of set dividers was specified for this
958  * register, try to find the fixed divider that is the closest
959  * to the target frequency
960  */
961 static long
962 r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
963 			unsigned long rate, unsigned long prate)
964 {
965 	/* + 1 to cope with rates that have the remainder dropped */
966 	u32 div = DIV_ROUND_UP(prate, rate + 1);
967 	int i;
968 
969 	if (div <= clk->min)
970 		return clk->min;
971 	if (div >= clk->max)
972 		return clk->max;
973 
974 	for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
975 		if (div >= clk->table[i] && div <= clk->table[i + 1]) {
976 			unsigned long m = rate -
977 				DIV_ROUND_UP(prate, clk->table[i]);
978 			unsigned long p =
979 				DIV_ROUND_UP(prate, clk->table[i + 1]) -
980 				rate;
981 			/*
982 			 * select the divider that generates
983 			 * the value closest to the ideal frequency
984 			 */
985 			div = p >= m ? clk->table[i] : clk->table[i + 1];
986 			return div;
987 		}
988 	}
989 	return div;
990 }
991 
992 static int
993 r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
994 {
995 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
996 	u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate);
997 
998 	pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
999 		 hw->clk, req->rate, req->best_parent_rate, div);
1000 	pr_devel("   min %d (%ld) max %d (%ld)\n",
1001 		 clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min),
1002 		 clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max));
1003 
1004 	div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate);
1005 	/*
1006 	 * this is a hack. Currently the serial driver asks for a clock rate
1007 	 * that is 16 times the baud rate -- and that is wildly outside the
1008 	 * range of the UART divider, somehow there is no provision for that
1009 	 * case of 'let the divider as is if outside range'.
1010 	 * The serial driver *shouldn't* play with these clocks anyway, there's
1011 	 * several uarts attached to this divider, and changing this impacts
1012 	 * everyone.
1013 	 */
1014 	if (clk->index == R9A06G032_DIV_UART ||
1015 	    clk->index == R9A06G032_DIV_P2_PG) {
1016 		pr_devel("%s div uart hack!\n", __func__);
1017 		req->rate = clk_get_rate(hw->clk);
1018 		return 0;
1019 	}
1020 	req->rate = DIV_ROUND_UP(req->best_parent_rate, div);
1021 	pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
1022 		 req->best_parent_rate, div, req->rate);
1023 	return 0;
1024 }
1025 
1026 static int
1027 r9a06g032_div_set_rate(struct clk_hw *hw,
1028 		       unsigned long rate, unsigned long parent_rate)
1029 {
1030 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
1031 	/* + 1 to cope with rates that have the remainder dropped */
1032 	u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
1033 	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
1034 
1035 	pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
1036 		 rate, parent_rate, div);
1037 
1038 	/*
1039 	 * Need to write the bit 31 with the divider value to
1040 	 * latch it. Technically we should wait until it has been
1041 	 * cleared too.
1042 	 * TODO: Find whether this callback is sleepable, in case
1043 	 * the hardware /does/ require some sort of spinloop here.
1044 	 */
1045 	writel(div | BIT(31), reg);
1046 
1047 	return 0;
1048 }
1049 
1050 static const struct clk_ops r9a06g032_clk_div_ops = {
1051 	.recalc_rate = r9a06g032_div_recalc_rate,
1052 	.determine_rate = r9a06g032_div_determine_rate,
1053 	.set_rate = r9a06g032_div_set_rate,
1054 };
1055 
1056 static struct clk *
1057 r9a06g032_register_div(struct r9a06g032_priv *clocks,
1058 		       const char *parent_name,
1059 		       const struct r9a06g032_clkdesc *desc)
1060 {
1061 	struct r9a06g032_clk_div *div;
1062 	struct clk *clk;
1063 	struct clk_init_data init = {};
1064 	unsigned int i;
1065 
1066 	div = kzalloc(sizeof(*div), GFP_KERNEL);
1067 	if (!div)
1068 		return NULL;
1069 
1070 	init.name = desc->name;
1071 	init.ops = &r9a06g032_clk_div_ops;
1072 	init.flags = CLK_SET_RATE_PARENT;
1073 	init.parent_names = parent_name ? &parent_name : NULL;
1074 	init.num_parents = parent_name ? 1 : 0;
1075 
1076 	div->clocks = clocks;
1077 	div->index = desc->index;
1078 	div->reg = desc->div.reg;
1079 	div->hw.init = &init;
1080 	div->min = desc->div.min;
1081 	div->max = desc->div.max;
1082 	/* populate (optional) divider table fixed values */
1083 	for (i = 0; i < ARRAY_SIZE(div->table) &&
1084 	     i < ARRAY_SIZE(desc->div.table) && desc->div.table[i]; i++) {
1085 		div->table[div->table_size++] = desc->div.table[i];
1086 	}
1087 
1088 	clk = clk_register(NULL, &div->hw);
1089 	if (IS_ERR(clk)) {
1090 		kfree(div);
1091 		return NULL;
1092 	}
1093 	return clk;
1094 }
1095 
1096 /*
1097  * This clock provider handles the case of the R9A06G032 where you have
1098  * peripherals that have two potential clock source and two gates, one for
1099  * each of the clock source - the used clock source (for all sub clocks)
1100  * is selected by a single bit.
1101  * That single bit affects all sub-clocks, and therefore needs to change the
1102  * active gate (and turn the others off) and force a recalculation of the rates.
1103  *
1104  * This implements two clock providers, one 'bitselect' that
1105  * handles the switch between both parents, and another 'dualgate'
1106  * that knows which gate to poke at, depending on the parent's bit position.
1107  */
1108 struct r9a06g032_clk_bitsel {
1109 	struct clk_hw	hw;
1110 	struct r9a06g032_priv *clocks;
1111 	u16 index;
1112 	struct regbit selector;		/* selector register + bit */
1113 };
1114 
1115 #define to_clk_bitselect(_hw) \
1116 		container_of(_hw, struct r9a06g032_clk_bitsel, hw)
1117 
1118 static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
1119 {
1120 	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
1121 
1122 	return clk_rdesc_get(set->clocks, set->selector);
1123 }
1124 
1125 static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
1126 {
1127 	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
1128 
1129 	/* a single bit in the register selects one of two parent clocks */
1130 	clk_rdesc_set(set->clocks, set->selector, !!index);
1131 
1132 	return 0;
1133 }
1134 
1135 static const struct clk_ops clk_bitselect_ops = {
1136 	.determine_rate = clk_hw_determine_rate_no_reparent,
1137 	.get_parent = r9a06g032_clk_mux_get_parent,
1138 	.set_parent = r9a06g032_clk_mux_set_parent,
1139 };
1140 
1141 static struct clk *
1142 r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
1143 			  const char *parent_name,
1144 			  const struct r9a06g032_clkdesc *desc)
1145 {
1146 	struct clk *clk;
1147 	struct r9a06g032_clk_bitsel *g;
1148 	struct clk_init_data init = {};
1149 	const char *names[2];
1150 
1151 	/* allocate the gate */
1152 	g = kzalloc(sizeof(*g), GFP_KERNEL);
1153 	if (!g)
1154 		return NULL;
1155 
1156 	names[0] = parent_name;
1157 	names[1] = "clk_pll_usb";
1158 
1159 	init.name = desc->name;
1160 	init.ops = &clk_bitselect_ops;
1161 	init.flags = CLK_SET_RATE_PARENT;
1162 	init.parent_names = names;
1163 	init.num_parents = 2;
1164 
1165 	g->clocks = clocks;
1166 	g->index = desc->index;
1167 	g->selector = desc->dual.sel;
1168 	g->hw.init = &init;
1169 
1170 	clk = clk_register(NULL, &g->hw);
1171 	if (IS_ERR(clk)) {
1172 		kfree(g);
1173 		return NULL;
1174 	}
1175 	return clk;
1176 }
1177 
1178 struct r9a06g032_clk_dualgate {
1179 	struct clk_hw	hw;
1180 	struct r9a06g032_priv *clocks;
1181 	u16 index;
1182 	struct regbit selector;		/* selector register + bit */
1183 	struct r9a06g032_gate gate[2];
1184 };
1185 
1186 #define to_clk_dualgate(_hw) \
1187 		container_of(_hw, struct r9a06g032_clk_dualgate, hw)
1188 
1189 static int
1190 r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
1191 {
1192 	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
1193 
1194 	/* we always turn off the 'other' gate, regardless */
1195 	r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
1196 	r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
1197 
1198 	return 0;
1199 }
1200 
1201 static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
1202 {
1203 	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
1204 
1205 	r9a06g032_clk_dualgate_setenable(gate, 1);
1206 
1207 	return 0;
1208 }
1209 
1210 static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
1211 {
1212 	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
1213 
1214 	r9a06g032_clk_dualgate_setenable(gate, 0);
1215 }
1216 
1217 static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
1218 {
1219 	struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
1220 	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
1221 
1222 	return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
1223 }
1224 
1225 static const struct clk_ops r9a06g032_clk_dualgate_ops = {
1226 	.enable = r9a06g032_clk_dualgate_enable,
1227 	.disable = r9a06g032_clk_dualgate_disable,
1228 	.is_enabled = r9a06g032_clk_dualgate_is_enabled,
1229 };
1230 
1231 static struct clk *
1232 r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
1233 			    const char *parent_name,
1234 			    const struct r9a06g032_clkdesc *desc,
1235 			    struct regbit sel)
1236 {
1237 	struct r9a06g032_clk_dualgate *g;
1238 	struct clk *clk;
1239 	struct clk_init_data init = {};
1240 
1241 	/* allocate the gate */
1242 	g = kzalloc(sizeof(*g), GFP_KERNEL);
1243 	if (!g)
1244 		return NULL;
1245 	g->clocks = clocks;
1246 	g->index = desc->index;
1247 	g->selector = sel;
1248 	g->gate[0].gate = desc->dual.g1;
1249 	g->gate[0].reset = desc->dual.r1;
1250 	g->gate[1].gate = desc->dual.g2;
1251 	g->gate[1].reset = desc->dual.r2;
1252 
1253 	init.name = desc->name;
1254 	init.ops = &r9a06g032_clk_dualgate_ops;
1255 	init.flags = CLK_SET_RATE_PARENT;
1256 	init.parent_names = &parent_name;
1257 	init.num_parents = 1;
1258 	g->hw.init = &init;
1259 	/*
1260 	 * important here, some clocks are already in use by the CM3, we
1261 	 * have to assume they are not Linux's to play with and try to disable
1262 	 * at the end of the boot!
1263 	 */
1264 	if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
1265 		init.flags |= CLK_IS_CRITICAL;
1266 		pr_debug("%s was enabled, making read-only\n", desc->name);
1267 	}
1268 
1269 	clk = clk_register(NULL, &g->hw);
1270 	if (IS_ERR(clk)) {
1271 		kfree(g);
1272 		return NULL;
1273 	}
1274 	return clk;
1275 }
1276 
1277 static void r9a06g032_clocks_del_clk_provider(void *data)
1278 {
1279 	of_clk_del_provider(data);
1280 }
1281 
1282 static int r9a06g032_restart_handler(struct sys_off_data *data)
1283 {
1284 	writel(R9A06G032_SYSCTRL_SWRST, sysctrl_priv->reg + R9A06G032_SYSCTRL_RSTCTRL);
1285 	return NOTIFY_DONE;
1286 }
1287 
1288 static void __init r9a06g032_init_h2mode(struct r9a06g032_priv *clocks)
1289 {
1290 	struct device_node *usbf_np;
1291 	u32 usb;
1292 
1293 	for_each_compatible_node(usbf_np, NULL, "renesas,rzn1-usbf") {
1294 		if (of_device_is_available(usbf_np))
1295 			break;
1296 	}
1297 
1298 	usb = readl(clocks->reg + R9A06G032_SYSCTRL_USB);
1299 	if (usbf_np) {
1300 		/* 1 host and 1 device mode */
1301 		usb &= ~R9A06G032_SYSCTRL_USB_H2MODE;
1302 		of_node_put(usbf_np);
1303 	} else {
1304 		/* 2 hosts mode */
1305 		usb |= R9A06G032_SYSCTRL_USB_H2MODE;
1306 	}
1307 	writel(usb, clocks->reg + R9A06G032_SYSCTRL_USB);
1308 }
1309 
1310 static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
1311 {
1312 	struct device *dev = &pdev->dev;
1313 	struct device_node *np = dev->of_node;
1314 	struct r9a06g032_priv *clocks;
1315 	struct clk **clks;
1316 	struct clk *mclk;
1317 	unsigned int i;
1318 	struct regbit uart_group_sel[2];
1319 	int error;
1320 
1321 	clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
1322 	clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
1323 			    GFP_KERNEL);
1324 	if (!clocks || !clks)
1325 		return -ENOMEM;
1326 
1327 	spin_lock_init(&clocks->lock);
1328 
1329 	clocks->data.clks = clks;
1330 	clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
1331 
1332 	mclk = devm_clk_get(dev, "mclk");
1333 	if (IS_ERR(mclk))
1334 		return PTR_ERR(mclk);
1335 
1336 	clocks->reg = of_iomap(np, 0);
1337 	if (WARN_ON(!clocks->reg))
1338 		return -ENOMEM;
1339 
1340 	r9a06g032_init_h2mode(clocks);
1341 
1342 	/* Clear potentially pending resets */
1343 	writel(R9A06G032_SYSCTRL_WDA7RST_0 | R9A06G032_SYSCTRL_WDA7RST_1,
1344 	       clocks->reg + R9A06G032_SYSCTRL_RSTCTRL);
1345 	/* Allow software reset */
1346 	writel(R9A06G032_SYSCTRL_SWRST | R9A06G032_SYSCTRL_RSTEN_MRESET_EN,
1347 	       clocks->reg + R9A06G032_SYSCTRL_RSTEN);
1348 
1349 	error = devm_register_sys_off_handler(dev, SYS_OFF_MODE_RESTART, SYS_OFF_PRIO_HIGH,
1350 					      r9a06g032_restart_handler, NULL);
1351 	if (error)
1352 		dev_warn(dev, "couldn't register restart handler (%d)\n", error);
1353 
1354 	for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
1355 		const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
1356 		const char *parent_name = d->source ?
1357 			__clk_get_name(clocks->data.clks[d->source - 1]) :
1358 			__clk_get_name(mclk);
1359 		struct clk *clk = NULL;
1360 
1361 		switch (d->type) {
1362 		case K_FFC:
1363 			clk = clk_register_fixed_factor(NULL, d->name,
1364 							parent_name, 0,
1365 							d->ffc.mul,
1366 							d->ffc.div);
1367 			break;
1368 		case K_GATE:
1369 			clk = r9a06g032_register_gate(clocks, parent_name, d);
1370 			break;
1371 		case K_DIV:
1372 			clk = r9a06g032_register_div(clocks, parent_name, d);
1373 			break;
1374 		case K_BITSEL:
1375 			/* keep that selector register around */
1376 			uart_group_sel[d->dual.group] = d->dual.sel;
1377 			clk = r9a06g032_register_bitsel(clocks, parent_name, d);
1378 			break;
1379 		case K_DUALGATE:
1380 			clk = r9a06g032_register_dualgate(clocks, parent_name,
1381 							  d,
1382 							  uart_group_sel[d->dual.group]);
1383 			break;
1384 		}
1385 		clocks->data.clks[d->index] = clk;
1386 	}
1387 	error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
1388 	if (error)
1389 		return error;
1390 
1391 	error = devm_add_action_or_reset(dev,
1392 					r9a06g032_clocks_del_clk_provider, np);
1393 	if (error)
1394 		return error;
1395 
1396 	error = r9a06g032_add_clk_domain(dev);
1397 	if (error)
1398 		return error;
1399 
1400 	sysctrl_priv = clocks;
1401 
1402 	error = of_platform_populate(np, NULL, NULL, dev);
1403 	if (error)
1404 		dev_err(dev, "Failed to populate children (%d)\n", error);
1405 
1406 	return 0;
1407 }
1408 
1409 static const struct of_device_id r9a06g032_match[] = {
1410 	{ .compatible = "renesas,r9a06g032-sysctrl" },
1411 	{ }
1412 };
1413 
1414 static struct platform_driver r9a06g032_clock_driver = {
1415 	.driver		= {
1416 		.name	= "renesas,r9a06g032-sysctrl",
1417 		.of_match_table = r9a06g032_match,
1418 	},
1419 };
1420 
1421 static int __init r9a06g032_clocks_init(void)
1422 {
1423 	return platform_driver_probe(&r9a06g032_clock_driver,
1424 			r9a06g032_clocks_probe);
1425 }
1426 
1427 subsys_initcall(r9a06g032_clocks_init);
1428