xref: /linux/drivers/clk/renesas/r9a06g032-clocks.c (revision 80154575849778e40d9d87aa7ab14491ac401948)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * R9A06G032 clock driver
4  *
5  * Copyright (C) 2018 Renesas Electronics Europe Limited
6  *
7  * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_clock.h>
22 #include <linux/pm_domain.h>
23 #include <linux/slab.h>
24 #include <linux/soc/renesas/r9a06g032-sysctrl.h>
25 #include <linux/spinlock.h>
26 #include <dt-bindings/clock/r9a06g032-sysctrl.h>
27 
28 #define R9A06G032_SYSCTRL_USB    0x00
29 #define R9A06G032_SYSCTRL_USB_H2MODE  (1<<1)
30 #define R9A06G032_SYSCTRL_DMAMUX 0xA0
31 
32 /**
33  * struct regbit - describe one bit in a register
34  * @reg: offset of register relative to base address,
35  *          expressed in units of 32-bit words (not bytes),
36  * @bit: which bit (0 to 31) in the register
37  *
38  * This structure is used to compactly encode the location
39  * of a single bit in a register. Five bits are needed to
40  * encode the bit number. With uint16_t data type, this
41  * leaves 11 bits to encode a register offset up to 2047.
42  *
43  * Since registers are aligned on 32-bit boundaries, the
44  * offset will be specified in 32-bit words rather than bytes.
45  * This allows encoding an offset up to 0x1FFC (8188) bytes.
46  *
47  * Helper macro RB() takes care of converting the register
48  * offset from bytes to 32-bit words.
49  */
50 struct regbit {
51 	u16 bit:5;
52 	u16 reg:11;
53 };
54 
55 #define RB(_reg, _bit) ((struct regbit) { \
56 	.reg = (_reg) / 4, \
57 	.bit = (_bit) \
58 })
59 
60 /**
61  * struct r9a06g032_gate - clock-related control bits
62  * @gate:   clock enable/disable
63  * @reset:  clock module reset (active low)
64  * @ready:  enables NoC forwarding of read/write requests to device,
65  *          (eg. device is ready to handle read/write requests)
66  * @midle:  request to idle the NoC interconnect
67  *
68  * Each of these fields describes a single bit in a register,
69  * which controls some aspect of clock gating. The @gate field
70  * is mandatory, this one enables/disables the clock. The
71  * other fields are optional, with zero indicating "not used".
72  *
73  * In most cases there is a @reset bit which needs to be
74  * de-asserted to bring the module out of reset.
75  *
76  * Modules may also need to signal when they are @ready to
77  * handle requests (read/writes) from the NoC interconnect.
78  *
79  * Similarly, the @midle bit is used to idle the master.
80  */
81 struct r9a06g032_gate {
82 	struct regbit gate, reset, ready, midle;
83 	/* Unused fields omitted to save space */
84 	/* struct regbit scon, mirack, mistat */;
85 };
86 
87 enum gate_type {
88 	K_GATE = 0,	/* gate which enable/disable */
89 	K_FFC,		/* fixed factor clock */
90 	K_DIV,		/* divisor */
91 	K_BITSEL,	/* special for UARTs */
92 	K_DUALGATE	/* special for UARTs */
93 };
94 
95 /**
96  * struct r9a06g032_clkdesc - describe a single clock
97  * @name:      string describing this clock
98  * @managed:   boolean indicating if this clock should be
99  *             started/stopped as part of power management
100  * @type:      see enum @gate_type
101  * @index:     the ID of this clock element
102  * @source:    the ID+1 of the parent clock element.
103  *             Root clock uses ID of ~0 (PARENT_ID);
104  * @gate:      clock enable/disable
105  * @div:       substructure for clock divider
106  * @div.min:   smallest permitted clock divider
107  * @div.max:   largest permitted clock divider
108  * @div.reg:   clock divider register offset, in 32-bit words
109  * @div.table: optional list of fixed clock divider values;
110  *             must be in ascending order, zero for unused
111  * @ffc:       substructure for fixed-factor clocks
112  * @ffc.div:   divisor for fixed-factor clock
113  * @ffc.mul:   multiplier for fixed-factor clock
114  * @dual:      substructure for dual clock gates
115  * @dual.group: UART group, 0=UART0/1/2, 1=UART3/4/5/6/7
116  * @dual.sel:  select either g1/r1 or g2/r2 as clock source
117  * @dual.g1:   1st source gate (clock enable/disable)
118  * @dual.r1:   1st source reset (module reset)
119  * @dual.g2:   2nd source gate (clock enable/disable)
120  * @dual.r2:   2nd source reset (module reset)
121  *
122  * Describes a single element in the clock tree hierarchy.
123  * As there are quite a large number of clock elements, this
124  * structure is packed tightly to conserve space.
125  */
126 struct r9a06g032_clkdesc {
127 	const char *name;
128 	uint32_t managed:1;
129 	enum gate_type type:3;
130 	uint32_t index:8;
131 	uint32_t source:8; /* source index + 1 (0 == none) */
132 	union {
133 		/* type = K_GATE */
134 		struct r9a06g032_gate gate;
135 		/* type = K_DIV  */
136 		struct {
137 			unsigned int min:10, max:10, reg:10;
138 			u16 table[4];
139 		} div;
140 		/* type = K_FFC */
141 		struct {
142 			u16 div, mul;
143 		} ffc;
144 		/* type = K_DUALGATE */
145 		struct {
146 			uint16_t group:1;
147 			struct regbit sel, g1, r1, g2, r2;
148 		} dual;
149 	};
150 };
151 
152 /*
153  * The last three arguments are not currently used,
154  * but are kept in the r9a06g032_clocks table below.
155  */
156 #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) { \
157 	.gate = _clk, \
158 	.reset = _rst, \
159 	.ready = _rdy, \
160 	.midle = _midle, \
161 	/* .scon = _scon, */ \
162 	/* .mirack = _mirack, */ \
163 	/* .mistat = _mistat */ \
164 }
165 #define D_GATE(_idx, _n, _src, ...) { \
166 	.type = K_GATE, \
167 	.index = R9A06G032_##_idx, \
168 	.source = 1 + R9A06G032_##_src, \
169 	.name = _n, \
170 	.gate = I_GATE(__VA_ARGS__) \
171 }
172 #define D_MODULE(_idx, _n, _src, ...) { \
173 	.type = K_GATE, \
174 	.index = R9A06G032_##_idx, \
175 	.source = 1 + R9A06G032_##_src, \
176 	.name = _n, \
177 	.managed = 1, \
178 	.gate = I_GATE(__VA_ARGS__) \
179 }
180 #define D_ROOT(_idx, _n, _mul, _div) { \
181 	.type = K_FFC, \
182 	.index = R9A06G032_##_idx, \
183 	.name = _n, \
184 	.ffc.div = _div, \
185 	.ffc.mul = _mul \
186 }
187 #define D_FFC(_idx, _n, _src, _div) { \
188 	.type = K_FFC, \
189 	.index = R9A06G032_##_idx, \
190 	.source = 1 + R9A06G032_##_src, \
191 	.name = _n, \
192 	.ffc.div = _div, \
193 	.ffc.mul = 1 \
194 }
195 #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) { \
196 	.type = K_DIV, \
197 	.index = R9A06G032_##_idx, \
198 	.source = 1 + R9A06G032_##_src, \
199 	.name = _n, \
200 	.div.reg = _reg, \
201 	.div.min = _min, \
202 	.div.max = _max, \
203 	.div.table = { __VA_ARGS__ } \
204 }
205 #define D_UGATE(_idx, _n, _src, _g, _g1, _r1, _g2, _r2) { \
206 	.type = K_DUALGATE, \
207 	.index = R9A06G032_##_idx, \
208 	.source = 1 + R9A06G032_##_src, \
209 	.name = _n, \
210 	.dual = { \
211 		.group = _g, \
212 		.g1 = _g1, \
213 		.r1 = _r1, \
214 		.g2 = _g2, \
215 		.r2 = _r2 \
216 	}, \
217 }
218 
219 /* Internal clock IDs */
220 #define R9A06G032_CLKOUT		0
221 #define R9A06G032_CLKOUT_D10		2
222 #define R9A06G032_CLKOUT_D16		3
223 #define R9A06G032_CLKOUT_D160		4
224 #define R9A06G032_CLKOUT_D1OR2		5
225 #define R9A06G032_CLKOUT_D20		6
226 #define R9A06G032_CLKOUT_D40		7
227 #define R9A06G032_CLKOUT_D5		8
228 #define R9A06G032_CLKOUT_D8		9
229 #define R9A06G032_DIV_ADC		10
230 #define R9A06G032_DIV_I2C		11
231 #define R9A06G032_DIV_NAND		12
232 #define R9A06G032_DIV_P1_PG		13
233 #define R9A06G032_DIV_P2_PG		14
234 #define R9A06G032_DIV_P3_PG		15
235 #define R9A06G032_DIV_P4_PG		16
236 #define R9A06G032_DIV_P5_PG		17
237 #define R9A06G032_DIV_P6_PG		18
238 #define R9A06G032_DIV_QSPI0		19
239 #define R9A06G032_DIV_QSPI1		20
240 #define R9A06G032_DIV_REF_SYNC		21
241 #define R9A06G032_DIV_SDIO0		22
242 #define R9A06G032_DIV_SDIO1		23
243 #define R9A06G032_DIV_SWITCH		24
244 #define R9A06G032_DIV_UART		25
245 #define R9A06G032_DIV_MOTOR		64
246 #define R9A06G032_CLK_DDRPHY_PLLCLK_D4	78
247 #define R9A06G032_CLK_ECAT100_D4	79
248 #define R9A06G032_CLK_HSR100_D2		80
249 #define R9A06G032_CLK_REF_SYNC_D4	81
250 #define R9A06G032_CLK_REF_SYNC_D8	82
251 #define R9A06G032_CLK_SERCOS100_D2	83
252 #define R9A06G032_DIV_CA7		84
253 
254 #define R9A06G032_UART_GROUP_012	154
255 #define R9A06G032_UART_GROUP_34567	155
256 
257 #define R9A06G032_CLOCK_COUNT		(R9A06G032_UART_GROUP_34567 + 1)
258 
259 static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
260 	D_ROOT(CLKOUT, "clkout", 25, 1),
261 	D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
262 	D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
263 	D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
264 	D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
265 	D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
266 	D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
267 	D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
268 	D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
269 	D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
270 	D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
271 	D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
272 	D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
273 	D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
274 	D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
275 	D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
276 	D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
277 	D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
278 	D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
279 	D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
280 	D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
281 	D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
282 	D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
283 	D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
284 	D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
285 	D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
286 	D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, RB(0xe8, 9),
287 	       RB(0xe8, 10), RB(0xe8, 11), RB(0x00, 0),
288 	       RB(0x15c, 3), RB(0x00, 0), RB(0x00, 0)),
289 	D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, RB(0xe8, 12),
290 	       RB(0xe8, 13), RB(0xe8, 14), RB(0x00, 0),
291 	       RB(0x15c, 4), RB(0x00, 0), RB(0x00, 0)),
292 	D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, RB(0xe8, 15),
293 	       RB(0xe8, 16), RB(0xe8, 17), RB(0x00, 0),
294 	       RB(0x15c, 5), RB(0x00, 0), RB(0x00, 0)),
295 	D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, RB(0xe8, 18),
296 	       RB(0xe8, 19), RB(0xe8, 20), RB(0x00, 0),
297 	       RB(0x15c, 6), RB(0x00, 0), RB(0x00, 0)),
298 	D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, RB(0xe8, 21),
299 	       RB(0xe8, 22), RB(0xe8, 23), RB(0x00, 0),
300 	       RB(0x15c, 7), RB(0x00, 0), RB(0x00, 0)),
301 	D_GATE(CLK_ADC, "clk_adc", DIV_ADC, RB(0x3c, 10),
302 	       RB(0x3c, 11), RB(0x00, 0), RB(0x00, 0),
303 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
304 	D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, RB(0x80, 5),
305 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
306 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
307 	D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, RB(0x90, 3),
308 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
309 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
310 	D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, RB(0x3c, 6),
311 	       RB(0x3c, 7), RB(0x00, 0), RB(0x00, 0),
312 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
313 	D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, RB(0x3c, 8),
314 	       RB(0x3c, 9), RB(0x00, 0), RB(0x00, 0),
315 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
316 	D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, RB(0x68, 2),
317 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
318 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
319 	D_GATE(CLK_NAND, "clk_nand", DIV_NAND, RB(0x50, 4),
320 	       RB(0x50, 5), RB(0x00, 0), RB(0x00, 0),
321 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
322 	D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, RB(0xec, 20),
323 	       RB(0xec, 21), RB(0x00, 0), RB(0x00, 0),
324 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
325 	D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, RB(0x10c, 2),
326 	       RB(0x10c, 3), RB(0x00, 0), RB(0x00, 0),
327 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
328 	D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, RB(0x10c, 4),
329 	       RB(0x10c, 5), RB(0x00, 0), RB(0x00, 0),
330 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
331 	D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, RB(0x10c, 6),
332 	       RB(0x10c, 7), RB(0x00, 0), RB(0x00, 0),
333 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
334 	D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, RB(0x104, 4),
335 	       RB(0x104, 5), RB(0x00, 0), RB(0x00, 0),
336 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
337 	D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, RB(0x104, 6),
338 	       RB(0x104, 7), RB(0x00, 0), RB(0x00, 0),
339 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
340 	D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, RB(0x114, 0),
341 	       RB(0x114, 1), RB(0x114, 2), RB(0x00, 0),
342 	       RB(0x16c, 0), RB(0x00, 0), RB(0x00, 0)),
343 	D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, RB(0x114, 3),
344 	       RB(0x114, 4), RB(0x114, 5), RB(0x00, 0),
345 	       RB(0x16c, 1), RB(0x00, 0), RB(0x00, 0)),
346 	D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, RB(0x114, 6),
347 	       RB(0x114, 7), RB(0x114, 8), RB(0x00, 0),
348 	       RB(0x16c, 2), RB(0x00, 0), RB(0x00, 0)),
349 	D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, RB(0x114, 9),
350 	       RB(0x114, 10), RB(0x114, 11), RB(0x00, 0),
351 	       RB(0x16c, 3), RB(0x00, 0), RB(0x00, 0)),
352 	D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, RB(0x1c, 6),
353 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
354 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
355 	D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, RB(0x54, 4),
356 	       RB(0x54, 5), RB(0x00, 0), RB(0x00, 0),
357 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
358 	D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, RB(0x90, 4),
359 	       RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
360 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
361 	D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, RB(0x68, 0),
362 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
363 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
364 	D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, RB(0x68, 1),
365 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
366 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
367 	D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, RB(0x0c, 4),
368 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
369 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
370 	D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, RB(0xc8, 4),
371 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
372 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
373 	D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, RB(0x84, 5),
374 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
375 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
376 	D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, RB(0x10c, 0),
377 	       RB(0x10c, 1), RB(0x00, 0), RB(0x00, 0),
378 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
379 	D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, RB(0xfc, 0),
380 	       RB(0xfc, 1), RB(0x00, 0), RB(0x00, 0),
381 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
382 	D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, RB(0xfc, 2),
383 	       RB(0xfc, 3), RB(0x00, 0), RB(0x00, 0),
384 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
385 	D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, RB(0xfc, 4),
386 	       RB(0xfc, 5), RB(0x00, 0), RB(0x00, 0),
387 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
388 	D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, RB(0xfc, 6),
389 	       RB(0xfc, 7), RB(0x00, 0), RB(0x00, 0),
390 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
391 	D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, RB(0x104, 0),
392 	       RB(0x104, 1), RB(0x00, 0), RB(0x00, 0),
393 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
394 	D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, RB(0x104, 2),
395 	       RB(0x104, 3), RB(0x00, 0), RB(0x00, 0),
396 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
397 	D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, RB(0x130, 2),
398 	       RB(0x130, 3), RB(0x00, 0), RB(0x00, 0),
399 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
400 	D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
401 	D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, RB(0x80, 0),
402 		 RB(0x80, 1), RB(0x00, 0), RB(0x80, 2),
403 		 RB(0x00, 0), RB(0x88, 0), RB(0x88, 1)),
404 	D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, RB(0xe8, 0),
405 		 RB(0xe8, 1), RB(0xe8, 2), RB(0x00, 0),
406 		 RB(0x15c, 0), RB(0x00, 0), RB(0x00, 0)),
407 	D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, RB(0x84, 0),
408 		 RB(0x84, 2), RB(0x00, 0), RB(0x84, 1),
409 		 RB(0x00, 0), RB(0x8c, 0), RB(0x8c, 1)),
410 	D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, RB(0x118, 3),
411 		 RB(0x118, 4), RB(0x118, 5), RB(0x00, 0),
412 		 RB(0x168, 1), RB(0x00, 0), RB(0x00, 0)),
413 	D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, RB(0x118, 6),
414 		 RB(0x118, 7), RB(0x118, 8), RB(0x00, 0),
415 		 RB(0x168, 2), RB(0x00, 0), RB(0x00, 0)),
416 	D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, RB(0x118, 9),
417 		 RB(0x118, 10), RB(0x118, 11), RB(0x00, 0),
418 		 RB(0x168, 3), RB(0x00, 0), RB(0x00, 0)),
419 	D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, RB(0xe8, 3),
420 		 RB(0xe8, 4), RB(0xe8, 5), RB(0x00, 0),
421 		 RB(0x15c, 1), RB(0x00, 0), RB(0x00, 0)),
422 	D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, RB(0xe8, 6),
423 		 RB(0xe8, 7), RB(0xe8, 8), RB(0x00, 0),
424 		 RB(0x15c, 2), RB(0x00, 0), RB(0x00, 0)),
425 	D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, RB(0x1c, 3),
426 		 RB(0x00, 0), RB(0x00, 0), RB(0x1c, 4),
427 		 RB(0x00, 0), RB(0x20, 2), RB(0x20, 3)),
428 	D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, RB(0x1c, 0),
429 		 RB(0x1c, 1), RB(0x00, 0), RB(0x1c, 2),
430 		 RB(0x00, 0), RB(0x20, 0), RB(0x20, 1)),
431 	D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, RB(0x1c, 5),
432 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
433 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
434 	D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, RB(0xf0, 12),
435 	       RB(0xf0, 13), RB(0x00, 0), RB(0xf0, 14),
436 	       RB(0x00, 0), RB(0x160, 4), RB(0x160, 5)),
437 	D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, RB(0xf0, 9),
438 	       RB(0xf0, 10), RB(0xf0, 11), RB(0x00, 0),
439 	       RB(0x160, 3), RB(0x00, 0), RB(0x00, 0)),
440 	D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
441 	D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
442 	D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
443 	D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
444 	D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
445 	D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
446 	D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
447 	D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, RB(0xf0, 3),
448 		 RB(0xf0, 4), RB(0xf0, 5), RB(0x00, 0),
449 		 RB(0x160, 1), RB(0x00, 0), RB(0x00, 0)),
450 	D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, RB(0xf0, 6),
451 		 RB(0xf0, 7), RB(0xf0, 8), RB(0x00, 0),
452 		 RB(0x160, 2), RB(0x00, 0), RB(0x00, 0)),
453 	D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, RB(0x3c, 15),
454 		 RB(0x3c, 16), RB(0x3c, 17), RB(0x00, 0),
455 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
456 	D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, RB(0x3c, 12),
457 		 RB(0x3c, 13), RB(0x3c, 14), RB(0x00, 0),
458 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
459 	D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, RB(0xf0, 0),
460 		 RB(0xf0, 1), RB(0xf0, 2), RB(0x00, 0),
461 		 RB(0x160, 0), RB(0x00, 0), RB(0x00, 0)),
462 	D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, RB(0x3c, 0),
463 		 RB(0x3c, 1), RB(0x3c, 2), RB(0x00, 0),
464 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
465 	D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, RB(0x3c, 3),
466 		 RB(0x3c, 4), RB(0x3c, 5), RB(0x00, 0),
467 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
468 	D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
469 	D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, RB(0x174, 0),
470 	       RB(0x174, 1), RB(0x00, 0), RB(0x174, 2),
471 	       RB(0x00, 0), RB(0x178, 0), RB(0x178, 1)),
472 	D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, RB(0x64, 3),
473 	       RB(0x64, 4), RB(0x00, 0), RB(0x00, 0),
474 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
475 	D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, RB(0x80, 3),
476 	       RB(0x80, 4), RB(0x00, 0), RB(0x00, 0),
477 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
478 	D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, RB(0x90, 4),
479 	       RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
480 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
481 	D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, RB(0x18c, 0),
482 	       RB(0x18c, 1), RB(0x00, 0), RB(0x00, 0),
483 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
484 	D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, RB(0x84, 4),
485 	       RB(0x84, 3), RB(0x00, 0), RB(0x00, 0),
486 	       RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
487 	D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, RB(0x34, 15),
488 		 RB(0x34, 16), RB(0x34, 17), RB(0x00, 0),
489 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
490 	D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, RB(0x184, 0),
491 		 RB(0x184, 1), RB(0x184, 2), RB(0x00, 0),
492 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
493 	D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, RB(0x24, 3),
494 		 RB(0x24, 4), RB(0x24, 5), RB(0x00, 0),
495 		 RB(0x28, 2), RB(0x00, 0), RB(0x00, 0)),
496 	D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, RB(0x24, 0),
497 		 RB(0x24, 1), RB(0x00, 0), RB(0x24, 2),
498 		 RB(0x00, 0), RB(0x28, 0), RB(0x28, 1)),
499 	D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, RB(0x64, 0),
500 		 RB(0x64, 2), RB(0x00, 0), RB(0x64, 1),
501 		 RB(0x00, 0), RB(0x74, 0), RB(0x74, 1)),
502 	D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, RB(0x4c, 0),
503 		 RB(0x4c, 1), RB(0x4c, 2), RB(0x4c, 3),
504 		 RB(0x58, 0), RB(0x58, 1), RB(0x58, 2)),
505 	D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, RB(0x4c, 4),
506 		 RB(0x4c, 5), RB(0x4c, 6), RB(0x4c, 7),
507 		 RB(0x58, 3), RB(0x58, 4), RB(0x58, 5)),
508 	D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, RB(0x6c, 0),
509 		 RB(0x6c, 1), RB(0x6c, 2), RB(0x6c, 3),
510 		 RB(0x78, 0), RB(0x78, 1), RB(0x78, 2)),
511 	D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, RB(0x70, 0),
512 		 RB(0x70, 1), RB(0x70, 2), RB(0x70, 3),
513 		 RB(0x7c, 0), RB(0x7c, 1), RB(0x7c, 2)),
514 	D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, RB(0x40, 18),
515 		 RB(0x40, 19), RB(0x40, 20), RB(0x00, 0),
516 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
517 	D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, RB(0x40, 21),
518 		 RB(0x40, 22), RB(0x40, 23), RB(0x00, 0),
519 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
520 	D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, RB(0x44, 9),
521 		 RB(0x44, 10), RB(0x44, 11), RB(0x00, 0),
522 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
523 	D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, RB(0x90, 0),
524 		 RB(0x90, 2), RB(0x00, 0), RB(0x90, 1),
525 		 RB(0x00, 0), RB(0x98, 0), RB(0x98, 1)),
526 	D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, RB(0x34, 9),
527 		 RB(0x34, 10), RB(0x34, 11), RB(0x00, 0),
528 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
529 	D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, RB(0x34, 12),
530 		 RB(0x34, 13), RB(0x34, 14), RB(0x00, 0),
531 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
532 	D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, RB(0xf4, 0),
533 		 RB(0xf4, 1), RB(0xf4, 2), RB(0x00, 0),
534 		 RB(0x164, 0), RB(0x00, 0), RB(0x00, 0)),
535 	D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, RB(0x2c, 4),
536 		 RB(0x2c, 5), RB(0x2c, 6), RB(0x00, 0),
537 		 RB(0x30, 3), RB(0x00, 0), RB(0x00, 0)),
538 	D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, RB(0x2c, 0),
539 		 RB(0x2c, 1), RB(0x2c, 2), RB(0x2c, 3),
540 		 RB(0x30, 0), RB(0x30, 1), RB(0x30, 2)),
541 	D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, RB(0x50, 0),
542 		 RB(0x50, 1), RB(0x50, 2), RB(0x50, 3),
543 		 RB(0x5c, 0), RB(0x5c, 1), RB(0x5c, 2)),
544 	D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, RB(0xf4, 12),
545 		 RB(0xf4, 13), RB(0x00, 0), RB(0xf4, 14),
546 		 RB(0x00, 0), RB(0x164, 4), RB(0x164, 5)),
547 	D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, RB(0x44, 12),
548 		 RB(0x44, 13), RB(0x44, 14), RB(0x00, 0),
549 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
550 	D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, RB(0x44, 15),
551 		 RB(0x44, 16), RB(0x44, 17), RB(0x00, 0),
552 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
553 	D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, RB(0xf4, 6),
554 		 RB(0xf4, 7), RB(0xf4, 8), RB(0x00, 0),
555 		 RB(0x164, 2), RB(0x00, 0), RB(0x00, 0)),
556 	D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, RB(0xf4, 9),
557 		 RB(0xf4, 10), RB(0xf4, 11), RB(0x00, 0),
558 		 RB(0x164, 3), RB(0x00, 0), RB(0x00, 0)),
559 	D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, RB(0x54, 0),
560 		 RB(0x54, 1), RB(0x54, 2), RB(0x54, 3),
561 		 RB(0x60, 0), RB(0x60, 1), RB(0x60, 2)),
562 	D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, RB(0x90, 0),
563 		 RB(0x90, 1), RB(0x90, 2), RB(0x90, 3),
564 		 RB(0x98, 0), RB(0x98, 1), RB(0x98, 2)),
565 	D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, RB(0x154, 0),
566 		 RB(0x154, 1), RB(0x154, 2), RB(0x00, 0),
567 		 RB(0x170, 0), RB(0x00, 0), RB(0x00, 0)),
568 	D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, RB(0x140, 0),
569 		 RB(0x140, 3), RB(0x00, 0), RB(0x140, 2),
570 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
571 	D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, RB(0x0c, 0),
572 		 RB(0x0c, 1), RB(0x0c, 2), RB(0x0c, 3),
573 		 RB(0x10, 0), RB(0x10, 1), RB(0x10, 2)),
574 	D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, RB(0xc8, 0),
575 		 RB(0xc8, 1), RB(0xc8, 2), RB(0xc8, 3),
576 		 RB(0xcc, 0), RB(0xcc, 1), RB(0xcc, 2)),
577 	D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, RB(0xf4, 3),
578 		 RB(0xf4, 4), RB(0xf4, 5), RB(0x00, 0),
579 		 RB(0x164, 1), RB(0x00, 0), RB(0x00, 0)),
580 	D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, RB(0x40, 0),
581 		 RB(0x40, 1), RB(0x40, 2), RB(0x00, 0),
582 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
583 	D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, RB(0x40, 3),
584 		 RB(0x40, 4), RB(0x40, 5), RB(0x00, 0),
585 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
586 	D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, RB(0x40, 6),
587 		 RB(0x40, 7), RB(0x40, 8), RB(0x00, 0),
588 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
589 	D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, RB(0x40, 9),
590 		 RB(0x40, 10), RB(0x40, 11), RB(0x00, 0),
591 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
592 	D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, RB(0x40, 12),
593 		 RB(0x40, 13), RB(0x40, 14), RB(0x00, 0),
594 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
595 	D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, RB(0x40, 15),
596 		 RB(0x40, 16), RB(0x40, 17), RB(0x00, 0),
597 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
598 	D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, RB(0x130, 0),
599 		 RB(0x00, 0), RB(0x130, 1), RB(0x00, 0),
600 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
601 	D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, RB(0x188, 0),
602 		 RB(0x188, 1), RB(0x188, 2), RB(0x00, 0),
603 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
604 	D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, RB(0x34, 0),
605 		 RB(0x34, 1), RB(0x34, 2), RB(0x00, 0),
606 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
607 	D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, RB(0x34, 3),
608 		 RB(0x34, 4), RB(0x34, 5), RB(0x00, 0),
609 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
610 	D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, RB(0x34, 6),
611 		 RB(0x34, 7), RB(0x34, 8), RB(0x00, 0),
612 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
613 	D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, RB(0x40, 24),
614 		 RB(0x40, 25), RB(0x40, 26), RB(0x00, 0),
615 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
616 	D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, RB(0x40, 27),
617 		 RB(0x40, 28), RB(0x40, 29), RB(0x00, 0),
618 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
619 	D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, RB(0x44, 0),
620 		 RB(0x44, 1), RB(0x44, 2), RB(0x00, 0),
621 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
622 	D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, RB(0x44, 3),
623 		 RB(0x44, 4), RB(0x44, 5), RB(0x00, 0),
624 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
625 	D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, RB(0x44, 6),
626 		 RB(0x44, 7), RB(0x44, 8), RB(0x00, 0),
627 		 RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
628 	/*
629 	 * These are not hardware clocks, but are needed to handle the special
630 	 * case where we have a 'selector bit' that doesn't just change the
631 	 * parent for a clock, but also the gate it's supposed to use.
632 	 */
633 	{
634 		.index = R9A06G032_UART_GROUP_012,
635 		.name = "uart_group_012",
636 		.type = K_BITSEL,
637 		.source = 1 + R9A06G032_DIV_UART,
638 		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
639 		.dual.sel = RB(0x34, 30),
640 		.dual.group = 0,
641 	},
642 	{
643 		.index = R9A06G032_UART_GROUP_34567,
644 		.name = "uart_group_34567",
645 		.type = K_BITSEL,
646 		.source = 1 + R9A06G032_DIV_P2_PG,
647 		/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
648 		.dual.sel = RB(0xec, 24),
649 		.dual.group = 1,
650 	},
651 	D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0,
652 		RB(0x34, 18), RB(0x34, 19), RB(0x34, 20), RB(0x34, 21)),
653 	D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0,
654 		RB(0x34, 22), RB(0x34, 23), RB(0x34, 24), RB(0x34, 25)),
655 	D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0,
656 		RB(0x34, 26), RB(0x34, 27), RB(0x34, 28), RB(0x34, 29)),
657 	D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1,
658 		RB(0xec, 0), RB(0xec, 1), RB(0xec, 2), RB(0xec, 3)),
659 	D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1,
660 		RB(0xec, 4), RB(0xec, 5), RB(0xec, 6), RB(0xec, 7)),
661 	D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1,
662 		RB(0xec, 8), RB(0xec, 9), RB(0xec, 10), RB(0xec, 11)),
663 	D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1,
664 		RB(0xec, 12), RB(0xec, 13), RB(0xec, 14), RB(0xec, 15)),
665 	D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1,
666 		RB(0xec, 16), RB(0xec, 17), RB(0xec, 18), RB(0xec, 19)),
667 };
668 
669 struct r9a06g032_priv {
670 	struct clk_onecell_data data;
671 	spinlock_t lock; /* protects concurrent access to gates */
672 	void __iomem *reg;
673 };
674 
675 static struct r9a06g032_priv *sysctrl_priv;
676 
677 /* Exported helper to access the DMAMUX register */
678 int r9a06g032_sysctrl_set_dmamux(u32 mask, u32 val)
679 {
680 	unsigned long flags;
681 	u32 dmamux;
682 
683 	if (!sysctrl_priv)
684 		return -EPROBE_DEFER;
685 
686 	spin_lock_irqsave(&sysctrl_priv->lock, flags);
687 
688 	dmamux = readl(sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
689 	dmamux &= ~mask;
690 	dmamux |= val & mask;
691 	writel(dmamux, sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
692 
693 	spin_unlock_irqrestore(&sysctrl_priv->lock, flags);
694 
695 	return 0;
696 }
697 EXPORT_SYMBOL_GPL(r9a06g032_sysctrl_set_dmamux);
698 
699 static void clk_rdesc_set(struct r9a06g032_priv *clocks,
700 			  struct regbit rb, unsigned int on)
701 {
702 	u32 __iomem *reg = clocks->reg + (rb.reg * 4);
703 	u32 val;
704 
705 	if (!rb.reg && !rb.bit)
706 		return;
707 
708 	val = readl(reg);
709 	val = (val & ~BIT(rb.bit)) | ((!!on) << rb.bit);
710 	writel(val, reg);
711 }
712 
713 static int clk_rdesc_get(struct r9a06g032_priv *clocks, struct regbit rb)
714 {
715 	u32 __iomem *reg = clocks->reg + (rb.reg * 4);
716 	u32 val = readl(reg);
717 
718 	return !!(val & BIT(rb.bit));
719 }
720 
721 /*
722  * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
723  * clock gate framework as the gates on the R9A06G032 have a special enabling
724  * sequence, therefore we use this little proxy.
725  */
726 struct r9a06g032_clk_gate {
727 	struct clk_hw hw;
728 	struct r9a06g032_priv *clocks;
729 	u16 index;
730 
731 	struct r9a06g032_gate gate;
732 };
733 
734 #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
735 
736 static int create_add_module_clock(struct of_phandle_args *clkspec,
737 				   struct device *dev)
738 {
739 	struct clk *clk;
740 	int error;
741 
742 	clk = of_clk_get_from_provider(clkspec);
743 	if (IS_ERR(clk))
744 		return PTR_ERR(clk);
745 
746 	error = pm_clk_create(dev);
747 	if (error) {
748 		clk_put(clk);
749 		return error;
750 	}
751 
752 	error = pm_clk_add_clk(dev, clk);
753 	if (error) {
754 		pm_clk_destroy(dev);
755 		clk_put(clk);
756 	}
757 
758 	return error;
759 }
760 
761 static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
762 				struct device *dev)
763 {
764 	struct device_node *np = dev->of_node;
765 	struct of_phandle_args clkspec;
766 	int i = 0;
767 	int error;
768 	int index;
769 
770 	while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i++,
771 					   &clkspec)) {
772 		if (clkspec.np != pd->dev.of_node)
773 			continue;
774 
775 		index = clkspec.args[0];
776 		if (index < R9A06G032_CLOCK_COUNT &&
777 		    r9a06g032_clocks[index].managed) {
778 			error = create_add_module_clock(&clkspec, dev);
779 			of_node_put(clkspec.np);
780 			if (error)
781 				return error;
782 		}
783 	}
784 
785 	return 0;
786 }
787 
788 static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
789 {
790 	if (!pm_clk_no_clocks(dev))
791 		pm_clk_destroy(dev);
792 }
793 
794 static int r9a06g032_add_clk_domain(struct device *dev)
795 {
796 	struct device_node *np = dev->of_node;
797 	struct generic_pm_domain *pd;
798 
799 	pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
800 	if (!pd)
801 		return -ENOMEM;
802 
803 	pd->name = np->name;
804 	pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
805 		    GENPD_FLAG_ACTIVE_WAKEUP;
806 	pd->attach_dev = r9a06g032_attach_dev;
807 	pd->detach_dev = r9a06g032_detach_dev;
808 	pm_genpd_init(pd, &pm_domain_always_on_gov, false);
809 
810 	of_genpd_add_provider_simple(np, pd);
811 	return 0;
812 }
813 
814 static void
815 r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
816 		       struct r9a06g032_gate *g, int on)
817 {
818 	unsigned long flags;
819 
820 	WARN_ON(!g->gate.reg && !g->gate.bit);
821 
822 	spin_lock_irqsave(&clocks->lock, flags);
823 	clk_rdesc_set(clocks, g->gate, on);
824 	/* De-assert reset */
825 	clk_rdesc_set(clocks, g->reset, 1);
826 	spin_unlock_irqrestore(&clocks->lock, flags);
827 
828 	/* Hardware manual recommends 5us delay after enabling clock & reset */
829 	udelay(5);
830 
831 	/* If the peripheral is memory mapped (i.e. an AXI slave), there is an
832 	 * associated SLVRDY bit in the System Controller that needs to be set
833 	 * so that the FlexWAY bus fabric passes on the read/write requests.
834 	 */
835 	spin_lock_irqsave(&clocks->lock, flags);
836 	clk_rdesc_set(clocks, g->ready, on);
837 	/* Clear 'Master Idle Request' bit */
838 	clk_rdesc_set(clocks, g->midle, !on);
839 	spin_unlock_irqrestore(&clocks->lock, flags);
840 
841 	/* Note: We don't wait for FlexWAY Socket Connection signal */
842 }
843 
844 static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
845 {
846 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
847 
848 	r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
849 	return 0;
850 }
851 
852 static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
853 {
854 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
855 
856 	r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
857 }
858 
859 static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
860 {
861 	struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
862 
863 	/* if clock is in reset, the gate might be on, and still not 'be' on */
864 	if (g->gate.reset.reg && !clk_rdesc_get(g->clocks, g->gate.reset))
865 		return 0;
866 
867 	return clk_rdesc_get(g->clocks, g->gate.gate);
868 }
869 
870 static const struct clk_ops r9a06g032_clk_gate_ops = {
871 	.enable = r9a06g032_clk_gate_enable,
872 	.disable = r9a06g032_clk_gate_disable,
873 	.is_enabled = r9a06g032_clk_gate_is_enabled,
874 };
875 
876 static struct clk *
877 r9a06g032_register_gate(struct r9a06g032_priv *clocks,
878 			const char *parent_name,
879 			const struct r9a06g032_clkdesc *desc)
880 {
881 	struct clk *clk;
882 	struct r9a06g032_clk_gate *g;
883 	struct clk_init_data init = {};
884 
885 	g = kzalloc(sizeof(*g), GFP_KERNEL);
886 	if (!g)
887 		return NULL;
888 
889 	init.name = desc->name;
890 	init.ops = &r9a06g032_clk_gate_ops;
891 	init.flags = CLK_SET_RATE_PARENT;
892 	init.parent_names = parent_name ? &parent_name : NULL;
893 	init.num_parents = parent_name ? 1 : 0;
894 
895 	g->clocks = clocks;
896 	g->index = desc->index;
897 	g->gate = desc->gate;
898 	g->hw.init = &init;
899 
900 	/*
901 	 * important here, some clocks are already in use by the CM3, we
902 	 * have to assume they are not Linux's to play with and try to disable
903 	 * at the end of the boot!
904 	 */
905 	if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
906 		init.flags |= CLK_IS_CRITICAL;
907 		pr_debug("%s was enabled, making read-only\n", desc->name);
908 	}
909 
910 	clk = clk_register(NULL, &g->hw);
911 	if (IS_ERR(clk)) {
912 		kfree(g);
913 		return NULL;
914 	}
915 	return clk;
916 }
917 
918 struct r9a06g032_clk_div {
919 	struct clk_hw hw;
920 	struct r9a06g032_priv *clocks;
921 	u16 index;
922 	u16 reg;
923 	u16 min, max;
924 	u8 table_size;
925 	u16 table[8];	/* we know there are no more than 8 */
926 };
927 
928 #define to_r9a06g032_div(_hw) \
929 		container_of(_hw, struct r9a06g032_clk_div, hw)
930 
931 static unsigned long
932 r9a06g032_div_recalc_rate(struct clk_hw *hw,
933 			  unsigned long parent_rate)
934 {
935 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
936 	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
937 	u32 div = readl(reg);
938 
939 	if (div < clk->min)
940 		div = clk->min;
941 	else if (div > clk->max)
942 		div = clk->max;
943 	return DIV_ROUND_UP(parent_rate, div);
944 }
945 
946 /*
947  * Attempts to find a value that is in range of min,max,
948  * and if a table of set dividers was specified for this
949  * register, try to find the fixed divider that is the closest
950  * to the target frequency
951  */
952 static long
953 r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
954 			unsigned long rate, unsigned long prate)
955 {
956 	/* + 1 to cope with rates that have the remainder dropped */
957 	u32 div = DIV_ROUND_UP(prate, rate + 1);
958 	int i;
959 
960 	if (div <= clk->min)
961 		return clk->min;
962 	if (div >= clk->max)
963 		return clk->max;
964 
965 	for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
966 		if (div >= clk->table[i] && div <= clk->table[i + 1]) {
967 			unsigned long m = rate -
968 				DIV_ROUND_UP(prate, clk->table[i]);
969 			unsigned long p =
970 				DIV_ROUND_UP(prate, clk->table[i + 1]) -
971 				rate;
972 			/*
973 			 * select the divider that generates
974 			 * the value closest to the ideal frequency
975 			 */
976 			div = p >= m ? clk->table[i] : clk->table[i + 1];
977 			return div;
978 		}
979 	}
980 	return div;
981 }
982 
983 static int
984 r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
985 {
986 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
987 	u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate);
988 
989 	pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
990 		 hw->clk, req->rate, req->best_parent_rate, div);
991 	pr_devel("   min %d (%ld) max %d (%ld)\n",
992 		 clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min),
993 		 clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max));
994 
995 	div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate);
996 	/*
997 	 * this is a hack. Currently the serial driver asks for a clock rate
998 	 * that is 16 times the baud rate -- and that is wildly outside the
999 	 * range of the UART divider, somehow there is no provision for that
1000 	 * case of 'let the divider as is if outside range'.
1001 	 * The serial driver *shouldn't* play with these clocks anyway, there's
1002 	 * several uarts attached to this divider, and changing this impacts
1003 	 * everyone.
1004 	 */
1005 	if (clk->index == R9A06G032_DIV_UART ||
1006 	    clk->index == R9A06G032_DIV_P2_PG) {
1007 		pr_devel("%s div uart hack!\n", __func__);
1008 		req->rate = clk_get_rate(hw->clk);
1009 		return 0;
1010 	}
1011 	req->rate = DIV_ROUND_UP(req->best_parent_rate, div);
1012 	pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
1013 		 req->best_parent_rate, div, req->rate);
1014 	return 0;
1015 }
1016 
1017 static int
1018 r9a06g032_div_set_rate(struct clk_hw *hw,
1019 		       unsigned long rate, unsigned long parent_rate)
1020 {
1021 	struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
1022 	/* + 1 to cope with rates that have the remainder dropped */
1023 	u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
1024 	u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
1025 
1026 	pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
1027 		 rate, parent_rate, div);
1028 
1029 	/*
1030 	 * Need to write the bit 31 with the divider value to
1031 	 * latch it. Technically we should wait until it has been
1032 	 * cleared too.
1033 	 * TODO: Find whether this callback is sleepable, in case
1034 	 * the hardware /does/ require some sort of spinloop here.
1035 	 */
1036 	writel(div | BIT(31), reg);
1037 
1038 	return 0;
1039 }
1040 
1041 static const struct clk_ops r9a06g032_clk_div_ops = {
1042 	.recalc_rate = r9a06g032_div_recalc_rate,
1043 	.determine_rate = r9a06g032_div_determine_rate,
1044 	.set_rate = r9a06g032_div_set_rate,
1045 };
1046 
1047 static struct clk *
1048 r9a06g032_register_div(struct r9a06g032_priv *clocks,
1049 		       const char *parent_name,
1050 		       const struct r9a06g032_clkdesc *desc)
1051 {
1052 	struct r9a06g032_clk_div *div;
1053 	struct clk *clk;
1054 	struct clk_init_data init = {};
1055 	unsigned int i;
1056 
1057 	div = kzalloc(sizeof(*div), GFP_KERNEL);
1058 	if (!div)
1059 		return NULL;
1060 
1061 	init.name = desc->name;
1062 	init.ops = &r9a06g032_clk_div_ops;
1063 	init.flags = CLK_SET_RATE_PARENT;
1064 	init.parent_names = parent_name ? &parent_name : NULL;
1065 	init.num_parents = parent_name ? 1 : 0;
1066 
1067 	div->clocks = clocks;
1068 	div->index = desc->index;
1069 	div->reg = desc->div.reg;
1070 	div->hw.init = &init;
1071 	div->min = desc->div.min;
1072 	div->max = desc->div.max;
1073 	/* populate (optional) divider table fixed values */
1074 	for (i = 0; i < ARRAY_SIZE(div->table) &&
1075 	     i < ARRAY_SIZE(desc->div.table) && desc->div.table[i]; i++) {
1076 		div->table[div->table_size++] = desc->div.table[i];
1077 	}
1078 
1079 	clk = clk_register(NULL, &div->hw);
1080 	if (IS_ERR(clk)) {
1081 		kfree(div);
1082 		return NULL;
1083 	}
1084 	return clk;
1085 }
1086 
1087 /*
1088  * This clock provider handles the case of the R9A06G032 where you have
1089  * peripherals that have two potential clock source and two gates, one for
1090  * each of the clock source - the used clock source (for all sub clocks)
1091  * is selected by a single bit.
1092  * That single bit affects all sub-clocks, and therefore needs to change the
1093  * active gate (and turn the others off) and force a recalculation of the rates.
1094  *
1095  * This implements two clock providers, one 'bitselect' that
1096  * handles the switch between both parents, and another 'dualgate'
1097  * that knows which gate to poke at, depending on the parent's bit position.
1098  */
1099 struct r9a06g032_clk_bitsel {
1100 	struct clk_hw	hw;
1101 	struct r9a06g032_priv *clocks;
1102 	u16 index;
1103 	struct regbit selector;		/* selector register + bit */
1104 };
1105 
1106 #define to_clk_bitselect(_hw) \
1107 		container_of(_hw, struct r9a06g032_clk_bitsel, hw)
1108 
1109 static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
1110 {
1111 	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
1112 
1113 	return clk_rdesc_get(set->clocks, set->selector);
1114 }
1115 
1116 static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
1117 {
1118 	struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
1119 
1120 	/* a single bit in the register selects one of two parent clocks */
1121 	clk_rdesc_set(set->clocks, set->selector, !!index);
1122 
1123 	return 0;
1124 }
1125 
1126 static const struct clk_ops clk_bitselect_ops = {
1127 	.determine_rate = clk_hw_determine_rate_no_reparent,
1128 	.get_parent = r9a06g032_clk_mux_get_parent,
1129 	.set_parent = r9a06g032_clk_mux_set_parent,
1130 };
1131 
1132 static struct clk *
1133 r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
1134 			  const char *parent_name,
1135 			  const struct r9a06g032_clkdesc *desc)
1136 {
1137 	struct clk *clk;
1138 	struct r9a06g032_clk_bitsel *g;
1139 	struct clk_init_data init = {};
1140 	const char *names[2];
1141 
1142 	/* allocate the gate */
1143 	g = kzalloc(sizeof(*g), GFP_KERNEL);
1144 	if (!g)
1145 		return NULL;
1146 
1147 	names[0] = parent_name;
1148 	names[1] = "clk_pll_usb";
1149 
1150 	init.name = desc->name;
1151 	init.ops = &clk_bitselect_ops;
1152 	init.flags = CLK_SET_RATE_PARENT;
1153 	init.parent_names = names;
1154 	init.num_parents = 2;
1155 
1156 	g->clocks = clocks;
1157 	g->index = desc->index;
1158 	g->selector = desc->dual.sel;
1159 	g->hw.init = &init;
1160 
1161 	clk = clk_register(NULL, &g->hw);
1162 	if (IS_ERR(clk)) {
1163 		kfree(g);
1164 		return NULL;
1165 	}
1166 	return clk;
1167 }
1168 
1169 struct r9a06g032_clk_dualgate {
1170 	struct clk_hw	hw;
1171 	struct r9a06g032_priv *clocks;
1172 	u16 index;
1173 	struct regbit selector;		/* selector register + bit */
1174 	struct r9a06g032_gate gate[2];
1175 };
1176 
1177 #define to_clk_dualgate(_hw) \
1178 		container_of(_hw, struct r9a06g032_clk_dualgate, hw)
1179 
1180 static int
1181 r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
1182 {
1183 	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
1184 
1185 	/* we always turn off the 'other' gate, regardless */
1186 	r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
1187 	r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
1188 
1189 	return 0;
1190 }
1191 
1192 static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
1193 {
1194 	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
1195 
1196 	r9a06g032_clk_dualgate_setenable(gate, 1);
1197 
1198 	return 0;
1199 }
1200 
1201 static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
1202 {
1203 	struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
1204 
1205 	r9a06g032_clk_dualgate_setenable(gate, 0);
1206 }
1207 
1208 static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
1209 {
1210 	struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
1211 	u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
1212 
1213 	return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
1214 }
1215 
1216 static const struct clk_ops r9a06g032_clk_dualgate_ops = {
1217 	.enable = r9a06g032_clk_dualgate_enable,
1218 	.disable = r9a06g032_clk_dualgate_disable,
1219 	.is_enabled = r9a06g032_clk_dualgate_is_enabled,
1220 };
1221 
1222 static struct clk *
1223 r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
1224 			    const char *parent_name,
1225 			    const struct r9a06g032_clkdesc *desc,
1226 			    struct regbit sel)
1227 {
1228 	struct r9a06g032_clk_dualgate *g;
1229 	struct clk *clk;
1230 	struct clk_init_data init = {};
1231 
1232 	/* allocate the gate */
1233 	g = kzalloc(sizeof(*g), GFP_KERNEL);
1234 	if (!g)
1235 		return NULL;
1236 	g->clocks = clocks;
1237 	g->index = desc->index;
1238 	g->selector = sel;
1239 	g->gate[0].gate = desc->dual.g1;
1240 	g->gate[0].reset = desc->dual.r1;
1241 	g->gate[1].gate = desc->dual.g2;
1242 	g->gate[1].reset = desc->dual.r2;
1243 
1244 	init.name = desc->name;
1245 	init.ops = &r9a06g032_clk_dualgate_ops;
1246 	init.flags = CLK_SET_RATE_PARENT;
1247 	init.parent_names = &parent_name;
1248 	init.num_parents = 1;
1249 	g->hw.init = &init;
1250 	/*
1251 	 * important here, some clocks are already in use by the CM3, we
1252 	 * have to assume they are not Linux's to play with and try to disable
1253 	 * at the end of the boot!
1254 	 */
1255 	if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
1256 		init.flags |= CLK_IS_CRITICAL;
1257 		pr_debug("%s was enabled, making read-only\n", desc->name);
1258 	}
1259 
1260 	clk = clk_register(NULL, &g->hw);
1261 	if (IS_ERR(clk)) {
1262 		kfree(g);
1263 		return NULL;
1264 	}
1265 	return clk;
1266 }
1267 
1268 static void r9a06g032_clocks_del_clk_provider(void *data)
1269 {
1270 	of_clk_del_provider(data);
1271 }
1272 
1273 static void __init r9a06g032_init_h2mode(struct r9a06g032_priv *clocks)
1274 {
1275 	struct device_node *usbf_np;
1276 	u32 usb;
1277 
1278 	for_each_compatible_node(usbf_np, NULL, "renesas,rzn1-usbf") {
1279 		if (of_device_is_available(usbf_np))
1280 			break;
1281 	}
1282 
1283 	usb = readl(clocks->reg + R9A06G032_SYSCTRL_USB);
1284 	if (usbf_np) {
1285 		/* 1 host and 1 device mode */
1286 		usb &= ~R9A06G032_SYSCTRL_USB_H2MODE;
1287 		of_node_put(usbf_np);
1288 	} else {
1289 		/* 2 hosts mode */
1290 		usb |= R9A06G032_SYSCTRL_USB_H2MODE;
1291 	}
1292 	writel(usb, clocks->reg + R9A06G032_SYSCTRL_USB);
1293 }
1294 
1295 static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
1296 {
1297 	struct device *dev = &pdev->dev;
1298 	struct device_node *np = dev->of_node;
1299 	struct r9a06g032_priv *clocks;
1300 	struct clk **clks;
1301 	struct clk *mclk;
1302 	unsigned int i;
1303 	struct regbit uart_group_sel[2];
1304 	int error;
1305 
1306 	clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
1307 	clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
1308 			    GFP_KERNEL);
1309 	if (!clocks || !clks)
1310 		return -ENOMEM;
1311 
1312 	spin_lock_init(&clocks->lock);
1313 
1314 	clocks->data.clks = clks;
1315 	clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
1316 
1317 	mclk = devm_clk_get(dev, "mclk");
1318 	if (IS_ERR(mclk))
1319 		return PTR_ERR(mclk);
1320 
1321 	clocks->reg = of_iomap(np, 0);
1322 	if (WARN_ON(!clocks->reg))
1323 		return -ENOMEM;
1324 
1325 	r9a06g032_init_h2mode(clocks);
1326 
1327 	for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
1328 		const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
1329 		const char *parent_name = d->source ?
1330 			__clk_get_name(clocks->data.clks[d->source - 1]) :
1331 			__clk_get_name(mclk);
1332 		struct clk *clk = NULL;
1333 
1334 		switch (d->type) {
1335 		case K_FFC:
1336 			clk = clk_register_fixed_factor(NULL, d->name,
1337 							parent_name, 0,
1338 							d->ffc.mul,
1339 							d->ffc.div);
1340 			break;
1341 		case K_GATE:
1342 			clk = r9a06g032_register_gate(clocks, parent_name, d);
1343 			break;
1344 		case K_DIV:
1345 			clk = r9a06g032_register_div(clocks, parent_name, d);
1346 			break;
1347 		case K_BITSEL:
1348 			/* keep that selector register around */
1349 			uart_group_sel[d->dual.group] = d->dual.sel;
1350 			clk = r9a06g032_register_bitsel(clocks, parent_name, d);
1351 			break;
1352 		case K_DUALGATE:
1353 			clk = r9a06g032_register_dualgate(clocks, parent_name,
1354 							  d,
1355 							  uart_group_sel[d->dual.group]);
1356 			break;
1357 		}
1358 		clocks->data.clks[d->index] = clk;
1359 	}
1360 	error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
1361 	if (error)
1362 		return error;
1363 
1364 	error = devm_add_action_or_reset(dev,
1365 					r9a06g032_clocks_del_clk_provider, np);
1366 	if (error)
1367 		return error;
1368 
1369 	error = r9a06g032_add_clk_domain(dev);
1370 	if (error)
1371 		return error;
1372 
1373 	sysctrl_priv = clocks;
1374 
1375 	error = of_platform_populate(np, NULL, NULL, dev);
1376 	if (error)
1377 		dev_err(dev, "Failed to populate children (%d)\n", error);
1378 
1379 	return 0;
1380 }
1381 
1382 static const struct of_device_id r9a06g032_match[] = {
1383 	{ .compatible = "renesas,r9a06g032-sysctrl" },
1384 	{ }
1385 };
1386 
1387 static struct platform_driver r9a06g032_clock_driver = {
1388 	.driver		= {
1389 		.name	= "renesas,r9a06g032-sysctrl",
1390 		.of_match_table = r9a06g032_match,
1391 	},
1392 };
1393 
1394 static int __init r9a06g032_clocks_init(void)
1395 {
1396 	return platform_driver_probe(&r9a06g032_clock_driver,
1397 			r9a06g032_clocks_probe);
1398 }
1399 
1400 subsys_initcall(r9a06g032_clocks_init);
1401