xref: /linux/drivers/clk/qcom/clk-alpha-pll.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/export.h>
8 #include <linux/clk-provider.h>
9 #include <linux/regmap.h>
10 #include <linux/delay.h>
11 
12 #include "clk-alpha-pll.h"
13 #include "common.h"
14 
15 #define PLL_MODE(p)		((p)->offset + 0x0)
16 # define PLL_OUTCTRL		BIT(0)
17 # define PLL_BYPASSNL		BIT(1)
18 # define PLL_RESET_N		BIT(2)
19 # define PLL_OFFLINE_REQ	BIT(7)
20 # define PLL_LOCK_COUNT_SHIFT	8
21 # define PLL_LOCK_COUNT_MASK	0x3f
22 # define PLL_BIAS_COUNT_SHIFT	14
23 # define PLL_BIAS_COUNT_MASK	0x3f
24 # define PLL_VOTE_FSM_ENA	BIT(20)
25 # define PLL_FSM_ENA		BIT(20)
26 # define PLL_VOTE_FSM_RESET	BIT(21)
27 # define PLL_UPDATE		BIT(22)
28 # define PLL_UPDATE_BYPASS	BIT(23)
29 # define PLL_OFFLINE_ACK	BIT(28)
30 # define ALPHA_PLL_ACK_LATCH	BIT(29)
31 # define PLL_ACTIVE_FLAG	BIT(30)
32 # define PLL_LOCK_DET		BIT(31)
33 
34 #define PLL_L_VAL(p)		((p)->offset + (p)->regs[PLL_OFF_L_VAL])
35 #define PLL_CAL_L_VAL(p)	((p)->offset + (p)->regs[PLL_OFF_CAL_L_VAL])
36 #define PLL_ALPHA_VAL(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL])
37 #define PLL_ALPHA_VAL_U(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U])
38 
39 #define PLL_USER_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_USER_CTL])
40 # define PLL_POST_DIV_SHIFT	8
41 # define PLL_POST_DIV_MASK(p)	GENMASK((p)->width, 0)
42 # define PLL_ALPHA_EN		BIT(24)
43 # define PLL_ALPHA_MODE		BIT(25)
44 # define PLL_VCO_SHIFT		20
45 # define PLL_VCO_MASK		0x3
46 
47 #define PLL_USER_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U])
48 #define PLL_USER_CTL_U1(p)	((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U1])
49 
50 #define PLL_CONFIG_CTL(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL])
51 #define PLL_CONFIG_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U])
52 #define PLL_CONFIG_CTL_U1(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U1])
53 #define PLL_TEST_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_TEST_CTL])
54 #define PLL_TEST_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U])
55 #define PLL_TEST_CTL_U1(p)     ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U1])
56 #define PLL_STATUS(p)		((p)->offset + (p)->regs[PLL_OFF_STATUS])
57 #define PLL_OPMODE(p)		((p)->offset + (p)->regs[PLL_OFF_OPMODE])
58 #define PLL_FRAC(p)		((p)->offset + (p)->regs[PLL_OFF_FRAC])
59 
60 const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = {
61 	[CLK_ALPHA_PLL_TYPE_DEFAULT] =  {
62 		[PLL_OFF_L_VAL] = 0x04,
63 		[PLL_OFF_ALPHA_VAL] = 0x08,
64 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
65 		[PLL_OFF_USER_CTL] = 0x10,
66 		[PLL_OFF_USER_CTL_U] = 0x14,
67 		[PLL_OFF_CONFIG_CTL] = 0x18,
68 		[PLL_OFF_TEST_CTL] = 0x1c,
69 		[PLL_OFF_TEST_CTL_U] = 0x20,
70 		[PLL_OFF_STATUS] = 0x24,
71 	},
72 	[CLK_ALPHA_PLL_TYPE_HUAYRA] =  {
73 		[PLL_OFF_L_VAL] = 0x04,
74 		[PLL_OFF_ALPHA_VAL] = 0x08,
75 		[PLL_OFF_USER_CTL] = 0x10,
76 		[PLL_OFF_CONFIG_CTL] = 0x14,
77 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
78 		[PLL_OFF_TEST_CTL] = 0x1c,
79 		[PLL_OFF_TEST_CTL_U] = 0x20,
80 		[PLL_OFF_STATUS] = 0x24,
81 	},
82 	[CLK_ALPHA_PLL_TYPE_BRAMMO] =  {
83 		[PLL_OFF_L_VAL] = 0x04,
84 		[PLL_OFF_ALPHA_VAL] = 0x08,
85 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
86 		[PLL_OFF_USER_CTL] = 0x10,
87 		[PLL_OFF_CONFIG_CTL] = 0x18,
88 		[PLL_OFF_TEST_CTL] = 0x1c,
89 		[PLL_OFF_STATUS] = 0x24,
90 	},
91 	[CLK_ALPHA_PLL_TYPE_FABIA] =  {
92 		[PLL_OFF_L_VAL] = 0x04,
93 		[PLL_OFF_USER_CTL] = 0x0c,
94 		[PLL_OFF_USER_CTL_U] = 0x10,
95 		[PLL_OFF_CONFIG_CTL] = 0x14,
96 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
97 		[PLL_OFF_TEST_CTL] = 0x1c,
98 		[PLL_OFF_TEST_CTL_U] = 0x20,
99 		[PLL_OFF_STATUS] = 0x24,
100 		[PLL_OFF_OPMODE] = 0x2c,
101 		[PLL_OFF_FRAC] = 0x38,
102 	},
103 	[CLK_ALPHA_PLL_TYPE_TRION] = {
104 		[PLL_OFF_L_VAL] = 0x04,
105 		[PLL_OFF_CAL_L_VAL] = 0x08,
106 		[PLL_OFF_USER_CTL] = 0x0c,
107 		[PLL_OFF_USER_CTL_U] = 0x10,
108 		[PLL_OFF_USER_CTL_U1] = 0x14,
109 		[PLL_OFF_CONFIG_CTL] = 0x18,
110 		[PLL_OFF_CONFIG_CTL_U] = 0x1c,
111 		[PLL_OFF_CONFIG_CTL_U1] = 0x20,
112 		[PLL_OFF_TEST_CTL] = 0x24,
113 		[PLL_OFF_TEST_CTL_U] = 0x28,
114 		[PLL_OFF_TEST_CTL_U1] = 0x2c,
115 		[PLL_OFF_STATUS] = 0x30,
116 		[PLL_OFF_OPMODE] = 0x38,
117 		[PLL_OFF_ALPHA_VAL] = 0x40,
118 	},
119 	[CLK_ALPHA_PLL_TYPE_AGERA] =  {
120 		[PLL_OFF_L_VAL] = 0x04,
121 		[PLL_OFF_ALPHA_VAL] = 0x08,
122 		[PLL_OFF_USER_CTL] = 0x0c,
123 		[PLL_OFF_CONFIG_CTL] = 0x10,
124 		[PLL_OFF_CONFIG_CTL_U] = 0x14,
125 		[PLL_OFF_TEST_CTL] = 0x18,
126 		[PLL_OFF_TEST_CTL_U] = 0x1c,
127 		[PLL_OFF_STATUS] = 0x2c,
128 	},
129 	[CLK_ALPHA_PLL_TYPE_ZONDA] =  {
130 		[PLL_OFF_L_VAL] = 0x04,
131 		[PLL_OFF_ALPHA_VAL] = 0x08,
132 		[PLL_OFF_USER_CTL] = 0x0c,
133 		[PLL_OFF_CONFIG_CTL] = 0x10,
134 		[PLL_OFF_CONFIG_CTL_U] = 0x14,
135 		[PLL_OFF_CONFIG_CTL_U1] = 0x18,
136 		[PLL_OFF_TEST_CTL] = 0x1c,
137 		[PLL_OFF_TEST_CTL_U] = 0x20,
138 		[PLL_OFF_TEST_CTL_U1] = 0x24,
139 		[PLL_OFF_OPMODE] = 0x28,
140 		[PLL_OFF_STATUS] = 0x38,
141 	},
142 };
143 EXPORT_SYMBOL_GPL(clk_alpha_pll_regs);
144 
145 /*
146  * Even though 40 bits are present, use only 32 for ease of calculation.
147  */
148 #define ALPHA_REG_BITWIDTH	40
149 #define ALPHA_REG_16BIT_WIDTH	16
150 #define ALPHA_BITWIDTH		32U
151 #define ALPHA_SHIFT(w)		min(w, ALPHA_BITWIDTH)
152 
153 #define PLL_HUAYRA_M_WIDTH		8
154 #define PLL_HUAYRA_M_SHIFT		8
155 #define PLL_HUAYRA_M_MASK		0xff
156 #define PLL_HUAYRA_N_SHIFT		0
157 #define PLL_HUAYRA_N_MASK		0xff
158 #define PLL_HUAYRA_ALPHA_WIDTH		16
159 
160 #define PLL_STANDBY		0x0
161 #define PLL_RUN			0x1
162 #define PLL_OUT_MASK		0x7
163 #define PLL_RATE_MARGIN		500
164 
165 /* TRION PLL specific settings and offsets */
166 #define TRION_PLL_CAL_VAL	0x44
167 #define TRION_PCAL_DONE		BIT(26)
168 
169 /* LUCID PLL specific settings and offsets */
170 #define LUCID_PCAL_DONE		BIT(27)
171 
172 /* LUCID 5LPE PLL specific settings and offsets */
173 #define LUCID_5LPE_PCAL_DONE		BIT(11)
174 #define LUCID_5LPE_ALPHA_PLL_ACK_LATCH	BIT(13)
175 #define LUCID_5LPE_PLL_LATCH_INPUT	BIT(14)
176 #define LUCID_5LPE_ENABLE_VOTE_RUN	BIT(21)
177 
178 /* ZONDA PLL specific */
179 #define ZONDA_PLL_OUT_MASK	0xf
180 #define ZONDA_STAY_IN_CFA	BIT(16)
181 #define ZONDA_PLL_FREQ_LOCK_DET	BIT(29)
182 
183 #define pll_alpha_width(p)					\
184 		((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ?	\
185 				 ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH)
186 
187 #define pll_has_64bit_config(p)	((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4)
188 
189 #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
190 					   struct clk_alpha_pll, clkr)
191 
192 #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
193 					   struct clk_alpha_pll_postdiv, clkr)
194 
195 static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
196 			const char *action)
197 {
198 	u32 val;
199 	int count;
200 	int ret;
201 	const char *name = clk_hw_get_name(&pll->clkr.hw);
202 
203 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
204 	if (ret)
205 		return ret;
206 
207 	for (count = 100; count > 0; count--) {
208 		ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
209 		if (ret)
210 			return ret;
211 		if (inverse && !(val & mask))
212 			return 0;
213 		else if ((val & mask) == mask)
214 			return 0;
215 
216 		udelay(1);
217 	}
218 
219 	WARN(1, "%s failed to %s!\n", name, action);
220 	return -ETIMEDOUT;
221 }
222 
223 #define wait_for_pll_enable_active(pll) \
224 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
225 
226 #define wait_for_pll_enable_lock(pll) \
227 	wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
228 
229 #define wait_for_zonda_pll_freq_lock(pll) \
230 	wait_for_pll(pll, ZONDA_PLL_FREQ_LOCK_DET, 0, "freq enable")
231 
232 #define wait_for_pll_disable(pll) \
233 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
234 
235 #define wait_for_pll_offline(pll) \
236 	wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
237 
238 #define wait_for_pll_update(pll) \
239 	wait_for_pll(pll, PLL_UPDATE, 1, "update")
240 
241 #define wait_for_pll_update_ack_set(pll) \
242 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set")
243 
244 #define wait_for_pll_update_ack_clear(pll) \
245 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear")
246 
247 static void clk_alpha_pll_write_config(struct regmap *regmap, unsigned int reg,
248 					unsigned int val)
249 {
250 	if (val)
251 		regmap_write(regmap, reg, val);
252 }
253 
254 void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
255 			     const struct alpha_pll_config *config)
256 {
257 	u32 val, mask;
258 
259 	regmap_write(regmap, PLL_L_VAL(pll), config->l);
260 	regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
261 	regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
262 
263 	if (pll_has_64bit_config(pll))
264 		regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
265 			     config->config_ctl_hi_val);
266 
267 	if (pll_alpha_width(pll) > 32)
268 		regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
269 
270 	val = config->main_output_mask;
271 	val |= config->aux_output_mask;
272 	val |= config->aux2_output_mask;
273 	val |= config->early_output_mask;
274 	val |= config->pre_div_val;
275 	val |= config->post_div_val;
276 	val |= config->vco_val;
277 	val |= config->alpha_en_mask;
278 	val |= config->alpha_mode_mask;
279 
280 	mask = config->main_output_mask;
281 	mask |= config->aux_output_mask;
282 	mask |= config->aux2_output_mask;
283 	mask |= config->early_output_mask;
284 	mask |= config->pre_div_mask;
285 	mask |= config->post_div_mask;
286 	mask |= config->vco_mask;
287 
288 	regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
289 
290 	if (pll->flags & SUPPORTS_FSM_MODE)
291 		qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
292 }
293 EXPORT_SYMBOL_GPL(clk_alpha_pll_configure);
294 
295 static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
296 {
297 	int ret;
298 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
299 	u32 val;
300 
301 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
302 	if (ret)
303 		return ret;
304 
305 	val |= PLL_FSM_ENA;
306 
307 	if (pll->flags & SUPPORTS_OFFLINE_REQ)
308 		val &= ~PLL_OFFLINE_REQ;
309 
310 	ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val);
311 	if (ret)
312 		return ret;
313 
314 	/* Make sure enable request goes through before waiting for update */
315 	mb();
316 
317 	return wait_for_pll_enable_active(pll);
318 }
319 
320 static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
321 {
322 	int ret;
323 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
324 	u32 val;
325 
326 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
327 	if (ret)
328 		return;
329 
330 	if (pll->flags & SUPPORTS_OFFLINE_REQ) {
331 		ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
332 					 PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
333 		if (ret)
334 			return;
335 
336 		ret = wait_for_pll_offline(pll);
337 		if (ret)
338 			return;
339 	}
340 
341 	/* Disable hwfsm */
342 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
343 				 PLL_FSM_ENA, 0);
344 	if (ret)
345 		return;
346 
347 	wait_for_pll_disable(pll);
348 }
349 
350 static int pll_is_enabled(struct clk_hw *hw, u32 mask)
351 {
352 	int ret;
353 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
354 	u32 val;
355 
356 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
357 	if (ret)
358 		return ret;
359 
360 	return !!(val & mask);
361 }
362 
363 static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
364 {
365 	return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
366 }
367 
368 static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
369 {
370 	return pll_is_enabled(hw, PLL_LOCK_DET);
371 }
372 
373 static int clk_alpha_pll_enable(struct clk_hw *hw)
374 {
375 	int ret;
376 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
377 	u32 val, mask;
378 
379 	mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
380 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
381 	if (ret)
382 		return ret;
383 
384 	/* If in FSM mode, just vote for it */
385 	if (val & PLL_VOTE_FSM_ENA) {
386 		ret = clk_enable_regmap(hw);
387 		if (ret)
388 			return ret;
389 		return wait_for_pll_enable_active(pll);
390 	}
391 
392 	/* Skip if already enabled */
393 	if ((val & mask) == mask)
394 		return 0;
395 
396 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
397 				 PLL_BYPASSNL, PLL_BYPASSNL);
398 	if (ret)
399 		return ret;
400 
401 	/*
402 	 * H/W requires a 5us delay between disabling the bypass and
403 	 * de-asserting the reset.
404 	 */
405 	mb();
406 	udelay(5);
407 
408 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
409 				 PLL_RESET_N, PLL_RESET_N);
410 	if (ret)
411 		return ret;
412 
413 	ret = wait_for_pll_enable_lock(pll);
414 	if (ret)
415 		return ret;
416 
417 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
418 				 PLL_OUTCTRL, PLL_OUTCTRL);
419 
420 	/* Ensure that the write above goes through before returning. */
421 	mb();
422 	return ret;
423 }
424 
425 static void clk_alpha_pll_disable(struct clk_hw *hw)
426 {
427 	int ret;
428 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
429 	u32 val, mask;
430 
431 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
432 	if (ret)
433 		return;
434 
435 	/* If in FSM mode, just unvote it */
436 	if (val & PLL_VOTE_FSM_ENA) {
437 		clk_disable_regmap(hw);
438 		return;
439 	}
440 
441 	mask = PLL_OUTCTRL;
442 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
443 
444 	/* Delay of 2 output clock ticks required until output is disabled */
445 	mb();
446 	udelay(1);
447 
448 	mask = PLL_RESET_N | PLL_BYPASSNL;
449 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
450 }
451 
452 static unsigned long
453 alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width)
454 {
455 	return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width));
456 }
457 
458 static unsigned long
459 alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a,
460 		     u32 alpha_width)
461 {
462 	u64 remainder;
463 	u64 quotient;
464 
465 	quotient = rate;
466 	remainder = do_div(quotient, prate);
467 	*l = quotient;
468 
469 	if (!remainder) {
470 		*a = 0;
471 		return rate;
472 	}
473 
474 	/* Upper ALPHA_BITWIDTH bits of Alpha */
475 	quotient = remainder << ALPHA_SHIFT(alpha_width);
476 
477 	remainder = do_div(quotient, prate);
478 
479 	if (remainder)
480 		quotient++;
481 
482 	*a = quotient;
483 	return alpha_pll_calc_rate(prate, *l, *a, alpha_width);
484 }
485 
486 static const struct pll_vco *
487 alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
488 {
489 	const struct pll_vco *v = pll->vco_table;
490 	const struct pll_vco *end = v + pll->num_vco;
491 
492 	for (; v < end; v++)
493 		if (rate >= v->min_freq && rate <= v->max_freq)
494 			return v;
495 
496 	return NULL;
497 }
498 
499 static unsigned long
500 clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
501 {
502 	u32 l, low, high, ctl;
503 	u64 a = 0, prate = parent_rate;
504 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
505 	u32 alpha_width = pll_alpha_width(pll);
506 
507 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
508 
509 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
510 	if (ctl & PLL_ALPHA_EN) {
511 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low);
512 		if (alpha_width > 32) {
513 			regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
514 				    &high);
515 			a = (u64)high << 32 | low;
516 		} else {
517 			a = low & GENMASK(alpha_width - 1, 0);
518 		}
519 
520 		if (alpha_width > ALPHA_BITWIDTH)
521 			a >>= alpha_width - ALPHA_BITWIDTH;
522 	}
523 
524 	return alpha_pll_calc_rate(prate, l, a, alpha_width);
525 }
526 
527 
528 static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll)
529 {
530 	int ret;
531 	u32 mode;
532 
533 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode);
534 
535 	/* Latch the input to the PLL */
536 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
537 			   PLL_UPDATE);
538 
539 	/* Wait for 2 reference cycle before checking ACK bit */
540 	udelay(1);
541 
542 	/*
543 	 * PLL will latch the new L, Alpha and freq control word.
544 	 * PLL will respond by raising PLL_ACK_LATCH output when new programming
545 	 * has been latched in and PLL is being updated. When
546 	 * UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared
547 	 * automatically by hardware when PLL_ACK_LATCH is asserted by PLL.
548 	 */
549 	if (mode & PLL_UPDATE_BYPASS) {
550 		ret = wait_for_pll_update_ack_set(pll);
551 		if (ret)
552 			return ret;
553 
554 		regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0);
555 	} else {
556 		ret = wait_for_pll_update(pll);
557 		if (ret)
558 			return ret;
559 	}
560 
561 	ret = wait_for_pll_update_ack_clear(pll);
562 	if (ret)
563 		return ret;
564 
565 	/* Wait for PLL output to stabilize */
566 	udelay(10);
567 
568 	return 0;
569 }
570 
571 static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll,
572 				      int (*is_enabled)(struct clk_hw *))
573 {
574 	if (!is_enabled(&pll->clkr.hw) ||
575 	    !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
576 		return 0;
577 
578 	return __clk_alpha_pll_update_latch(pll);
579 }
580 
581 static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
582 				    unsigned long prate,
583 				    int (*is_enabled)(struct clk_hw *))
584 {
585 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
586 	const struct pll_vco *vco;
587 	u32 l, alpha_width = pll_alpha_width(pll);
588 	u64 a;
589 
590 	rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
591 	vco = alpha_pll_find_vco(pll, rate);
592 	if (pll->vco_table && !vco) {
593 		pr_err("%s: alpha pll not in a valid vco range\n",
594 		       clk_hw_get_name(hw));
595 		return -EINVAL;
596 	}
597 
598 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
599 
600 	if (alpha_width > ALPHA_BITWIDTH)
601 		a <<= alpha_width - ALPHA_BITWIDTH;
602 
603 	if (alpha_width > 32)
604 		regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
605 
606 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
607 
608 	if (vco) {
609 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
610 				   PLL_VCO_MASK << PLL_VCO_SHIFT,
611 				   vco->val << PLL_VCO_SHIFT);
612 	}
613 
614 	regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
615 			   PLL_ALPHA_EN, PLL_ALPHA_EN);
616 
617 	return clk_alpha_pll_update_latch(pll, is_enabled);
618 }
619 
620 static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
621 				  unsigned long prate)
622 {
623 	return __clk_alpha_pll_set_rate(hw, rate, prate,
624 					clk_alpha_pll_is_enabled);
625 }
626 
627 static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate,
628 					unsigned long prate)
629 {
630 	return __clk_alpha_pll_set_rate(hw, rate, prate,
631 					clk_alpha_pll_hwfsm_is_enabled);
632 }
633 
634 static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
635 				     unsigned long *prate)
636 {
637 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
638 	u32 l, alpha_width = pll_alpha_width(pll);
639 	u64 a;
640 	unsigned long min_freq, max_freq;
641 
642 	rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width);
643 	if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
644 		return rate;
645 
646 	min_freq = pll->vco_table[0].min_freq;
647 	max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
648 
649 	return clamp(rate, min_freq, max_freq);
650 }
651 
652 static unsigned long
653 alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a)
654 {
655 	/*
656 	 * a contains 16 bit alpha_val in two’s complement number in the range
657 	 * of [-0.5, 0.5).
658 	 */
659 	if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
660 		l -= 1;
661 
662 	return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH);
663 }
664 
665 static unsigned long
666 alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate,
667 			    u32 *l, u32 *a)
668 {
669 	u64 remainder;
670 	u64 quotient;
671 
672 	quotient = rate;
673 	remainder = do_div(quotient, prate);
674 	*l = quotient;
675 
676 	if (!remainder) {
677 		*a = 0;
678 		return rate;
679 	}
680 
681 	quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH;
682 	remainder = do_div(quotient, prate);
683 
684 	if (remainder)
685 		quotient++;
686 
687 	/*
688 	 * alpha_val should be in two’s complement number in the range
689 	 * of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value
690 	 * since alpha value will be subtracted in this case.
691 	 */
692 	if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
693 		*l += 1;
694 
695 	*a = quotient;
696 	return alpha_huayra_pll_calc_rate(prate, *l, *a);
697 }
698 
699 static unsigned long
700 alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
701 {
702 	u64 rate = parent_rate, tmp;
703 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
704 	u32 l, alpha = 0, ctl, alpha_m, alpha_n;
705 
706 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
707 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
708 
709 	if (ctl & PLL_ALPHA_EN) {
710 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha);
711 		/*
712 		 * Depending upon alpha_mode, it can be treated as M/N value or
713 		 * as a two’s complement number. When alpha_mode=1,
714 		 * pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N
715 		 *
716 		 *		Fout=FIN*(L+(M/N))
717 		 *
718 		 * M is a signed number (-128 to 127) and N is unsigned
719 		 * (0 to 255). M/N has to be within +/-0.5.
720 		 *
721 		 * When alpha_mode=0, it is a two’s complement number in the
722 		 * range [-0.5, 0.5).
723 		 *
724 		 *		Fout=FIN*(L+(alpha_val)/2^16)
725 		 *
726 		 * where alpha_val is two’s complement number.
727 		 */
728 		if (!(ctl & PLL_ALPHA_MODE))
729 			return alpha_huayra_pll_calc_rate(rate, l, alpha);
730 
731 		alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK;
732 		alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK;
733 
734 		rate *= l;
735 		tmp = parent_rate;
736 		if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) {
737 			alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m;
738 			tmp *= alpha_m;
739 			do_div(tmp, alpha_n);
740 			rate -= tmp;
741 		} else {
742 			tmp *= alpha_m;
743 			do_div(tmp, alpha_n);
744 			rate += tmp;
745 		}
746 
747 		return rate;
748 	}
749 
750 	return alpha_huayra_pll_calc_rate(rate, l, alpha);
751 }
752 
753 static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate,
754 				     unsigned long prate)
755 {
756 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
757 	u32 l, a, ctl, cur_alpha = 0;
758 
759 	rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a);
760 
761 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
762 
763 	if (ctl & PLL_ALPHA_EN)
764 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha);
765 
766 	/*
767 	 * Huayra PLL supports PLL dynamic programming. User can change L_VAL,
768 	 * without having to go through the power on sequence.
769 	 */
770 	if (clk_alpha_pll_is_enabled(hw)) {
771 		if (cur_alpha != a) {
772 			pr_err("%s: clock needs to be gated\n",
773 			       clk_hw_get_name(hw));
774 			return -EBUSY;
775 		}
776 
777 		regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
778 		/* Ensure that the write above goes to detect L val change. */
779 		mb();
780 		return wait_for_pll_enable_lock(pll);
781 	}
782 
783 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
784 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
785 
786 	if (a == 0)
787 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
788 				   PLL_ALPHA_EN, 0x0);
789 	else
790 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
791 				   PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN);
792 
793 	return 0;
794 }
795 
796 static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate,
797 					unsigned long *prate)
798 {
799 	u32 l, a;
800 
801 	return alpha_huayra_pll_round_rate(rate, *prate, &l, &a);
802 }
803 
804 static int trion_pll_is_enabled(struct clk_alpha_pll *pll,
805 				struct regmap *regmap)
806 {
807 	u32 mode_val, opmode_val;
808 	int ret;
809 
810 	ret = regmap_read(regmap, PLL_MODE(pll), &mode_val);
811 	ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
812 	if (ret)
813 		return 0;
814 
815 	return ((opmode_val & PLL_RUN) && (mode_val & PLL_OUTCTRL));
816 }
817 
818 static int clk_trion_pll_is_enabled(struct clk_hw *hw)
819 {
820 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
821 
822 	return trion_pll_is_enabled(pll, pll->clkr.regmap);
823 }
824 
825 static int clk_trion_pll_enable(struct clk_hw *hw)
826 {
827 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
828 	struct regmap *regmap = pll->clkr.regmap;
829 	u32 val;
830 	int ret;
831 
832 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
833 	if (ret)
834 		return ret;
835 
836 	/* If in FSM mode, just vote for it */
837 	if (val & PLL_VOTE_FSM_ENA) {
838 		ret = clk_enable_regmap(hw);
839 		if (ret)
840 			return ret;
841 		return wait_for_pll_enable_active(pll);
842 	}
843 
844 	/* Set operation mode to RUN */
845 	regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
846 
847 	ret = wait_for_pll_enable_lock(pll);
848 	if (ret)
849 		return ret;
850 
851 	/* Enable the PLL outputs */
852 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
853 				 PLL_OUT_MASK, PLL_OUT_MASK);
854 	if (ret)
855 		return ret;
856 
857 	/* Enable the global PLL outputs */
858 	return regmap_update_bits(regmap, PLL_MODE(pll),
859 				 PLL_OUTCTRL, PLL_OUTCTRL);
860 }
861 
862 static void clk_trion_pll_disable(struct clk_hw *hw)
863 {
864 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
865 	struct regmap *regmap = pll->clkr.regmap;
866 	u32 val;
867 	int ret;
868 
869 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
870 	if (ret)
871 		return;
872 
873 	/* If in FSM mode, just unvote it */
874 	if (val & PLL_VOTE_FSM_ENA) {
875 		clk_disable_regmap(hw);
876 		return;
877 	}
878 
879 	/* Disable the global PLL output */
880 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
881 	if (ret)
882 		return;
883 
884 	/* Disable the PLL outputs */
885 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
886 				 PLL_OUT_MASK, 0);
887 	if (ret)
888 		return;
889 
890 	/* Place the PLL mode in STANDBY */
891 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
892 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
893 }
894 
895 static unsigned long
896 clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
897 {
898 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
899 	u32 l, frac, alpha_width = pll_alpha_width(pll);
900 
901 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
902 	regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &frac);
903 
904 	return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
905 }
906 
907 const struct clk_ops clk_alpha_pll_fixed_ops = {
908 	.enable = clk_alpha_pll_enable,
909 	.disable = clk_alpha_pll_disable,
910 	.is_enabled = clk_alpha_pll_is_enabled,
911 	.recalc_rate = clk_alpha_pll_recalc_rate,
912 };
913 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_ops);
914 
915 const struct clk_ops clk_alpha_pll_ops = {
916 	.enable = clk_alpha_pll_enable,
917 	.disable = clk_alpha_pll_disable,
918 	.is_enabled = clk_alpha_pll_is_enabled,
919 	.recalc_rate = clk_alpha_pll_recalc_rate,
920 	.round_rate = clk_alpha_pll_round_rate,
921 	.set_rate = clk_alpha_pll_set_rate,
922 };
923 EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
924 
925 const struct clk_ops clk_alpha_pll_huayra_ops = {
926 	.enable = clk_alpha_pll_enable,
927 	.disable = clk_alpha_pll_disable,
928 	.is_enabled = clk_alpha_pll_is_enabled,
929 	.recalc_rate = alpha_pll_huayra_recalc_rate,
930 	.round_rate = alpha_pll_huayra_round_rate,
931 	.set_rate = alpha_pll_huayra_set_rate,
932 };
933 EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops);
934 
935 const struct clk_ops clk_alpha_pll_hwfsm_ops = {
936 	.enable = clk_alpha_pll_hwfsm_enable,
937 	.disable = clk_alpha_pll_hwfsm_disable,
938 	.is_enabled = clk_alpha_pll_hwfsm_is_enabled,
939 	.recalc_rate = clk_alpha_pll_recalc_rate,
940 	.round_rate = clk_alpha_pll_round_rate,
941 	.set_rate = clk_alpha_pll_hwfsm_set_rate,
942 };
943 EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
944 
945 const struct clk_ops clk_alpha_pll_fixed_trion_ops = {
946 	.enable = clk_trion_pll_enable,
947 	.disable = clk_trion_pll_disable,
948 	.is_enabled = clk_trion_pll_is_enabled,
949 	.recalc_rate = clk_trion_pll_recalc_rate,
950 	.round_rate = clk_alpha_pll_round_rate,
951 };
952 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_trion_ops);
953 
954 static unsigned long
955 clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
956 {
957 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
958 	u32 ctl;
959 
960 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
961 
962 	ctl >>= PLL_POST_DIV_SHIFT;
963 	ctl &= PLL_POST_DIV_MASK(pll);
964 
965 	return parent_rate >> fls(ctl);
966 }
967 
968 static const struct clk_div_table clk_alpha_div_table[] = {
969 	{ 0x0, 1 },
970 	{ 0x1, 2 },
971 	{ 0x3, 4 },
972 	{ 0x7, 8 },
973 	{ 0xf, 16 },
974 	{ }
975 };
976 
977 static const struct clk_div_table clk_alpha_2bit_div_table[] = {
978 	{ 0x0, 1 },
979 	{ 0x1, 2 },
980 	{ 0x3, 4 },
981 	{ }
982 };
983 
984 static long
985 clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
986 				 unsigned long *prate)
987 {
988 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
989 	const struct clk_div_table *table;
990 
991 	if (pll->width == 2)
992 		table = clk_alpha_2bit_div_table;
993 	else
994 		table = clk_alpha_div_table;
995 
996 	return divider_round_rate(hw, rate, prate, table,
997 				  pll->width, CLK_DIVIDER_POWER_OF_TWO);
998 }
999 
1000 static long
1001 clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate,
1002 				    unsigned long *prate)
1003 {
1004 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1005 	u32 ctl, div;
1006 
1007 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
1008 
1009 	ctl >>= PLL_POST_DIV_SHIFT;
1010 	ctl &= BIT(pll->width) - 1;
1011 	div = 1 << fls(ctl);
1012 
1013 	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
1014 		*prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate);
1015 
1016 	return DIV_ROUND_UP_ULL((u64)*prate, div);
1017 }
1018 
1019 static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1020 					  unsigned long parent_rate)
1021 {
1022 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1023 	int div;
1024 
1025 	/* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
1026 	div = DIV_ROUND_UP_ULL(parent_rate, rate) - 1;
1027 
1028 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1029 				  PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
1030 				  div << PLL_POST_DIV_SHIFT);
1031 }
1032 
1033 const struct clk_ops clk_alpha_pll_postdiv_ops = {
1034 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
1035 	.round_rate = clk_alpha_pll_postdiv_round_rate,
1036 	.set_rate = clk_alpha_pll_postdiv_set_rate,
1037 };
1038 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
1039 
1040 const struct clk_ops clk_alpha_pll_postdiv_ro_ops = {
1041 	.round_rate = clk_alpha_pll_postdiv_round_ro_rate,
1042 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
1043 };
1044 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);
1045 
1046 void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1047 			     const struct alpha_pll_config *config)
1048 {
1049 	u32 val, mask;
1050 
1051 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1052 	clk_alpha_pll_write_config(regmap, PLL_FRAC(pll), config->alpha);
1053 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
1054 						config->config_ctl_val);
1055 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
1056 						config->config_ctl_hi_val);
1057 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
1058 						config->user_ctl_val);
1059 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll),
1060 						config->user_ctl_hi_val);
1061 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
1062 						config->test_ctl_val);
1063 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
1064 						config->test_ctl_hi_val);
1065 
1066 	if (config->post_div_mask) {
1067 		mask = config->post_div_mask;
1068 		val = config->post_div_val;
1069 		regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
1070 	}
1071 
1072 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
1073 							PLL_UPDATE_BYPASS);
1074 
1075 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1076 }
1077 EXPORT_SYMBOL_GPL(clk_fabia_pll_configure);
1078 
1079 static int alpha_pll_fabia_enable(struct clk_hw *hw)
1080 {
1081 	int ret;
1082 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1083 	u32 val, opmode_val;
1084 	struct regmap *regmap = pll->clkr.regmap;
1085 
1086 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
1087 	if (ret)
1088 		return ret;
1089 
1090 	/* If in FSM mode, just vote for it */
1091 	if (val & PLL_VOTE_FSM_ENA) {
1092 		ret = clk_enable_regmap(hw);
1093 		if (ret)
1094 			return ret;
1095 		return wait_for_pll_enable_active(pll);
1096 	}
1097 
1098 	ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
1099 	if (ret)
1100 		return ret;
1101 
1102 	/* Skip If PLL is already running */
1103 	if ((opmode_val & PLL_RUN) && (val & PLL_OUTCTRL))
1104 		return 0;
1105 
1106 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1107 	if (ret)
1108 		return ret;
1109 
1110 	ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1111 	if (ret)
1112 		return ret;
1113 
1114 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N,
1115 				 PLL_RESET_N);
1116 	if (ret)
1117 		return ret;
1118 
1119 	ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
1120 	if (ret)
1121 		return ret;
1122 
1123 	ret = wait_for_pll_enable_lock(pll);
1124 	if (ret)
1125 		return ret;
1126 
1127 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
1128 				 PLL_OUT_MASK, PLL_OUT_MASK);
1129 	if (ret)
1130 		return ret;
1131 
1132 	return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL,
1133 				 PLL_OUTCTRL);
1134 }
1135 
1136 static void alpha_pll_fabia_disable(struct clk_hw *hw)
1137 {
1138 	int ret;
1139 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1140 	u32 val;
1141 	struct regmap *regmap = pll->clkr.regmap;
1142 
1143 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
1144 	if (ret)
1145 		return;
1146 
1147 	/* If in FSM mode, just unvote it */
1148 	if (val & PLL_FSM_ENA) {
1149 		clk_disable_regmap(hw);
1150 		return;
1151 	}
1152 
1153 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1154 	if (ret)
1155 		return;
1156 
1157 	/* Disable main outputs */
1158 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
1159 	if (ret)
1160 		return;
1161 
1162 	/* Place the PLL in STANDBY */
1163 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1164 }
1165 
1166 static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw,
1167 						unsigned long parent_rate)
1168 {
1169 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1170 	u32 l, frac, alpha_width = pll_alpha_width(pll);
1171 
1172 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
1173 	regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac);
1174 
1175 	return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
1176 }
1177 
1178 /*
1179  * Due to limited number of bits for fractional rate programming, the
1180  * rounded up rate could be marginally higher than the requested rate.
1181  */
1182 static int alpha_pll_check_rate_margin(struct clk_hw *hw,
1183 			unsigned long rrate, unsigned long rate)
1184 {
1185 	unsigned long rate_margin = rate + PLL_RATE_MARGIN;
1186 
1187 	if (rrate > rate_margin || rrate < rate) {
1188 		pr_err("%s: Rounded rate %lu not within range [%lu, %lu)\n",
1189 		       clk_hw_get_name(hw), rrate, rate, rate_margin);
1190 		return -EINVAL;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate,
1197 						unsigned long prate)
1198 {
1199 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1200 	u32 l, alpha_width = pll_alpha_width(pll);
1201 	unsigned long rrate;
1202 	int ret;
1203 	u64 a;
1204 
1205 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1206 
1207 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1208 	if (ret < 0)
1209 		return ret;
1210 
1211 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1212 	regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a);
1213 
1214 	return __clk_alpha_pll_update_latch(pll);
1215 }
1216 
1217 static int alpha_pll_fabia_prepare(struct clk_hw *hw)
1218 {
1219 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1220 	const struct pll_vco *vco;
1221 	struct clk_hw *parent_hw;
1222 	unsigned long cal_freq, rrate;
1223 	u32 cal_l, val, alpha_width = pll_alpha_width(pll);
1224 	const char *name = clk_hw_get_name(hw);
1225 	u64 a;
1226 	int ret;
1227 
1228 	/* Check if calibration needs to be done i.e. PLL is in reset */
1229 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1230 	if (ret)
1231 		return ret;
1232 
1233 	/* Return early if calibration is not needed. */
1234 	if (val & PLL_RESET_N)
1235 		return 0;
1236 
1237 	vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw));
1238 	if (!vco) {
1239 		pr_err("%s: alpha pll not in a valid vco range\n", name);
1240 		return -EINVAL;
1241 	}
1242 
1243 	cal_freq = DIV_ROUND_CLOSEST((pll->vco_table[0].min_freq +
1244 				pll->vco_table[0].max_freq) * 54, 100);
1245 
1246 	parent_hw = clk_hw_get_parent(hw);
1247 	if (!parent_hw)
1248 		return -EINVAL;
1249 
1250 	rrate = alpha_pll_round_rate(cal_freq, clk_hw_get_rate(parent_hw),
1251 					&cal_l, &a, alpha_width);
1252 
1253 	ret = alpha_pll_check_rate_margin(hw, rrate, cal_freq);
1254 	if (ret < 0)
1255 		return ret;
1256 
1257 	/* Setup PLL for calibration frequency */
1258 	regmap_write(pll->clkr.regmap, PLL_CAL_L_VAL(pll), cal_l);
1259 
1260 	/* Bringup the PLL at calibration frequency */
1261 	ret = clk_alpha_pll_enable(hw);
1262 	if (ret) {
1263 		pr_err("%s: alpha pll calibration failed\n", name);
1264 		return ret;
1265 	}
1266 
1267 	clk_alpha_pll_disable(hw);
1268 
1269 	return 0;
1270 }
1271 
1272 const struct clk_ops clk_alpha_pll_fabia_ops = {
1273 	.prepare = alpha_pll_fabia_prepare,
1274 	.enable = alpha_pll_fabia_enable,
1275 	.disable = alpha_pll_fabia_disable,
1276 	.is_enabled = clk_alpha_pll_is_enabled,
1277 	.set_rate = alpha_pll_fabia_set_rate,
1278 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1279 	.round_rate = clk_alpha_pll_round_rate,
1280 };
1281 EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops);
1282 
1283 const struct clk_ops clk_alpha_pll_fixed_fabia_ops = {
1284 	.enable = alpha_pll_fabia_enable,
1285 	.disable = alpha_pll_fabia_disable,
1286 	.is_enabled = clk_alpha_pll_is_enabled,
1287 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1288 	.round_rate = clk_alpha_pll_round_rate,
1289 };
1290 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops);
1291 
1292 static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw,
1293 					unsigned long parent_rate)
1294 {
1295 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1296 	u32 i, div = 1, val;
1297 	int ret;
1298 
1299 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1300 	if (ret)
1301 		return ret;
1302 
1303 	val >>= pll->post_div_shift;
1304 	val &= BIT(pll->width) - 1;
1305 
1306 	for (i = 0; i < pll->num_post_div; i++) {
1307 		if (pll->post_div_table[i].val == val) {
1308 			div = pll->post_div_table[i].div;
1309 			break;
1310 		}
1311 	}
1312 
1313 	return (parent_rate / div);
1314 }
1315 
1316 static unsigned long
1317 clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
1318 {
1319 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1320 	struct regmap *regmap = pll->clkr.regmap;
1321 	u32 i, div = 1, val;
1322 
1323 	regmap_read(regmap, PLL_USER_CTL(pll), &val);
1324 
1325 	val >>= pll->post_div_shift;
1326 	val &= PLL_POST_DIV_MASK(pll);
1327 
1328 	for (i = 0; i < pll->num_post_div; i++) {
1329 		if (pll->post_div_table[i].val == val) {
1330 			div = pll->post_div_table[i].div;
1331 			break;
1332 		}
1333 	}
1334 
1335 	return (parent_rate / div);
1336 }
1337 
1338 static long
1339 clk_trion_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
1340 				 unsigned long *prate)
1341 {
1342 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1343 
1344 	return divider_round_rate(hw, rate, prate, pll->post_div_table,
1345 				  pll->width, CLK_DIVIDER_ROUND_CLOSEST);
1346 };
1347 
1348 static int
1349 clk_trion_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1350 			       unsigned long parent_rate)
1351 {
1352 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1353 	struct regmap *regmap = pll->clkr.regmap;
1354 	int i, val = 0, div;
1355 
1356 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
1357 	for (i = 0; i < pll->num_post_div; i++) {
1358 		if (pll->post_div_table[i].div == div) {
1359 			val = pll->post_div_table[i].val;
1360 			break;
1361 		}
1362 	}
1363 
1364 	return regmap_update_bits(regmap, PLL_USER_CTL(pll),
1365 				  PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
1366 				  val << PLL_POST_DIV_SHIFT);
1367 }
1368 
1369 const struct clk_ops clk_alpha_pll_postdiv_trion_ops = {
1370 	.recalc_rate = clk_trion_pll_postdiv_recalc_rate,
1371 	.round_rate = clk_trion_pll_postdiv_round_rate,
1372 	.set_rate = clk_trion_pll_postdiv_set_rate,
1373 };
1374 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_trion_ops);
1375 
1376 static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw,
1377 				unsigned long rate, unsigned long *prate)
1378 {
1379 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1380 
1381 	return divider_round_rate(hw, rate, prate, pll->post_div_table,
1382 				pll->width, CLK_DIVIDER_ROUND_CLOSEST);
1383 }
1384 
1385 static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw,
1386 				unsigned long rate, unsigned long parent_rate)
1387 {
1388 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1389 	int i, val = 0, div, ret;
1390 
1391 	/*
1392 	 * If the PLL is in FSM mode, then treat set_rate callback as a
1393 	 * no-operation.
1394 	 */
1395 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1396 	if (ret)
1397 		return ret;
1398 
1399 	if (val & PLL_VOTE_FSM_ENA)
1400 		return 0;
1401 
1402 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
1403 	for (i = 0; i < pll->num_post_div; i++) {
1404 		if (pll->post_div_table[i].div == div) {
1405 			val = pll->post_div_table[i].val;
1406 			break;
1407 		}
1408 	}
1409 
1410 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1411 				(BIT(pll->width) - 1) << pll->post_div_shift,
1412 				val << pll->post_div_shift);
1413 }
1414 
1415 const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = {
1416 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1417 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1418 	.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
1419 };
1420 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);
1421 
1422 /**
1423  * clk_lucid_pll_configure - configure the lucid pll
1424  *
1425  * @pll: clk alpha pll
1426  * @regmap: register map
1427  * @config: configuration to apply for pll
1428  */
1429 void clk_trion_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1430 			     const struct alpha_pll_config *config)
1431 {
1432 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1433 	regmap_write(regmap, PLL_CAL_L_VAL(pll), TRION_PLL_CAL_VAL);
1434 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
1435 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
1436 				     config->config_ctl_val);
1437 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
1438 				     config->config_ctl_hi_val);
1439 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll),
1440 				     config->config_ctl_hi1_val);
1441 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
1442 					config->user_ctl_val);
1443 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll),
1444 					config->user_ctl_hi_val);
1445 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll),
1446 					config->user_ctl_hi1_val);
1447 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
1448 					config->test_ctl_val);
1449 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
1450 					config->test_ctl_hi_val);
1451 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll),
1452 					config->test_ctl_hi1_val);
1453 
1454 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
1455 			   PLL_UPDATE_BYPASS);
1456 
1457 	/* Disable PLL output */
1458 	regmap_update_bits(regmap, PLL_MODE(pll),  PLL_OUTCTRL, 0);
1459 
1460 	/* Set operation mode to OFF */
1461 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1462 
1463 	/* Place the PLL in STANDBY mode */
1464 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1465 }
1466 EXPORT_SYMBOL_GPL(clk_trion_pll_configure);
1467 
1468 /*
1469  * The TRION PLL requires a power-on self-calibration which happens when the
1470  * PLL comes out of reset. Calibrate in case it is not completed.
1471  */
1472 static int __alpha_pll_trion_prepare(struct clk_hw *hw, u32 pcal_done)
1473 {
1474 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1475 	u32 val;
1476 	int ret;
1477 
1478 	/* Return early if calibration is not needed. */
1479 	regmap_read(pll->clkr.regmap, PLL_STATUS(pll), &val);
1480 	if (val & pcal_done)
1481 		return 0;
1482 
1483 	/* On/off to calibrate */
1484 	ret = clk_trion_pll_enable(hw);
1485 	if (!ret)
1486 		clk_trion_pll_disable(hw);
1487 
1488 	return ret;
1489 }
1490 
1491 static int alpha_pll_trion_prepare(struct clk_hw *hw)
1492 {
1493 	return __alpha_pll_trion_prepare(hw, TRION_PCAL_DONE);
1494 }
1495 
1496 static int alpha_pll_lucid_prepare(struct clk_hw *hw)
1497 {
1498 	return __alpha_pll_trion_prepare(hw, LUCID_PCAL_DONE);
1499 }
1500 
1501 static int __alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate,
1502 				      unsigned long prate, u32 latch_bit, u32 latch_ack)
1503 {
1504 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1505 	unsigned long rrate;
1506 	u32 val, l, alpha_width = pll_alpha_width(pll);
1507 	u64 a;
1508 	int ret;
1509 
1510 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1511 
1512 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1513 	if (ret < 0)
1514 		return ret;
1515 
1516 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1517 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
1518 
1519 	/* Latch the PLL input */
1520 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, latch_bit);
1521 	if (ret)
1522 		return ret;
1523 
1524 	/* Wait for 2 reference cycles before checking the ACK bit. */
1525 	udelay(1);
1526 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1527 	if (!(val & latch_ack)) {
1528 		pr_err("Lucid PLL latch failed. Output may be unstable!\n");
1529 		return -EINVAL;
1530 	}
1531 
1532 	/* Return the latch input to 0 */
1533 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, 0);
1534 	if (ret)
1535 		return ret;
1536 
1537 	if (clk_hw_is_enabled(hw)) {
1538 		ret = wait_for_pll_enable_lock(pll);
1539 		if (ret)
1540 			return ret;
1541 	}
1542 
1543 	/* Wait for PLL output to stabilize */
1544 	udelay(100);
1545 	return 0;
1546 }
1547 
1548 static int alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate,
1549 				    unsigned long prate)
1550 {
1551 	return __alpha_pll_trion_set_rate(hw, rate, prate, PLL_UPDATE, ALPHA_PLL_ACK_LATCH);
1552 }
1553 
1554 const struct clk_ops clk_alpha_pll_trion_ops = {
1555 	.prepare = alpha_pll_trion_prepare,
1556 	.enable = clk_trion_pll_enable,
1557 	.disable = clk_trion_pll_disable,
1558 	.is_enabled = clk_trion_pll_is_enabled,
1559 	.recalc_rate = clk_trion_pll_recalc_rate,
1560 	.round_rate = clk_alpha_pll_round_rate,
1561 	.set_rate = alpha_pll_trion_set_rate,
1562 };
1563 EXPORT_SYMBOL_GPL(clk_alpha_pll_trion_ops);
1564 
1565 const struct clk_ops clk_alpha_pll_lucid_ops = {
1566 	.prepare = alpha_pll_lucid_prepare,
1567 	.enable = clk_trion_pll_enable,
1568 	.disable = clk_trion_pll_disable,
1569 	.is_enabled = clk_trion_pll_is_enabled,
1570 	.recalc_rate = clk_trion_pll_recalc_rate,
1571 	.round_rate = clk_alpha_pll_round_rate,
1572 	.set_rate = alpha_pll_trion_set_rate,
1573 };
1574 EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_ops);
1575 
1576 const struct clk_ops clk_alpha_pll_postdiv_lucid_ops = {
1577 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1578 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1579 	.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
1580 };
1581 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_ops);
1582 
1583 void clk_agera_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1584 			const struct alpha_pll_config *config)
1585 {
1586 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1587 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
1588 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
1589 							config->user_ctl_val);
1590 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
1591 						config->config_ctl_val);
1592 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
1593 						config->config_ctl_hi_val);
1594 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
1595 						config->test_ctl_val);
1596 	clk_alpha_pll_write_config(regmap,  PLL_TEST_CTL_U(pll),
1597 						config->test_ctl_hi_val);
1598 }
1599 EXPORT_SYMBOL_GPL(clk_agera_pll_configure);
1600 
1601 static int clk_alpha_pll_agera_set_rate(struct clk_hw *hw, unsigned long rate,
1602 							unsigned long prate)
1603 {
1604 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1605 	u32 l, alpha_width = pll_alpha_width(pll);
1606 	int ret;
1607 	unsigned long rrate;
1608 	u64 a;
1609 
1610 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1611 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1612 	if (ret < 0)
1613 		return ret;
1614 
1615 	/* change L_VAL without having to go through the power on sequence */
1616 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1617 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
1618 
1619 	if (clk_hw_is_enabled(hw))
1620 		return wait_for_pll_enable_lock(pll);
1621 
1622 	return 0;
1623 }
1624 
1625 const struct clk_ops clk_alpha_pll_agera_ops = {
1626 	.enable = clk_alpha_pll_enable,
1627 	.disable = clk_alpha_pll_disable,
1628 	.is_enabled = clk_alpha_pll_is_enabled,
1629 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1630 	.round_rate = clk_alpha_pll_round_rate,
1631 	.set_rate = clk_alpha_pll_agera_set_rate,
1632 };
1633 EXPORT_SYMBOL_GPL(clk_alpha_pll_agera_ops);
1634 
1635 static int alpha_pll_lucid_5lpe_enable(struct clk_hw *hw)
1636 {
1637 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1638 	u32 val;
1639 	int ret;
1640 
1641 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1642 	if (ret)
1643 		return ret;
1644 
1645 	/* If in FSM mode, just vote for it */
1646 	if (val & LUCID_5LPE_ENABLE_VOTE_RUN) {
1647 		ret = clk_enable_regmap(hw);
1648 		if (ret)
1649 			return ret;
1650 		return wait_for_pll_enable_lock(pll);
1651 	}
1652 
1653 	/* Check if PLL is already enabled, return if enabled */
1654 	ret = trion_pll_is_enabled(pll, pll->clkr.regmap);
1655 	if (ret < 0)
1656 		return ret;
1657 
1658 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1659 	if (ret)
1660 		return ret;
1661 
1662 	regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_RUN);
1663 
1664 	ret = wait_for_pll_enable_lock(pll);
1665 	if (ret)
1666 		return ret;
1667 
1668 	/* Enable the PLL outputs */
1669 	ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, PLL_OUT_MASK);
1670 	if (ret)
1671 		return ret;
1672 
1673 	/* Enable the global PLL outputs */
1674 	return regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
1675 }
1676 
1677 static void alpha_pll_lucid_5lpe_disable(struct clk_hw *hw)
1678 {
1679 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1680 	u32 val;
1681 	int ret;
1682 
1683 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1684 	if (ret)
1685 		return;
1686 
1687 	/* If in FSM mode, just unvote it */
1688 	if (val & LUCID_5LPE_ENABLE_VOTE_RUN) {
1689 		clk_disable_regmap(hw);
1690 		return;
1691 	}
1692 
1693 	/* Disable the global PLL output */
1694 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1695 	if (ret)
1696 		return;
1697 
1698 	/* Disable the PLL outputs */
1699 	ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
1700 	if (ret)
1701 		return;
1702 
1703 	/* Place the PLL mode in STANDBY */
1704 	regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_STANDBY);
1705 }
1706 
1707 /*
1708  * The Lucid 5LPE PLL requires a power-on self-calibration which happens
1709  * when the PLL comes out of reset. Calibrate in case it is not completed.
1710  */
1711 static int alpha_pll_lucid_5lpe_prepare(struct clk_hw *hw)
1712 {
1713 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1714 	struct clk_hw *p;
1715 	u32 val = 0;
1716 	int ret;
1717 
1718 	/* Return early if calibration is not needed. */
1719 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1720 	if (val & LUCID_5LPE_PCAL_DONE)
1721 		return 0;
1722 
1723 	p = clk_hw_get_parent(hw);
1724 	if (!p)
1725 		return -EINVAL;
1726 
1727 	ret = alpha_pll_lucid_5lpe_enable(hw);
1728 	if (ret)
1729 		return ret;
1730 
1731 	alpha_pll_lucid_5lpe_disable(hw);
1732 
1733 	return 0;
1734 }
1735 
1736 static int alpha_pll_lucid_5lpe_set_rate(struct clk_hw *hw, unsigned long rate,
1737 					 unsigned long prate)
1738 {
1739 	return __alpha_pll_trion_set_rate(hw, rate, prate,
1740 					  LUCID_5LPE_PLL_LATCH_INPUT,
1741 					  LUCID_5LPE_ALPHA_PLL_ACK_LATCH);
1742 }
1743 
1744 static int clk_lucid_5lpe_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1745 					       unsigned long parent_rate)
1746 {
1747 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1748 	int i, val = 0, div, ret;
1749 	u32 mask;
1750 
1751 	/*
1752 	 * If the PLL is in FSM mode, then treat set_rate callback as a
1753 	 * no-operation.
1754 	 */
1755 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1756 	if (ret)
1757 		return ret;
1758 
1759 	if (val & LUCID_5LPE_ENABLE_VOTE_RUN)
1760 		return 0;
1761 
1762 	div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
1763 	for (i = 0; i < pll->num_post_div; i++) {
1764 		if (pll->post_div_table[i].div == div) {
1765 			val = pll->post_div_table[i].val;
1766 			break;
1767 		}
1768 	}
1769 
1770 	mask = GENMASK(pll->width + pll->post_div_shift - 1, pll->post_div_shift);
1771 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1772 				  mask, val << pll->post_div_shift);
1773 }
1774 
1775 const struct clk_ops clk_alpha_pll_lucid_5lpe_ops = {
1776 	.prepare = alpha_pll_lucid_5lpe_prepare,
1777 	.enable = alpha_pll_lucid_5lpe_enable,
1778 	.disable = alpha_pll_lucid_5lpe_disable,
1779 	.is_enabled = clk_trion_pll_is_enabled,
1780 	.recalc_rate = clk_trion_pll_recalc_rate,
1781 	.round_rate = clk_alpha_pll_round_rate,
1782 	.set_rate = alpha_pll_lucid_5lpe_set_rate,
1783 };
1784 EXPORT_SYMBOL(clk_alpha_pll_lucid_5lpe_ops);
1785 
1786 const struct clk_ops clk_alpha_pll_fixed_lucid_5lpe_ops = {
1787 	.enable = alpha_pll_lucid_5lpe_enable,
1788 	.disable = alpha_pll_lucid_5lpe_disable,
1789 	.is_enabled = clk_trion_pll_is_enabled,
1790 	.recalc_rate = clk_trion_pll_recalc_rate,
1791 	.round_rate = clk_alpha_pll_round_rate,
1792 };
1793 EXPORT_SYMBOL(clk_alpha_pll_fixed_lucid_5lpe_ops);
1794 
1795 const struct clk_ops clk_alpha_pll_postdiv_lucid_5lpe_ops = {
1796 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1797 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1798 	.set_rate = clk_lucid_5lpe_pll_postdiv_set_rate,
1799 };
1800 EXPORT_SYMBOL(clk_alpha_pll_postdiv_lucid_5lpe_ops);
1801 
1802 void clk_zonda_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1803 			     const struct alpha_pll_config *config)
1804 {
1805 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1806 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
1807 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
1808 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val);
1809 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val);
1810 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
1811 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val);
1812 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll), config->user_ctl_hi1_val);
1813 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
1814 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
1815 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll), config->test_ctl_hi1_val);
1816 
1817 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, 0);
1818 
1819 	/* Disable PLL output */
1820 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1821 
1822 	/* Set operation mode to OFF */
1823 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1824 
1825 	/* Place the PLL in STANDBY mode */
1826 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1827 }
1828 EXPORT_SYMBOL_GPL(clk_zonda_pll_configure);
1829 
1830 static int clk_zonda_pll_enable(struct clk_hw *hw)
1831 {
1832 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1833 	struct regmap *regmap = pll->clkr.regmap;
1834 	u32 val;
1835 	int ret;
1836 
1837 	regmap_read(regmap, PLL_MODE(pll), &val);
1838 
1839 	/* If in FSM mode, just vote for it */
1840 	if (val & PLL_VOTE_FSM_ENA) {
1841 		ret = clk_enable_regmap(hw);
1842 		if (ret)
1843 			return ret;
1844 		return wait_for_pll_enable_active(pll);
1845 	}
1846 
1847 	/* Get the PLL out of bypass mode */
1848 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, PLL_BYPASSNL);
1849 
1850 	/*
1851 	 * H/W requires a 1us delay between disabling the bypass and
1852 	 * de-asserting the reset.
1853 	 */
1854 	udelay(1);
1855 
1856 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1857 
1858 	/* Set operation mode to RUN */
1859 	regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
1860 
1861 	regmap_read(regmap, PLL_TEST_CTL(pll), &val);
1862 
1863 	/* If cfa mode then poll for freq lock */
1864 	if (val & ZONDA_STAY_IN_CFA)
1865 		ret = wait_for_zonda_pll_freq_lock(pll);
1866 	else
1867 		ret = wait_for_pll_enable_lock(pll);
1868 	if (ret)
1869 		return ret;
1870 
1871 	/* Enable the PLL outputs */
1872 	regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, ZONDA_PLL_OUT_MASK);
1873 
1874 	/* Enable the global PLL outputs */
1875 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
1876 
1877 	return 0;
1878 }
1879 
1880 static void clk_zonda_pll_disable(struct clk_hw *hw)
1881 {
1882 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1883 	struct regmap *regmap = pll->clkr.regmap;
1884 	u32 val;
1885 
1886 	regmap_read(regmap, PLL_MODE(pll), &val);
1887 
1888 	/* If in FSM mode, just unvote it */
1889 	if (val & PLL_VOTE_FSM_ENA) {
1890 		clk_disable_regmap(hw);
1891 		return;
1892 	}
1893 
1894 	/* Disable the global PLL output */
1895 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1896 
1897 	/* Disable the PLL outputs */
1898 	regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, 0);
1899 
1900 	/* Put the PLL in bypass and reset */
1901 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N | PLL_BYPASSNL, 0);
1902 
1903 	/* Place the PLL mode in OFF state */
1904 	regmap_write(regmap, PLL_OPMODE(pll), 0x0);
1905 }
1906 
1907 static int clk_zonda_pll_set_rate(struct clk_hw *hw, unsigned long rate,
1908 				  unsigned long prate)
1909 {
1910 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1911 	unsigned long rrate;
1912 	u32 test_ctl_val;
1913 	u32 l, alpha_width = pll_alpha_width(pll);
1914 	u64 a;
1915 	int ret;
1916 
1917 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1918 
1919 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1920 	if (ret < 0)
1921 		return ret;
1922 
1923 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
1924 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1925 
1926 	/* Wait before polling for the frequency latch */
1927 	udelay(5);
1928 
1929 	/* Read stay in cfa mode */
1930 	regmap_read(pll->clkr.regmap, PLL_TEST_CTL(pll), &test_ctl_val);
1931 
1932 	/* If cfa mode then poll for freq lock */
1933 	if (test_ctl_val & ZONDA_STAY_IN_CFA)
1934 		ret = wait_for_zonda_pll_freq_lock(pll);
1935 	else
1936 		ret = wait_for_pll_enable_lock(pll);
1937 	if (ret)
1938 		return ret;
1939 
1940 	/* Wait for PLL output to stabilize */
1941 	udelay(100);
1942 	return 0;
1943 }
1944 
1945 const struct clk_ops clk_alpha_pll_zonda_ops = {
1946 	.enable = clk_zonda_pll_enable,
1947 	.disable = clk_zonda_pll_disable,
1948 	.is_enabled = clk_trion_pll_is_enabled,
1949 	.recalc_rate = clk_trion_pll_recalc_rate,
1950 	.round_rate = clk_alpha_pll_round_rate,
1951 	.set_rate = clk_zonda_pll_set_rate,
1952 };
1953 EXPORT_SYMBOL(clk_alpha_pll_zonda_ops);
1954