xref: /linux/drivers/clk/qcom/clk-alpha-pll.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/export.h>
8 #include <linux/clk-provider.h>
9 #include <linux/regmap.h>
10 #include <linux/delay.h>
11 
12 #include "clk-alpha-pll.h"
13 #include "common.h"
14 
15 #define PLL_MODE(p)		((p)->offset + 0x0)
16 # define PLL_OUTCTRL		BIT(0)
17 # define PLL_BYPASSNL		BIT(1)
18 # define PLL_RESET_N		BIT(2)
19 # define PLL_OFFLINE_REQ	BIT(7)
20 # define PLL_LOCK_COUNT_SHIFT	8
21 # define PLL_LOCK_COUNT_MASK	0x3f
22 # define PLL_BIAS_COUNT_SHIFT	14
23 # define PLL_BIAS_COUNT_MASK	0x3f
24 # define PLL_VOTE_FSM_ENA	BIT(20)
25 # define PLL_FSM_ENA		BIT(20)
26 # define PLL_VOTE_FSM_RESET	BIT(21)
27 # define PLL_UPDATE		BIT(22)
28 # define PLL_UPDATE_BYPASS	BIT(23)
29 # define PLL_OFFLINE_ACK	BIT(28)
30 # define ALPHA_PLL_ACK_LATCH	BIT(29)
31 # define PLL_ACTIVE_FLAG	BIT(30)
32 # define PLL_LOCK_DET		BIT(31)
33 
34 #define PLL_L_VAL(p)		((p)->offset + (p)->regs[PLL_OFF_L_VAL])
35 #define PLL_CAL_L_VAL(p)	((p)->offset + (p)->regs[PLL_OFF_CAL_L_VAL])
36 #define PLL_ALPHA_VAL(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL])
37 #define PLL_ALPHA_VAL_U(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U])
38 
39 #define PLL_USER_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_USER_CTL])
40 # define PLL_POST_DIV_SHIFT	8
41 # define PLL_POST_DIV_MASK(p)	GENMASK((p)->width, 0)
42 # define PLL_ALPHA_EN		BIT(24)
43 # define PLL_ALPHA_MODE		BIT(25)
44 # define PLL_VCO_SHIFT		20
45 # define PLL_VCO_MASK		0x3
46 
47 #define PLL_USER_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U])
48 #define PLL_USER_CTL_U1(p)	((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U1])
49 
50 #define PLL_CONFIG_CTL(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL])
51 #define PLL_CONFIG_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U])
52 #define PLL_CONFIG_CTL_U1(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U1])
53 #define PLL_TEST_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_TEST_CTL])
54 #define PLL_TEST_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U])
55 #define PLL_STATUS(p)		((p)->offset + (p)->regs[PLL_OFF_STATUS])
56 #define PLL_OPMODE(p)		((p)->offset + (p)->regs[PLL_OFF_OPMODE])
57 #define PLL_FRAC(p)		((p)->offset + (p)->regs[PLL_OFF_FRAC])
58 #define PLL_CAL_VAL(p)		((p)->offset + (p)->regs[PLL_OFF_CAL_VAL])
59 
60 const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = {
61 	[CLK_ALPHA_PLL_TYPE_DEFAULT] =  {
62 		[PLL_OFF_L_VAL] = 0x04,
63 		[PLL_OFF_ALPHA_VAL] = 0x08,
64 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
65 		[PLL_OFF_USER_CTL] = 0x10,
66 		[PLL_OFF_USER_CTL_U] = 0x14,
67 		[PLL_OFF_CONFIG_CTL] = 0x18,
68 		[PLL_OFF_TEST_CTL] = 0x1c,
69 		[PLL_OFF_TEST_CTL_U] = 0x20,
70 		[PLL_OFF_STATUS] = 0x24,
71 	},
72 	[CLK_ALPHA_PLL_TYPE_HUAYRA] =  {
73 		[PLL_OFF_L_VAL] = 0x04,
74 		[PLL_OFF_ALPHA_VAL] = 0x08,
75 		[PLL_OFF_USER_CTL] = 0x10,
76 		[PLL_OFF_CONFIG_CTL] = 0x14,
77 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
78 		[PLL_OFF_TEST_CTL] = 0x1c,
79 		[PLL_OFF_TEST_CTL_U] = 0x20,
80 		[PLL_OFF_STATUS] = 0x24,
81 	},
82 	[CLK_ALPHA_PLL_TYPE_BRAMMO] =  {
83 		[PLL_OFF_L_VAL] = 0x04,
84 		[PLL_OFF_ALPHA_VAL] = 0x08,
85 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
86 		[PLL_OFF_USER_CTL] = 0x10,
87 		[PLL_OFF_CONFIG_CTL] = 0x18,
88 		[PLL_OFF_TEST_CTL] = 0x1c,
89 		[PLL_OFF_STATUS] = 0x24,
90 	},
91 	[CLK_ALPHA_PLL_TYPE_FABIA] =  {
92 		[PLL_OFF_L_VAL] = 0x04,
93 		[PLL_OFF_USER_CTL] = 0x0c,
94 		[PLL_OFF_USER_CTL_U] = 0x10,
95 		[PLL_OFF_CONFIG_CTL] = 0x14,
96 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
97 		[PLL_OFF_TEST_CTL] = 0x1c,
98 		[PLL_OFF_TEST_CTL_U] = 0x20,
99 		[PLL_OFF_STATUS] = 0x24,
100 		[PLL_OFF_OPMODE] = 0x2c,
101 		[PLL_OFF_FRAC] = 0x38,
102 	},
103 	[CLK_ALPHA_PLL_TYPE_TRION] = {
104 		[PLL_OFF_L_VAL] = 0x04,
105 		[PLL_OFF_CAL_L_VAL] = 0x08,
106 		[PLL_OFF_USER_CTL] = 0x0c,
107 		[PLL_OFF_USER_CTL_U] = 0x10,
108 		[PLL_OFF_USER_CTL_U1] = 0x14,
109 		[PLL_OFF_CONFIG_CTL] = 0x18,
110 		[PLL_OFF_CONFIG_CTL_U] = 0x1c,
111 		[PLL_OFF_CONFIG_CTL_U1] = 0x20,
112 		[PLL_OFF_TEST_CTL] = 0x24,
113 		[PLL_OFF_TEST_CTL_U] = 0x28,
114 		[PLL_OFF_STATUS] = 0x30,
115 		[PLL_OFF_OPMODE] = 0x38,
116 		[PLL_OFF_ALPHA_VAL] = 0x40,
117 		[PLL_OFF_CAL_VAL] = 0x44,
118 	},
119 };
120 EXPORT_SYMBOL_GPL(clk_alpha_pll_regs);
121 
122 /*
123  * Even though 40 bits are present, use only 32 for ease of calculation.
124  */
125 #define ALPHA_REG_BITWIDTH	40
126 #define ALPHA_REG_16BIT_WIDTH	16
127 #define ALPHA_BITWIDTH		32U
128 #define ALPHA_SHIFT(w)		min(w, ALPHA_BITWIDTH)
129 
130 #define PLL_HUAYRA_M_WIDTH		8
131 #define PLL_HUAYRA_M_SHIFT		8
132 #define PLL_HUAYRA_M_MASK		0xff
133 #define PLL_HUAYRA_N_SHIFT		0
134 #define PLL_HUAYRA_N_MASK		0xff
135 #define PLL_HUAYRA_ALPHA_WIDTH		16
136 
137 #define FABIA_OPMODE_STANDBY	0x0
138 #define FABIA_OPMODE_RUN	0x1
139 
140 #define FABIA_PLL_OUT_MASK	0x7
141 #define FABIA_PLL_RATE_MARGIN	500
142 
143 #define TRION_PLL_STANDBY	0x0
144 #define TRION_PLL_RUN		0x1
145 #define TRION_PLL_OUT_MASK	0x7
146 
147 #define pll_alpha_width(p)					\
148 		((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ?	\
149 				 ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH)
150 
151 #define pll_has_64bit_config(p)	((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4)
152 
153 #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
154 					   struct clk_alpha_pll, clkr)
155 
156 #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
157 					   struct clk_alpha_pll_postdiv, clkr)
158 
159 static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
160 			const char *action)
161 {
162 	u32 val;
163 	int count;
164 	int ret;
165 	const char *name = clk_hw_get_name(&pll->clkr.hw);
166 
167 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
168 	if (ret)
169 		return ret;
170 
171 	for (count = 100; count > 0; count--) {
172 		ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
173 		if (ret)
174 			return ret;
175 		if (inverse && !(val & mask))
176 			return 0;
177 		else if ((val & mask) == mask)
178 			return 0;
179 
180 		udelay(1);
181 	}
182 
183 	WARN(1, "%s failed to %s!\n", name, action);
184 	return -ETIMEDOUT;
185 }
186 
187 #define wait_for_pll_enable_active(pll) \
188 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
189 
190 #define wait_for_pll_enable_lock(pll) \
191 	wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
192 
193 #define wait_for_pll_disable(pll) \
194 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
195 
196 #define wait_for_pll_offline(pll) \
197 	wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
198 
199 #define wait_for_pll_update(pll) \
200 	wait_for_pll(pll, PLL_UPDATE, 1, "update")
201 
202 #define wait_for_pll_update_ack_set(pll) \
203 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set")
204 
205 #define wait_for_pll_update_ack_clear(pll) \
206 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear")
207 
208 void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
209 			     const struct alpha_pll_config *config)
210 {
211 	u32 val, mask;
212 
213 	regmap_write(regmap, PLL_L_VAL(pll), config->l);
214 	regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
215 	regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
216 
217 	if (pll_has_64bit_config(pll))
218 		regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
219 			     config->config_ctl_hi_val);
220 
221 	if (pll_alpha_width(pll) > 32)
222 		regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
223 
224 	val = config->main_output_mask;
225 	val |= config->aux_output_mask;
226 	val |= config->aux2_output_mask;
227 	val |= config->early_output_mask;
228 	val |= config->pre_div_val;
229 	val |= config->post_div_val;
230 	val |= config->vco_val;
231 	val |= config->alpha_en_mask;
232 	val |= config->alpha_mode_mask;
233 
234 	mask = config->main_output_mask;
235 	mask |= config->aux_output_mask;
236 	mask |= config->aux2_output_mask;
237 	mask |= config->early_output_mask;
238 	mask |= config->pre_div_mask;
239 	mask |= config->post_div_mask;
240 	mask |= config->vco_mask;
241 
242 	regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
243 
244 	if (pll->flags & SUPPORTS_FSM_MODE)
245 		qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
246 }
247 EXPORT_SYMBOL_GPL(clk_alpha_pll_configure);
248 
249 static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
250 {
251 	int ret;
252 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
253 	u32 val;
254 
255 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
256 	if (ret)
257 		return ret;
258 
259 	val |= PLL_FSM_ENA;
260 
261 	if (pll->flags & SUPPORTS_OFFLINE_REQ)
262 		val &= ~PLL_OFFLINE_REQ;
263 
264 	ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val);
265 	if (ret)
266 		return ret;
267 
268 	/* Make sure enable request goes through before waiting for update */
269 	mb();
270 
271 	return wait_for_pll_enable_active(pll);
272 }
273 
274 static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
275 {
276 	int ret;
277 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
278 	u32 val;
279 
280 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
281 	if (ret)
282 		return;
283 
284 	if (pll->flags & SUPPORTS_OFFLINE_REQ) {
285 		ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
286 					 PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
287 		if (ret)
288 			return;
289 
290 		ret = wait_for_pll_offline(pll);
291 		if (ret)
292 			return;
293 	}
294 
295 	/* Disable hwfsm */
296 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
297 				 PLL_FSM_ENA, 0);
298 	if (ret)
299 		return;
300 
301 	wait_for_pll_disable(pll);
302 }
303 
304 static int pll_is_enabled(struct clk_hw *hw, u32 mask)
305 {
306 	int ret;
307 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
308 	u32 val;
309 
310 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
311 	if (ret)
312 		return ret;
313 
314 	return !!(val & mask);
315 }
316 
317 static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
318 {
319 	return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
320 }
321 
322 static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
323 {
324 	return pll_is_enabled(hw, PLL_LOCK_DET);
325 }
326 
327 static int clk_alpha_pll_enable(struct clk_hw *hw)
328 {
329 	int ret;
330 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
331 	u32 val, mask;
332 
333 	mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
334 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
335 	if (ret)
336 		return ret;
337 
338 	/* If in FSM mode, just vote for it */
339 	if (val & PLL_VOTE_FSM_ENA) {
340 		ret = clk_enable_regmap(hw);
341 		if (ret)
342 			return ret;
343 		return wait_for_pll_enable_active(pll);
344 	}
345 
346 	/* Skip if already enabled */
347 	if ((val & mask) == mask)
348 		return 0;
349 
350 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
351 				 PLL_BYPASSNL, PLL_BYPASSNL);
352 	if (ret)
353 		return ret;
354 
355 	/*
356 	 * H/W requires a 5us delay between disabling the bypass and
357 	 * de-asserting the reset.
358 	 */
359 	mb();
360 	udelay(5);
361 
362 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
363 				 PLL_RESET_N, PLL_RESET_N);
364 	if (ret)
365 		return ret;
366 
367 	ret = wait_for_pll_enable_lock(pll);
368 	if (ret)
369 		return ret;
370 
371 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
372 				 PLL_OUTCTRL, PLL_OUTCTRL);
373 
374 	/* Ensure that the write above goes through before returning. */
375 	mb();
376 	return ret;
377 }
378 
379 static void clk_alpha_pll_disable(struct clk_hw *hw)
380 {
381 	int ret;
382 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
383 	u32 val, mask;
384 
385 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
386 	if (ret)
387 		return;
388 
389 	/* If in FSM mode, just unvote it */
390 	if (val & PLL_VOTE_FSM_ENA) {
391 		clk_disable_regmap(hw);
392 		return;
393 	}
394 
395 	mask = PLL_OUTCTRL;
396 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
397 
398 	/* Delay of 2 output clock ticks required until output is disabled */
399 	mb();
400 	udelay(1);
401 
402 	mask = PLL_RESET_N | PLL_BYPASSNL;
403 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
404 }
405 
406 static unsigned long
407 alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width)
408 {
409 	return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width));
410 }
411 
412 static unsigned long
413 alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a,
414 		     u32 alpha_width)
415 {
416 	u64 remainder;
417 	u64 quotient;
418 
419 	quotient = rate;
420 	remainder = do_div(quotient, prate);
421 	*l = quotient;
422 
423 	if (!remainder) {
424 		*a = 0;
425 		return rate;
426 	}
427 
428 	/* Upper ALPHA_BITWIDTH bits of Alpha */
429 	quotient = remainder << ALPHA_SHIFT(alpha_width);
430 
431 	remainder = do_div(quotient, prate);
432 
433 	if (remainder)
434 		quotient++;
435 
436 	*a = quotient;
437 	return alpha_pll_calc_rate(prate, *l, *a, alpha_width);
438 }
439 
440 static const struct pll_vco *
441 alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
442 {
443 	const struct pll_vco *v = pll->vco_table;
444 	const struct pll_vco *end = v + pll->num_vco;
445 
446 	for (; v < end; v++)
447 		if (rate >= v->min_freq && rate <= v->max_freq)
448 			return v;
449 
450 	return NULL;
451 }
452 
453 static unsigned long
454 clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
455 {
456 	u32 l, low, high, ctl;
457 	u64 a = 0, prate = parent_rate;
458 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
459 	u32 alpha_width = pll_alpha_width(pll);
460 
461 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
462 
463 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
464 	if (ctl & PLL_ALPHA_EN) {
465 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low);
466 		if (alpha_width > 32) {
467 			regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
468 				    &high);
469 			a = (u64)high << 32 | low;
470 		} else {
471 			a = low & GENMASK(alpha_width - 1, 0);
472 		}
473 
474 		if (alpha_width > ALPHA_BITWIDTH)
475 			a >>= alpha_width - ALPHA_BITWIDTH;
476 	}
477 
478 	return alpha_pll_calc_rate(prate, l, a, alpha_width);
479 }
480 
481 
482 static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll)
483 {
484 	int ret;
485 	u32 mode;
486 
487 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode);
488 
489 	/* Latch the input to the PLL */
490 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
491 			   PLL_UPDATE);
492 
493 	/* Wait for 2 reference cycle before checking ACK bit */
494 	udelay(1);
495 
496 	/*
497 	 * PLL will latch the new L, Alpha and freq control word.
498 	 * PLL will respond by raising PLL_ACK_LATCH output when new programming
499 	 * has been latched in and PLL is being updated. When
500 	 * UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared
501 	 * automatically by hardware when PLL_ACK_LATCH is asserted by PLL.
502 	 */
503 	if (mode & PLL_UPDATE_BYPASS) {
504 		ret = wait_for_pll_update_ack_set(pll);
505 		if (ret)
506 			return ret;
507 
508 		regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0);
509 	} else {
510 		ret = wait_for_pll_update(pll);
511 		if (ret)
512 			return ret;
513 	}
514 
515 	ret = wait_for_pll_update_ack_clear(pll);
516 	if (ret)
517 		return ret;
518 
519 	/* Wait for PLL output to stabilize */
520 	udelay(10);
521 
522 	return 0;
523 }
524 
525 static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll,
526 				      int (*is_enabled)(struct clk_hw *))
527 {
528 	if (!is_enabled(&pll->clkr.hw) ||
529 	    !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
530 		return 0;
531 
532 	return __clk_alpha_pll_update_latch(pll);
533 }
534 
535 static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
536 				    unsigned long prate,
537 				    int (*is_enabled)(struct clk_hw *))
538 {
539 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
540 	const struct pll_vco *vco;
541 	u32 l, alpha_width = pll_alpha_width(pll);
542 	u64 a;
543 
544 	rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
545 	vco = alpha_pll_find_vco(pll, rate);
546 	if (pll->vco_table && !vco) {
547 		pr_err("alpha pll not in a valid vco range\n");
548 		return -EINVAL;
549 	}
550 
551 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
552 
553 	if (alpha_width > ALPHA_BITWIDTH)
554 		a <<= alpha_width - ALPHA_BITWIDTH;
555 
556 	if (alpha_width > 32)
557 		regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
558 
559 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
560 
561 	if (vco) {
562 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
563 				   PLL_VCO_MASK << PLL_VCO_SHIFT,
564 				   vco->val << PLL_VCO_SHIFT);
565 	}
566 
567 	regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
568 			   PLL_ALPHA_EN, PLL_ALPHA_EN);
569 
570 	return clk_alpha_pll_update_latch(pll, is_enabled);
571 }
572 
573 static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
574 				  unsigned long prate)
575 {
576 	return __clk_alpha_pll_set_rate(hw, rate, prate,
577 					clk_alpha_pll_is_enabled);
578 }
579 
580 static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate,
581 					unsigned long prate)
582 {
583 	return __clk_alpha_pll_set_rate(hw, rate, prate,
584 					clk_alpha_pll_hwfsm_is_enabled);
585 }
586 
587 static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
588 				     unsigned long *prate)
589 {
590 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
591 	u32 l, alpha_width = pll_alpha_width(pll);
592 	u64 a;
593 	unsigned long min_freq, max_freq;
594 
595 	rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width);
596 	if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
597 		return rate;
598 
599 	min_freq = pll->vco_table[0].min_freq;
600 	max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
601 
602 	return clamp(rate, min_freq, max_freq);
603 }
604 
605 static unsigned long
606 alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a)
607 {
608 	/*
609 	 * a contains 16 bit alpha_val in two’s compliment number in the range
610 	 * of [-0.5, 0.5).
611 	 */
612 	if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
613 		l -= 1;
614 
615 	return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH);
616 }
617 
618 static unsigned long
619 alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate,
620 			    u32 *l, u32 *a)
621 {
622 	u64 remainder;
623 	u64 quotient;
624 
625 	quotient = rate;
626 	remainder = do_div(quotient, prate);
627 	*l = quotient;
628 
629 	if (!remainder) {
630 		*a = 0;
631 		return rate;
632 	}
633 
634 	quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH;
635 	remainder = do_div(quotient, prate);
636 
637 	if (remainder)
638 		quotient++;
639 
640 	/*
641 	 * alpha_val should be in two’s compliment number in the range
642 	 * of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value
643 	 * since alpha value will be subtracted in this case.
644 	 */
645 	if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
646 		*l += 1;
647 
648 	*a = quotient;
649 	return alpha_huayra_pll_calc_rate(prate, *l, *a);
650 }
651 
652 static unsigned long
653 alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
654 {
655 	u64 rate = parent_rate, tmp;
656 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
657 	u32 l, alpha = 0, ctl, alpha_m, alpha_n;
658 
659 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
660 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
661 
662 	if (ctl & PLL_ALPHA_EN) {
663 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha);
664 		/*
665 		 * Depending upon alpha_mode, it can be treated as M/N value or
666 		 * as a two’s compliment number. When alpha_mode=1,
667 		 * pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N
668 		 *
669 		 *		Fout=FIN*(L+(M/N))
670 		 *
671 		 * M is a signed number (-128 to 127) and N is unsigned
672 		 * (0 to 255). M/N has to be within +/-0.5.
673 		 *
674 		 * When alpha_mode=0, it is a two’s compliment number in the
675 		 * range [-0.5, 0.5).
676 		 *
677 		 *		Fout=FIN*(L+(alpha_val)/2^16)
678 		 *
679 		 * where alpha_val is two’s compliment number.
680 		 */
681 		if (!(ctl & PLL_ALPHA_MODE))
682 			return alpha_huayra_pll_calc_rate(rate, l, alpha);
683 
684 		alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK;
685 		alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK;
686 
687 		rate *= l;
688 		tmp = parent_rate;
689 		if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) {
690 			alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m;
691 			tmp *= alpha_m;
692 			do_div(tmp, alpha_n);
693 			rate -= tmp;
694 		} else {
695 			tmp *= alpha_m;
696 			do_div(tmp, alpha_n);
697 			rate += tmp;
698 		}
699 
700 		return rate;
701 	}
702 
703 	return alpha_huayra_pll_calc_rate(rate, l, alpha);
704 }
705 
706 static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate,
707 				     unsigned long prate)
708 {
709 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
710 	u32 l, a, ctl, cur_alpha = 0;
711 
712 	rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a);
713 
714 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
715 
716 	if (ctl & PLL_ALPHA_EN)
717 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha);
718 
719 	/*
720 	 * Huayra PLL supports PLL dynamic programming. User can change L_VAL,
721 	 * without having to go through the power on sequence.
722 	 */
723 	if (clk_alpha_pll_is_enabled(hw)) {
724 		if (cur_alpha != a) {
725 			pr_err("clock needs to be gated %s\n",
726 			       clk_hw_get_name(hw));
727 			return -EBUSY;
728 		}
729 
730 		regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
731 		/* Ensure that the write above goes to detect L val change. */
732 		mb();
733 		return wait_for_pll_enable_lock(pll);
734 	}
735 
736 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
737 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
738 
739 	if (a == 0)
740 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
741 				   PLL_ALPHA_EN, 0x0);
742 	else
743 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
744 				   PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN);
745 
746 	return 0;
747 }
748 
749 static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate,
750 					unsigned long *prate)
751 {
752 	u32 l, a;
753 
754 	return alpha_huayra_pll_round_rate(rate, *prate, &l, &a);
755 }
756 
757 static int trion_pll_is_enabled(struct clk_alpha_pll *pll,
758 				struct regmap *regmap)
759 {
760 	u32 mode_regval, opmode_regval;
761 	int ret;
762 
763 	ret = regmap_read(regmap, PLL_MODE(pll), &mode_regval);
764 	ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_regval);
765 	if (ret)
766 		return 0;
767 
768 	return ((opmode_regval & TRION_PLL_RUN) && (mode_regval & PLL_OUTCTRL));
769 }
770 
771 static int clk_trion_pll_is_enabled(struct clk_hw *hw)
772 {
773 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
774 
775 	return trion_pll_is_enabled(pll, pll->clkr.regmap);
776 }
777 
778 static int clk_trion_pll_enable(struct clk_hw *hw)
779 {
780 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
781 	struct regmap *regmap = pll->clkr.regmap;
782 	u32 val;
783 	int ret;
784 
785 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
786 	if (ret)
787 		return ret;
788 
789 	/* If in FSM mode, just vote for it */
790 	if (val & PLL_VOTE_FSM_ENA) {
791 		ret = clk_enable_regmap(hw);
792 		if (ret)
793 			return ret;
794 		return wait_for_pll_enable_active(pll);
795 	}
796 
797 	/* Set operation mode to RUN */
798 	regmap_write(regmap, PLL_OPMODE(pll), TRION_PLL_RUN);
799 
800 	ret = wait_for_pll_enable_lock(pll);
801 	if (ret)
802 		return ret;
803 
804 	/* Enable the PLL outputs */
805 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
806 				 TRION_PLL_OUT_MASK, TRION_PLL_OUT_MASK);
807 	if (ret)
808 		return ret;
809 
810 	/* Enable the global PLL outputs */
811 	return regmap_update_bits(regmap, PLL_MODE(pll),
812 				 PLL_OUTCTRL, PLL_OUTCTRL);
813 }
814 
815 static void clk_trion_pll_disable(struct clk_hw *hw)
816 {
817 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
818 	struct regmap *regmap = pll->clkr.regmap;
819 	u32 val;
820 	int ret;
821 
822 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
823 	if (ret)
824 		return;
825 
826 	/* If in FSM mode, just unvote it */
827 	if (val & PLL_VOTE_FSM_ENA) {
828 		clk_disable_regmap(hw);
829 		return;
830 	}
831 
832 	/* Disable the global PLL output */
833 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
834 	if (ret)
835 		return;
836 
837 	/* Disable the PLL outputs */
838 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
839 				 TRION_PLL_OUT_MASK, 0);
840 	if (ret)
841 		return;
842 
843 	/* Place the PLL mode in STANDBY */
844 	regmap_write(regmap, PLL_OPMODE(pll), TRION_PLL_STANDBY);
845 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
846 }
847 
848 static unsigned long
849 clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
850 {
851 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
852 	struct regmap *regmap = pll->clkr.regmap;
853 	u32 l, frac;
854 	u64 prate = parent_rate;
855 
856 	regmap_read(regmap, PLL_L_VAL(pll), &l);
857 	regmap_read(regmap, PLL_ALPHA_VAL(pll), &frac);
858 
859 	return alpha_pll_calc_rate(prate, l, frac, ALPHA_REG_16BIT_WIDTH);
860 }
861 
862 static long clk_trion_pll_round_rate(struct clk_hw *hw, unsigned long rate,
863 				     unsigned long *prate)
864 {
865 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
866 	unsigned long min_freq, max_freq;
867 	u32 l;
868 	u64 a;
869 
870 	rate = alpha_pll_round_rate(rate, *prate,
871 				    &l, &a, ALPHA_REG_16BIT_WIDTH);
872 	if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
873 		return rate;
874 
875 	min_freq = pll->vco_table[0].min_freq;
876 	max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
877 
878 	return clamp(rate, min_freq, max_freq);
879 }
880 
881 const struct clk_ops clk_alpha_pll_ops = {
882 	.enable = clk_alpha_pll_enable,
883 	.disable = clk_alpha_pll_disable,
884 	.is_enabled = clk_alpha_pll_is_enabled,
885 	.recalc_rate = clk_alpha_pll_recalc_rate,
886 	.round_rate = clk_alpha_pll_round_rate,
887 	.set_rate = clk_alpha_pll_set_rate,
888 };
889 EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
890 
891 const struct clk_ops clk_alpha_pll_huayra_ops = {
892 	.enable = clk_alpha_pll_enable,
893 	.disable = clk_alpha_pll_disable,
894 	.is_enabled = clk_alpha_pll_is_enabled,
895 	.recalc_rate = alpha_pll_huayra_recalc_rate,
896 	.round_rate = alpha_pll_huayra_round_rate,
897 	.set_rate = alpha_pll_huayra_set_rate,
898 };
899 EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops);
900 
901 const struct clk_ops clk_alpha_pll_hwfsm_ops = {
902 	.enable = clk_alpha_pll_hwfsm_enable,
903 	.disable = clk_alpha_pll_hwfsm_disable,
904 	.is_enabled = clk_alpha_pll_hwfsm_is_enabled,
905 	.recalc_rate = clk_alpha_pll_recalc_rate,
906 	.round_rate = clk_alpha_pll_round_rate,
907 	.set_rate = clk_alpha_pll_hwfsm_set_rate,
908 };
909 EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
910 
911 const struct clk_ops clk_trion_fixed_pll_ops = {
912 	.enable = clk_trion_pll_enable,
913 	.disable = clk_trion_pll_disable,
914 	.is_enabled = clk_trion_pll_is_enabled,
915 	.recalc_rate = clk_trion_pll_recalc_rate,
916 	.round_rate = clk_trion_pll_round_rate,
917 };
918 EXPORT_SYMBOL_GPL(clk_trion_fixed_pll_ops);
919 
920 static unsigned long
921 clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
922 {
923 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
924 	u32 ctl;
925 
926 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
927 
928 	ctl >>= PLL_POST_DIV_SHIFT;
929 	ctl &= PLL_POST_DIV_MASK(pll);
930 
931 	return parent_rate >> fls(ctl);
932 }
933 
934 static const struct clk_div_table clk_alpha_div_table[] = {
935 	{ 0x0, 1 },
936 	{ 0x1, 2 },
937 	{ 0x3, 4 },
938 	{ 0x7, 8 },
939 	{ 0xf, 16 },
940 	{ }
941 };
942 
943 static const struct clk_div_table clk_alpha_2bit_div_table[] = {
944 	{ 0x0, 1 },
945 	{ 0x1, 2 },
946 	{ 0x3, 4 },
947 	{ }
948 };
949 
950 static long
951 clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
952 				 unsigned long *prate)
953 {
954 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
955 	const struct clk_div_table *table;
956 
957 	if (pll->width == 2)
958 		table = clk_alpha_2bit_div_table;
959 	else
960 		table = clk_alpha_div_table;
961 
962 	return divider_round_rate(hw, rate, prate, table,
963 				  pll->width, CLK_DIVIDER_POWER_OF_TWO);
964 }
965 
966 static long
967 clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate,
968 				    unsigned long *prate)
969 {
970 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
971 	u32 ctl, div;
972 
973 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
974 
975 	ctl >>= PLL_POST_DIV_SHIFT;
976 	ctl &= BIT(pll->width) - 1;
977 	div = 1 << fls(ctl);
978 
979 	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
980 		*prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate);
981 
982 	return DIV_ROUND_UP_ULL((u64)*prate, div);
983 }
984 
985 static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
986 					  unsigned long parent_rate)
987 {
988 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
989 	int div;
990 
991 	/* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
992 	div = DIV_ROUND_UP_ULL(parent_rate, rate) - 1;
993 
994 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
995 				  PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
996 				  div << PLL_POST_DIV_SHIFT);
997 }
998 
999 const struct clk_ops clk_alpha_pll_postdiv_ops = {
1000 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
1001 	.round_rate = clk_alpha_pll_postdiv_round_rate,
1002 	.set_rate = clk_alpha_pll_postdiv_set_rate,
1003 };
1004 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
1005 
1006 const struct clk_ops clk_alpha_pll_postdiv_ro_ops = {
1007 	.round_rate = clk_alpha_pll_postdiv_round_ro_rate,
1008 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
1009 };
1010 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);
1011 
1012 void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1013 			     const struct alpha_pll_config *config)
1014 {
1015 	u32 val, mask;
1016 
1017 	if (config->l)
1018 		regmap_write(regmap, PLL_L_VAL(pll), config->l);
1019 
1020 	if (config->alpha)
1021 		regmap_write(regmap, PLL_FRAC(pll), config->alpha);
1022 
1023 	if (config->config_ctl_val)
1024 		regmap_write(regmap, PLL_CONFIG_CTL(pll),
1025 						config->config_ctl_val);
1026 
1027 	if (config->post_div_mask) {
1028 		mask = config->post_div_mask;
1029 		val = config->post_div_val;
1030 		regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
1031 	}
1032 
1033 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
1034 							PLL_UPDATE_BYPASS);
1035 
1036 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1037 }
1038 EXPORT_SYMBOL_GPL(clk_fabia_pll_configure);
1039 
1040 static int alpha_pll_fabia_enable(struct clk_hw *hw)
1041 {
1042 	int ret;
1043 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1044 	u32 val, opmode_val;
1045 	struct regmap *regmap = pll->clkr.regmap;
1046 
1047 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
1048 	if (ret)
1049 		return ret;
1050 
1051 	/* If in FSM mode, just vote for it */
1052 	if (val & PLL_VOTE_FSM_ENA) {
1053 		ret = clk_enable_regmap(hw);
1054 		if (ret)
1055 			return ret;
1056 		return wait_for_pll_enable_active(pll);
1057 	}
1058 
1059 	ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
1060 	if (ret)
1061 		return ret;
1062 
1063 	/* Skip If PLL is already running */
1064 	if ((opmode_val & FABIA_OPMODE_RUN) && (val & PLL_OUTCTRL))
1065 		return 0;
1066 
1067 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1068 	if (ret)
1069 		return ret;
1070 
1071 	ret = regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_STANDBY);
1072 	if (ret)
1073 		return ret;
1074 
1075 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N,
1076 				 PLL_RESET_N);
1077 	if (ret)
1078 		return ret;
1079 
1080 	ret = regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_RUN);
1081 	if (ret)
1082 		return ret;
1083 
1084 	ret = wait_for_pll_enable_lock(pll);
1085 	if (ret)
1086 		return ret;
1087 
1088 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
1089 				 FABIA_PLL_OUT_MASK, FABIA_PLL_OUT_MASK);
1090 	if (ret)
1091 		return ret;
1092 
1093 	return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL,
1094 				 PLL_OUTCTRL);
1095 }
1096 
1097 static void alpha_pll_fabia_disable(struct clk_hw *hw)
1098 {
1099 	int ret;
1100 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1101 	u32 val;
1102 	struct regmap *regmap = pll->clkr.regmap;
1103 
1104 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
1105 	if (ret)
1106 		return;
1107 
1108 	/* If in FSM mode, just unvote it */
1109 	if (val & PLL_FSM_ENA) {
1110 		clk_disable_regmap(hw);
1111 		return;
1112 	}
1113 
1114 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1115 	if (ret)
1116 		return;
1117 
1118 	/* Disable main outputs */
1119 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), FABIA_PLL_OUT_MASK,
1120 				 0);
1121 	if (ret)
1122 		return;
1123 
1124 	/* Place the PLL in STANDBY */
1125 	regmap_write(regmap, PLL_OPMODE(pll), FABIA_OPMODE_STANDBY);
1126 }
1127 
1128 static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw,
1129 						unsigned long parent_rate)
1130 {
1131 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1132 	u32 l, frac, alpha_width = pll_alpha_width(pll);
1133 
1134 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
1135 	regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac);
1136 
1137 	return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
1138 }
1139 
1140 static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate,
1141 						unsigned long prate)
1142 {
1143 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1144 	u32 val, l, alpha_width = pll_alpha_width(pll);
1145 	u64 a;
1146 	unsigned long rrate;
1147 	int ret = 0;
1148 
1149 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1150 	if (ret)
1151 		return ret;
1152 
1153 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1154 
1155 	/*
1156 	 * Due to limited number of bits for fractional rate programming, the
1157 	 * rounded up rate could be marginally higher than the requested rate.
1158 	 */
1159 	if (rrate > (rate + FABIA_PLL_RATE_MARGIN) || rrate < rate) {
1160 		pr_err("Call set rate on the PLL with rounded rates!\n");
1161 		return -EINVAL;
1162 	}
1163 
1164 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1165 	regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a);
1166 
1167 	return __clk_alpha_pll_update_latch(pll);
1168 }
1169 
1170 const struct clk_ops clk_alpha_pll_fabia_ops = {
1171 	.enable = alpha_pll_fabia_enable,
1172 	.disable = alpha_pll_fabia_disable,
1173 	.is_enabled = clk_alpha_pll_is_enabled,
1174 	.set_rate = alpha_pll_fabia_set_rate,
1175 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1176 	.round_rate = clk_alpha_pll_round_rate,
1177 };
1178 EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops);
1179 
1180 const struct clk_ops clk_alpha_pll_fixed_fabia_ops = {
1181 	.enable = alpha_pll_fabia_enable,
1182 	.disable = alpha_pll_fabia_disable,
1183 	.is_enabled = clk_alpha_pll_is_enabled,
1184 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1185 	.round_rate = clk_alpha_pll_round_rate,
1186 };
1187 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops);
1188 
1189 static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw,
1190 					unsigned long parent_rate)
1191 {
1192 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1193 	u32 i, div = 1, val;
1194 	int ret;
1195 
1196 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1197 	if (ret)
1198 		return ret;
1199 
1200 	val >>= pll->post_div_shift;
1201 	val &= BIT(pll->width) - 1;
1202 
1203 	for (i = 0; i < pll->num_post_div; i++) {
1204 		if (pll->post_div_table[i].val == val) {
1205 			div = pll->post_div_table[i].div;
1206 			break;
1207 		}
1208 	}
1209 
1210 	return (parent_rate / div);
1211 }
1212 
1213 static unsigned long
1214 clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
1215 {
1216 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1217 	struct regmap *regmap = pll->clkr.regmap;
1218 	u32 i, div = 1, val;
1219 
1220 	regmap_read(regmap, PLL_USER_CTL(pll), &val);
1221 
1222 	val >>= pll->post_div_shift;
1223 	val &= PLL_POST_DIV_MASK(pll);
1224 
1225 	for (i = 0; i < pll->num_post_div; i++) {
1226 		if (pll->post_div_table[i].val == val) {
1227 			div = pll->post_div_table[i].div;
1228 			break;
1229 		}
1230 	}
1231 
1232 	return (parent_rate / div);
1233 }
1234 
1235 static long
1236 clk_trion_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
1237 				 unsigned long *prate)
1238 {
1239 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1240 
1241 	return divider_round_rate(hw, rate, prate, pll->post_div_table,
1242 				  pll->width, CLK_DIVIDER_ROUND_CLOSEST);
1243 };
1244 
1245 static int
1246 clk_trion_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1247 			       unsigned long parent_rate)
1248 {
1249 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1250 	struct regmap *regmap = pll->clkr.regmap;
1251 	int i, val = 0, div;
1252 
1253 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
1254 	for (i = 0; i < pll->num_post_div; i++) {
1255 		if (pll->post_div_table[i].div == div) {
1256 			val = pll->post_div_table[i].val;
1257 			break;
1258 		}
1259 	}
1260 
1261 	return regmap_update_bits(regmap, PLL_USER_CTL(pll),
1262 				  PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
1263 				  val << PLL_POST_DIV_SHIFT);
1264 }
1265 
1266 const struct clk_ops clk_trion_pll_postdiv_ops = {
1267 	.recalc_rate = clk_trion_pll_postdiv_recalc_rate,
1268 	.round_rate = clk_trion_pll_postdiv_round_rate,
1269 	.set_rate = clk_trion_pll_postdiv_set_rate,
1270 };
1271 EXPORT_SYMBOL_GPL(clk_trion_pll_postdiv_ops);
1272 
1273 static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw,
1274 				unsigned long rate, unsigned long *prate)
1275 {
1276 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1277 
1278 	return divider_round_rate(hw, rate, prate, pll->post_div_table,
1279 				pll->width, CLK_DIVIDER_ROUND_CLOSEST);
1280 }
1281 
1282 static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw,
1283 				unsigned long rate, unsigned long parent_rate)
1284 {
1285 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1286 	int i, val = 0, div, ret;
1287 
1288 	/*
1289 	 * If the PLL is in FSM mode, then treat set_rate callback as a
1290 	 * no-operation.
1291 	 */
1292 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1293 	if (ret)
1294 		return ret;
1295 
1296 	if (val & PLL_VOTE_FSM_ENA)
1297 		return 0;
1298 
1299 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
1300 	for (i = 0; i < pll->num_post_div; i++) {
1301 		if (pll->post_div_table[i].div == div) {
1302 			val = pll->post_div_table[i].val;
1303 			break;
1304 		}
1305 	}
1306 
1307 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1308 				(BIT(pll->width) - 1) << pll->post_div_shift,
1309 				val << pll->post_div_shift);
1310 }
1311 
1312 const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = {
1313 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1314 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1315 	.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
1316 };
1317 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);
1318