xref: /linux/drivers/clk/qcom/clk-alpha-pll.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2021, 2023, Qualcomm Innovation Center, Inc. All rights reserved.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/export.h>
9 #include <linux/clk-provider.h>
10 #include <linux/regmap.h>
11 #include <linux/delay.h>
12 
13 #include "clk-alpha-pll.h"
14 #include "common.h"
15 
16 #define PLL_MODE(p)		((p)->offset + 0x0)
17 # define PLL_OUTCTRL		BIT(0)
18 # define PLL_BYPASSNL		BIT(1)
19 # define PLL_RESET_N		BIT(2)
20 # define PLL_OFFLINE_REQ	BIT(7)
21 # define PLL_LOCK_COUNT_SHIFT	8
22 # define PLL_LOCK_COUNT_MASK	0x3f
23 # define PLL_BIAS_COUNT_SHIFT	14
24 # define PLL_BIAS_COUNT_MASK	0x3f
25 # define PLL_VOTE_FSM_ENA	BIT(20)
26 # define PLL_FSM_ENA		BIT(20)
27 # define PLL_VOTE_FSM_RESET	BIT(21)
28 # define PLL_UPDATE		BIT(22)
29 # define PLL_UPDATE_BYPASS	BIT(23)
30 # define PLL_FSM_LEGACY_MODE	BIT(24)
31 # define PLL_OFFLINE_ACK	BIT(28)
32 # define ALPHA_PLL_ACK_LATCH	BIT(29)
33 # define PLL_ACTIVE_FLAG	BIT(30)
34 # define PLL_LOCK_DET		BIT(31)
35 
36 #define PLL_L_VAL(p)		((p)->offset + (p)->regs[PLL_OFF_L_VAL])
37 #define PLL_CAL_L_VAL(p)	((p)->offset + (p)->regs[PLL_OFF_CAL_L_VAL])
38 #define PLL_ALPHA_VAL(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL])
39 #define PLL_ALPHA_VAL_U(p)	((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U])
40 
41 #define PLL_USER_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_USER_CTL])
42 # define PLL_POST_DIV_SHIFT	8
43 # define PLL_POST_DIV_MASK(p)	GENMASK((p)->width, 0)
44 # define PLL_ALPHA_EN		BIT(24)
45 # define PLL_ALPHA_MODE		BIT(25)
46 # define PLL_VCO_SHIFT		20
47 # define PLL_VCO_MASK		0x3
48 
49 #define PLL_USER_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U])
50 #define PLL_USER_CTL_U1(p)	((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U1])
51 
52 #define PLL_CONFIG_CTL(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL])
53 #define PLL_CONFIG_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U])
54 #define PLL_CONFIG_CTL_U1(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U1])
55 #define PLL_CONFIG_CTL_U2(p)	((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U2])
56 #define PLL_TEST_CTL(p)		((p)->offset + (p)->regs[PLL_OFF_TEST_CTL])
57 #define PLL_TEST_CTL_U(p)	((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U])
58 #define PLL_TEST_CTL_U1(p)     ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U1])
59 #define PLL_TEST_CTL_U2(p)     ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U2])
60 #define PLL_STATUS(p)		((p)->offset + (p)->regs[PLL_OFF_STATUS])
61 #define PLL_OPMODE(p)		((p)->offset + (p)->regs[PLL_OFF_OPMODE])
62 #define PLL_FRAC(p)		((p)->offset + (p)->regs[PLL_OFF_FRAC])
63 
64 const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = {
65 	[CLK_ALPHA_PLL_TYPE_DEFAULT] =  {
66 		[PLL_OFF_L_VAL] = 0x04,
67 		[PLL_OFF_ALPHA_VAL] = 0x08,
68 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
69 		[PLL_OFF_USER_CTL] = 0x10,
70 		[PLL_OFF_USER_CTL_U] = 0x14,
71 		[PLL_OFF_CONFIG_CTL] = 0x18,
72 		[PLL_OFF_TEST_CTL] = 0x1c,
73 		[PLL_OFF_TEST_CTL_U] = 0x20,
74 		[PLL_OFF_STATUS] = 0x24,
75 	},
76 	[CLK_ALPHA_PLL_TYPE_HUAYRA] =  {
77 		[PLL_OFF_L_VAL] = 0x04,
78 		[PLL_OFF_ALPHA_VAL] = 0x08,
79 		[PLL_OFF_USER_CTL] = 0x10,
80 		[PLL_OFF_CONFIG_CTL] = 0x14,
81 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
82 		[PLL_OFF_TEST_CTL] = 0x1c,
83 		[PLL_OFF_TEST_CTL_U] = 0x20,
84 		[PLL_OFF_STATUS] = 0x24,
85 	},
86 	[CLK_ALPHA_PLL_TYPE_HUAYRA_APSS] =  {
87 		[PLL_OFF_L_VAL] = 0x08,
88 		[PLL_OFF_ALPHA_VAL] = 0x10,
89 		[PLL_OFF_USER_CTL] = 0x18,
90 		[PLL_OFF_CONFIG_CTL] = 0x20,
91 		[PLL_OFF_CONFIG_CTL_U] = 0x24,
92 		[PLL_OFF_STATUS] = 0x28,
93 		[PLL_OFF_TEST_CTL] = 0x30,
94 		[PLL_OFF_TEST_CTL_U] = 0x34,
95 	},
96 	[CLK_ALPHA_PLL_TYPE_BRAMMO] =  {
97 		[PLL_OFF_L_VAL] = 0x04,
98 		[PLL_OFF_ALPHA_VAL] = 0x08,
99 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
100 		[PLL_OFF_USER_CTL] = 0x10,
101 		[PLL_OFF_CONFIG_CTL] = 0x18,
102 		[PLL_OFF_TEST_CTL] = 0x1c,
103 		[PLL_OFF_STATUS] = 0x24,
104 	},
105 	[CLK_ALPHA_PLL_TYPE_FABIA] =  {
106 		[PLL_OFF_L_VAL] = 0x04,
107 		[PLL_OFF_USER_CTL] = 0x0c,
108 		[PLL_OFF_USER_CTL_U] = 0x10,
109 		[PLL_OFF_CONFIG_CTL] = 0x14,
110 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
111 		[PLL_OFF_TEST_CTL] = 0x1c,
112 		[PLL_OFF_TEST_CTL_U] = 0x20,
113 		[PLL_OFF_STATUS] = 0x24,
114 		[PLL_OFF_OPMODE] = 0x2c,
115 		[PLL_OFF_FRAC] = 0x38,
116 	},
117 	[CLK_ALPHA_PLL_TYPE_TRION] = {
118 		[PLL_OFF_L_VAL] = 0x04,
119 		[PLL_OFF_CAL_L_VAL] = 0x08,
120 		[PLL_OFF_USER_CTL] = 0x0c,
121 		[PLL_OFF_USER_CTL_U] = 0x10,
122 		[PLL_OFF_USER_CTL_U1] = 0x14,
123 		[PLL_OFF_CONFIG_CTL] = 0x18,
124 		[PLL_OFF_CONFIG_CTL_U] = 0x1c,
125 		[PLL_OFF_CONFIG_CTL_U1] = 0x20,
126 		[PLL_OFF_TEST_CTL] = 0x24,
127 		[PLL_OFF_TEST_CTL_U] = 0x28,
128 		[PLL_OFF_TEST_CTL_U1] = 0x2c,
129 		[PLL_OFF_STATUS] = 0x30,
130 		[PLL_OFF_OPMODE] = 0x38,
131 		[PLL_OFF_ALPHA_VAL] = 0x40,
132 	},
133 	[CLK_ALPHA_PLL_TYPE_AGERA] =  {
134 		[PLL_OFF_L_VAL] = 0x04,
135 		[PLL_OFF_ALPHA_VAL] = 0x08,
136 		[PLL_OFF_USER_CTL] = 0x0c,
137 		[PLL_OFF_CONFIG_CTL] = 0x10,
138 		[PLL_OFF_CONFIG_CTL_U] = 0x14,
139 		[PLL_OFF_TEST_CTL] = 0x18,
140 		[PLL_OFF_TEST_CTL_U] = 0x1c,
141 		[PLL_OFF_STATUS] = 0x2c,
142 	},
143 	[CLK_ALPHA_PLL_TYPE_ZONDA] =  {
144 		[PLL_OFF_L_VAL] = 0x04,
145 		[PLL_OFF_ALPHA_VAL] = 0x08,
146 		[PLL_OFF_USER_CTL] = 0x0c,
147 		[PLL_OFF_CONFIG_CTL] = 0x10,
148 		[PLL_OFF_CONFIG_CTL_U] = 0x14,
149 		[PLL_OFF_CONFIG_CTL_U1] = 0x18,
150 		[PLL_OFF_TEST_CTL] = 0x1c,
151 		[PLL_OFF_TEST_CTL_U] = 0x20,
152 		[PLL_OFF_TEST_CTL_U1] = 0x24,
153 		[PLL_OFF_OPMODE] = 0x28,
154 		[PLL_OFF_STATUS] = 0x38,
155 	},
156 	[CLK_ALPHA_PLL_TYPE_LUCID_EVO] = {
157 		[PLL_OFF_OPMODE] = 0x04,
158 		[PLL_OFF_STATUS] = 0x0c,
159 		[PLL_OFF_L_VAL] = 0x10,
160 		[PLL_OFF_ALPHA_VAL] = 0x14,
161 		[PLL_OFF_USER_CTL] = 0x18,
162 		[PLL_OFF_USER_CTL_U] = 0x1c,
163 		[PLL_OFF_CONFIG_CTL] = 0x20,
164 		[PLL_OFF_CONFIG_CTL_U] = 0x24,
165 		[PLL_OFF_CONFIG_CTL_U1] = 0x28,
166 		[PLL_OFF_TEST_CTL] = 0x2c,
167 		[PLL_OFF_TEST_CTL_U] = 0x30,
168 		[PLL_OFF_TEST_CTL_U1] = 0x34,
169 	},
170 	[CLK_ALPHA_PLL_TYPE_LUCID_OLE] = {
171 		[PLL_OFF_OPMODE] = 0x04,
172 		[PLL_OFF_STATE] = 0x08,
173 		[PLL_OFF_STATUS] = 0x0c,
174 		[PLL_OFF_L_VAL] = 0x10,
175 		[PLL_OFF_ALPHA_VAL] = 0x14,
176 		[PLL_OFF_USER_CTL] = 0x18,
177 		[PLL_OFF_USER_CTL_U] = 0x1c,
178 		[PLL_OFF_CONFIG_CTL] = 0x20,
179 		[PLL_OFF_CONFIG_CTL_U] = 0x24,
180 		[PLL_OFF_CONFIG_CTL_U1] = 0x28,
181 		[PLL_OFF_TEST_CTL] = 0x2c,
182 		[PLL_OFF_TEST_CTL_U] = 0x30,
183 		[PLL_OFF_TEST_CTL_U1] = 0x34,
184 		[PLL_OFF_TEST_CTL_U2] = 0x38,
185 	},
186 	[CLK_ALPHA_PLL_TYPE_RIVIAN_EVO] = {
187 		[PLL_OFF_OPMODE] = 0x04,
188 		[PLL_OFF_STATUS] = 0x0c,
189 		[PLL_OFF_L_VAL] = 0x10,
190 		[PLL_OFF_USER_CTL] = 0x14,
191 		[PLL_OFF_USER_CTL_U] = 0x18,
192 		[PLL_OFF_CONFIG_CTL] = 0x1c,
193 		[PLL_OFF_CONFIG_CTL_U] = 0x20,
194 		[PLL_OFF_CONFIG_CTL_U1] = 0x24,
195 		[PLL_OFF_TEST_CTL] = 0x28,
196 		[PLL_OFF_TEST_CTL_U] = 0x2c,
197 	},
198 	[CLK_ALPHA_PLL_TYPE_DEFAULT_EVO] =  {
199 		[PLL_OFF_L_VAL] = 0x04,
200 		[PLL_OFF_ALPHA_VAL] = 0x08,
201 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
202 		[PLL_OFF_TEST_CTL] = 0x10,
203 		[PLL_OFF_TEST_CTL_U] = 0x14,
204 		[PLL_OFF_USER_CTL] = 0x18,
205 		[PLL_OFF_USER_CTL_U] = 0x1c,
206 		[PLL_OFF_CONFIG_CTL] = 0x20,
207 		[PLL_OFF_STATUS] = 0x24,
208 	},
209 	[CLK_ALPHA_PLL_TYPE_BRAMMO_EVO] =  {
210 		[PLL_OFF_L_VAL] = 0x04,
211 		[PLL_OFF_ALPHA_VAL] = 0x08,
212 		[PLL_OFF_ALPHA_VAL_U] = 0x0c,
213 		[PLL_OFF_TEST_CTL] = 0x10,
214 		[PLL_OFF_TEST_CTL_U] = 0x14,
215 		[PLL_OFF_USER_CTL] = 0x18,
216 		[PLL_OFF_CONFIG_CTL] = 0x1C,
217 		[PLL_OFF_STATUS] = 0x20,
218 	},
219 	[CLK_ALPHA_PLL_TYPE_STROMER] = {
220 		[PLL_OFF_L_VAL] = 0x08,
221 		[PLL_OFF_ALPHA_VAL] = 0x10,
222 		[PLL_OFF_ALPHA_VAL_U] = 0x14,
223 		[PLL_OFF_USER_CTL] = 0x18,
224 		[PLL_OFF_USER_CTL_U] = 0x1c,
225 		[PLL_OFF_CONFIG_CTL] = 0x20,
226 		[PLL_OFF_STATUS] = 0x28,
227 		[PLL_OFF_TEST_CTL] = 0x30,
228 		[PLL_OFF_TEST_CTL_U] = 0x34,
229 	},
230 	[CLK_ALPHA_PLL_TYPE_STROMER_PLUS] =  {
231 		[PLL_OFF_L_VAL] = 0x04,
232 		[PLL_OFF_USER_CTL] = 0x08,
233 		[PLL_OFF_USER_CTL_U] = 0x0c,
234 		[PLL_OFF_CONFIG_CTL] = 0x10,
235 		[PLL_OFF_TEST_CTL] = 0x14,
236 		[PLL_OFF_TEST_CTL_U] = 0x18,
237 		[PLL_OFF_STATUS] = 0x1c,
238 		[PLL_OFF_ALPHA_VAL] = 0x24,
239 		[PLL_OFF_ALPHA_VAL_U] = 0x28,
240 	},
241 	[CLK_ALPHA_PLL_TYPE_ZONDA_OLE] =  {
242 		[PLL_OFF_L_VAL] = 0x04,
243 		[PLL_OFF_ALPHA_VAL] = 0x08,
244 		[PLL_OFF_USER_CTL] = 0x0c,
245 		[PLL_OFF_USER_CTL_U] = 0x10,
246 		[PLL_OFF_CONFIG_CTL] = 0x14,
247 		[PLL_OFF_CONFIG_CTL_U] = 0x18,
248 		[PLL_OFF_CONFIG_CTL_U1] = 0x1c,
249 		[PLL_OFF_CONFIG_CTL_U2] = 0x20,
250 		[PLL_OFF_TEST_CTL] = 0x24,
251 		[PLL_OFF_TEST_CTL_U] = 0x28,
252 		[PLL_OFF_TEST_CTL_U1] = 0x2c,
253 		[PLL_OFF_OPMODE] = 0x30,
254 		[PLL_OFF_STATUS] = 0x3c,
255 	},
256 };
257 EXPORT_SYMBOL_GPL(clk_alpha_pll_regs);
258 
259 /*
260  * Even though 40 bits are present, use only 32 for ease of calculation.
261  */
262 #define ALPHA_REG_BITWIDTH	40
263 #define ALPHA_REG_16BIT_WIDTH	16
264 #define ALPHA_BITWIDTH		32U
265 #define ALPHA_SHIFT(w)		min(w, ALPHA_BITWIDTH)
266 
267 #define	ALPHA_PLL_STATUS_REG_SHIFT	8
268 
269 #define PLL_HUAYRA_M_WIDTH		8
270 #define PLL_HUAYRA_M_SHIFT		8
271 #define PLL_HUAYRA_M_MASK		0xff
272 #define PLL_HUAYRA_N_SHIFT		0
273 #define PLL_HUAYRA_N_MASK		0xff
274 #define PLL_HUAYRA_ALPHA_WIDTH		16
275 
276 #define PLL_STANDBY		0x0
277 #define PLL_RUN			0x1
278 #define PLL_OUT_MASK		0x7
279 #define PLL_RATE_MARGIN		500
280 
281 /* TRION PLL specific settings and offsets */
282 #define TRION_PLL_CAL_VAL	0x44
283 #define TRION_PCAL_DONE		BIT(26)
284 
285 /* LUCID PLL specific settings and offsets */
286 #define LUCID_PCAL_DONE		BIT(27)
287 
288 /* LUCID 5LPE PLL specific settings and offsets */
289 #define LUCID_5LPE_PCAL_DONE		BIT(11)
290 #define LUCID_5LPE_ALPHA_PLL_ACK_LATCH	BIT(13)
291 #define LUCID_5LPE_PLL_LATCH_INPUT	BIT(14)
292 #define LUCID_5LPE_ENABLE_VOTE_RUN	BIT(21)
293 
294 /* LUCID EVO PLL specific settings and offsets */
295 #define LUCID_EVO_PCAL_NOT_DONE		BIT(8)
296 #define LUCID_EVO_ENABLE_VOTE_RUN       BIT(25)
297 #define LUCID_EVO_PLL_L_VAL_MASK        GENMASK(15, 0)
298 #define LUCID_EVO_PLL_CAL_L_VAL_SHIFT	16
299 #define LUCID_OLE_PLL_RINGOSC_CAL_L_VAL_SHIFT	24
300 
301 /* ZONDA PLL specific */
302 #define ZONDA_PLL_OUT_MASK	0xf
303 #define ZONDA_STAY_IN_CFA	BIT(16)
304 #define ZONDA_PLL_FREQ_LOCK_DET	BIT(29)
305 
306 #define pll_alpha_width(p)					\
307 		((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ?	\
308 				 ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH)
309 
310 #define pll_has_64bit_config(p)	((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4)
311 
312 #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
313 					   struct clk_alpha_pll, clkr)
314 
315 #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
316 					   struct clk_alpha_pll_postdiv, clkr)
317 
318 static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
319 			const char *action)
320 {
321 	u32 val;
322 	int count;
323 	int ret;
324 	const char *name = clk_hw_get_name(&pll->clkr.hw);
325 
326 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
327 	if (ret)
328 		return ret;
329 
330 	for (count = 200; count > 0; count--) {
331 		ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
332 		if (ret)
333 			return ret;
334 		if (inverse && !(val & mask))
335 			return 0;
336 		else if ((val & mask) == mask)
337 			return 0;
338 
339 		udelay(1);
340 	}
341 
342 	WARN(1, "%s failed to %s!\n", name, action);
343 	return -ETIMEDOUT;
344 }
345 
346 #define wait_for_pll_enable_active(pll) \
347 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
348 
349 #define wait_for_pll_enable_lock(pll) \
350 	wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
351 
352 #define wait_for_zonda_pll_freq_lock(pll) \
353 	wait_for_pll(pll, ZONDA_PLL_FREQ_LOCK_DET, 0, "freq enable")
354 
355 #define wait_for_pll_disable(pll) \
356 	wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
357 
358 #define wait_for_pll_offline(pll) \
359 	wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
360 
361 #define wait_for_pll_update(pll) \
362 	wait_for_pll(pll, PLL_UPDATE, 1, "update")
363 
364 #define wait_for_pll_update_ack_set(pll) \
365 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set")
366 
367 #define wait_for_pll_update_ack_clear(pll) \
368 	wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear")
369 
370 static void clk_alpha_pll_write_config(struct regmap *regmap, unsigned int reg,
371 					unsigned int val)
372 {
373 	if (val)
374 		regmap_write(regmap, reg, val);
375 }
376 
377 void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
378 			     const struct alpha_pll_config *config)
379 {
380 	u32 val, mask;
381 
382 	regmap_write(regmap, PLL_L_VAL(pll), config->l);
383 	regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
384 	regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
385 
386 	if (pll_has_64bit_config(pll))
387 		regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
388 			     config->config_ctl_hi_val);
389 
390 	if (pll_alpha_width(pll) > 32)
391 		regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
392 
393 	val = config->main_output_mask;
394 	val |= config->aux_output_mask;
395 	val |= config->aux2_output_mask;
396 	val |= config->early_output_mask;
397 	val |= config->pre_div_val;
398 	val |= config->post_div_val;
399 	val |= config->vco_val;
400 	val |= config->alpha_en_mask;
401 	val |= config->alpha_mode_mask;
402 
403 	mask = config->main_output_mask;
404 	mask |= config->aux_output_mask;
405 	mask |= config->aux2_output_mask;
406 	mask |= config->early_output_mask;
407 	mask |= config->pre_div_mask;
408 	mask |= config->post_div_mask;
409 	mask |= config->vco_mask;
410 
411 	regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
412 
413 	if (config->test_ctl_mask)
414 		regmap_update_bits(regmap, PLL_TEST_CTL(pll),
415 				   config->test_ctl_mask,
416 				   config->test_ctl_val);
417 	else
418 		clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
419 					   config->test_ctl_val);
420 
421 	if (config->test_ctl_hi_mask)
422 		regmap_update_bits(regmap, PLL_TEST_CTL_U(pll),
423 				   config->test_ctl_hi_mask,
424 				   config->test_ctl_hi_val);
425 	else
426 		clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
427 					   config->test_ctl_hi_val);
428 
429 	if (pll->flags & SUPPORTS_FSM_MODE)
430 		qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
431 }
432 EXPORT_SYMBOL_GPL(clk_alpha_pll_configure);
433 
434 static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
435 {
436 	int ret;
437 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
438 	u32 val;
439 
440 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
441 	if (ret)
442 		return ret;
443 
444 	val |= PLL_FSM_ENA;
445 
446 	if (pll->flags & SUPPORTS_OFFLINE_REQ)
447 		val &= ~PLL_OFFLINE_REQ;
448 
449 	ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val);
450 	if (ret)
451 		return ret;
452 
453 	/* Make sure enable request goes through before waiting for update */
454 	mb();
455 
456 	return wait_for_pll_enable_active(pll);
457 }
458 
459 static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
460 {
461 	int ret;
462 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
463 	u32 val;
464 
465 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
466 	if (ret)
467 		return;
468 
469 	if (pll->flags & SUPPORTS_OFFLINE_REQ) {
470 		ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
471 					 PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
472 		if (ret)
473 			return;
474 
475 		ret = wait_for_pll_offline(pll);
476 		if (ret)
477 			return;
478 	}
479 
480 	/* Disable hwfsm */
481 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
482 				 PLL_FSM_ENA, 0);
483 	if (ret)
484 		return;
485 
486 	wait_for_pll_disable(pll);
487 }
488 
489 static int pll_is_enabled(struct clk_hw *hw, u32 mask)
490 {
491 	int ret;
492 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
493 	u32 val;
494 
495 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
496 	if (ret)
497 		return ret;
498 
499 	return !!(val & mask);
500 }
501 
502 static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
503 {
504 	return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
505 }
506 
507 static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
508 {
509 	return pll_is_enabled(hw, PLL_LOCK_DET);
510 }
511 
512 static int clk_alpha_pll_enable(struct clk_hw *hw)
513 {
514 	int ret;
515 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
516 	u32 val, mask;
517 
518 	mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
519 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
520 	if (ret)
521 		return ret;
522 
523 	/* If in FSM mode, just vote for it */
524 	if (val & PLL_VOTE_FSM_ENA) {
525 		ret = clk_enable_regmap(hw);
526 		if (ret)
527 			return ret;
528 		return wait_for_pll_enable_active(pll);
529 	}
530 
531 	/* Skip if already enabled */
532 	if ((val & mask) == mask)
533 		return 0;
534 
535 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
536 				 PLL_BYPASSNL, PLL_BYPASSNL);
537 	if (ret)
538 		return ret;
539 
540 	/*
541 	 * H/W requires a 5us delay between disabling the bypass and
542 	 * de-asserting the reset.
543 	 */
544 	mb();
545 	udelay(5);
546 
547 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
548 				 PLL_RESET_N, PLL_RESET_N);
549 	if (ret)
550 		return ret;
551 
552 	ret = wait_for_pll_enable_lock(pll);
553 	if (ret)
554 		return ret;
555 
556 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
557 				 PLL_OUTCTRL, PLL_OUTCTRL);
558 
559 	/* Ensure that the write above goes through before returning. */
560 	mb();
561 	return ret;
562 }
563 
564 static void clk_alpha_pll_disable(struct clk_hw *hw)
565 {
566 	int ret;
567 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
568 	u32 val, mask;
569 
570 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
571 	if (ret)
572 		return;
573 
574 	/* If in FSM mode, just unvote it */
575 	if (val & PLL_VOTE_FSM_ENA) {
576 		clk_disable_regmap(hw);
577 		return;
578 	}
579 
580 	mask = PLL_OUTCTRL;
581 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
582 
583 	/* Delay of 2 output clock ticks required until output is disabled */
584 	mb();
585 	udelay(1);
586 
587 	mask = PLL_RESET_N | PLL_BYPASSNL;
588 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
589 }
590 
591 static unsigned long
592 alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width)
593 {
594 	return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width));
595 }
596 
597 static unsigned long
598 alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a,
599 		     u32 alpha_width)
600 {
601 	u64 remainder;
602 	u64 quotient;
603 
604 	quotient = rate;
605 	remainder = do_div(quotient, prate);
606 	*l = quotient;
607 
608 	if (!remainder) {
609 		*a = 0;
610 		return rate;
611 	}
612 
613 	/* Upper ALPHA_BITWIDTH bits of Alpha */
614 	quotient = remainder << ALPHA_SHIFT(alpha_width);
615 
616 	remainder = do_div(quotient, prate);
617 
618 	if (remainder)
619 		quotient++;
620 
621 	*a = quotient;
622 	return alpha_pll_calc_rate(prate, *l, *a, alpha_width);
623 }
624 
625 static const struct pll_vco *
626 alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
627 {
628 	const struct pll_vco *v = pll->vco_table;
629 	const struct pll_vco *end = v + pll->num_vco;
630 
631 	for (; v < end; v++)
632 		if (rate >= v->min_freq && rate <= v->max_freq)
633 			return v;
634 
635 	return NULL;
636 }
637 
638 static unsigned long
639 clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
640 {
641 	u32 l, low, high, ctl;
642 	u64 a = 0, prate = parent_rate;
643 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
644 	u32 alpha_width = pll_alpha_width(pll);
645 
646 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
647 
648 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
649 	if (ctl & PLL_ALPHA_EN) {
650 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low);
651 		if (alpha_width > 32) {
652 			regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
653 				    &high);
654 			a = (u64)high << 32 | low;
655 		} else {
656 			a = low & GENMASK(alpha_width - 1, 0);
657 		}
658 
659 		if (alpha_width > ALPHA_BITWIDTH)
660 			a >>= alpha_width - ALPHA_BITWIDTH;
661 	}
662 
663 	return alpha_pll_calc_rate(prate, l, a, alpha_width);
664 }
665 
666 
667 static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll)
668 {
669 	int ret;
670 	u32 mode;
671 
672 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode);
673 
674 	/* Latch the input to the PLL */
675 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
676 			   PLL_UPDATE);
677 
678 	/* Wait for 2 reference cycle before checking ACK bit */
679 	udelay(1);
680 
681 	/*
682 	 * PLL will latch the new L, Alpha and freq control word.
683 	 * PLL will respond by raising PLL_ACK_LATCH output when new programming
684 	 * has been latched in and PLL is being updated. When
685 	 * UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared
686 	 * automatically by hardware when PLL_ACK_LATCH is asserted by PLL.
687 	 */
688 	if (mode & PLL_UPDATE_BYPASS) {
689 		ret = wait_for_pll_update_ack_set(pll);
690 		if (ret)
691 			return ret;
692 
693 		regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0);
694 	} else {
695 		ret = wait_for_pll_update(pll);
696 		if (ret)
697 			return ret;
698 	}
699 
700 	ret = wait_for_pll_update_ack_clear(pll);
701 	if (ret)
702 		return ret;
703 
704 	/* Wait for PLL output to stabilize */
705 	udelay(10);
706 
707 	return 0;
708 }
709 
710 static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll,
711 				      int (*is_enabled)(struct clk_hw *))
712 {
713 	if (!is_enabled(&pll->clkr.hw) ||
714 	    !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
715 		return 0;
716 
717 	return __clk_alpha_pll_update_latch(pll);
718 }
719 
720 static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
721 				    unsigned long prate,
722 				    int (*is_enabled)(struct clk_hw *))
723 {
724 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
725 	const struct pll_vco *vco;
726 	u32 l, alpha_width = pll_alpha_width(pll);
727 	u64 a;
728 
729 	rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
730 	vco = alpha_pll_find_vco(pll, rate);
731 	if (pll->vco_table && !vco) {
732 		pr_err("%s: alpha pll not in a valid vco range\n",
733 		       clk_hw_get_name(hw));
734 		return -EINVAL;
735 	}
736 
737 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
738 
739 	if (alpha_width > ALPHA_BITWIDTH)
740 		a <<= alpha_width - ALPHA_BITWIDTH;
741 
742 	if (alpha_width > 32)
743 		regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
744 
745 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
746 
747 	if (vco) {
748 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
749 				   PLL_VCO_MASK << PLL_VCO_SHIFT,
750 				   vco->val << PLL_VCO_SHIFT);
751 	}
752 
753 	regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
754 			   PLL_ALPHA_EN, PLL_ALPHA_EN);
755 
756 	return clk_alpha_pll_update_latch(pll, is_enabled);
757 }
758 
759 static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
760 				  unsigned long prate)
761 {
762 	return __clk_alpha_pll_set_rate(hw, rate, prate,
763 					clk_alpha_pll_is_enabled);
764 }
765 
766 static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate,
767 					unsigned long prate)
768 {
769 	return __clk_alpha_pll_set_rate(hw, rate, prate,
770 					clk_alpha_pll_hwfsm_is_enabled);
771 }
772 
773 static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
774 				     unsigned long *prate)
775 {
776 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
777 	u32 l, alpha_width = pll_alpha_width(pll);
778 	u64 a;
779 	unsigned long min_freq, max_freq;
780 
781 	rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width);
782 	if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
783 		return rate;
784 
785 	min_freq = pll->vco_table[0].min_freq;
786 	max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
787 
788 	return clamp(rate, min_freq, max_freq);
789 }
790 
791 static unsigned long
792 alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a)
793 {
794 	/*
795 	 * a contains 16 bit alpha_val in two’s complement number in the range
796 	 * of [-0.5, 0.5).
797 	 */
798 	if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
799 		l -= 1;
800 
801 	return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH);
802 }
803 
804 static unsigned long
805 alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate,
806 			    u32 *l, u32 *a)
807 {
808 	u64 remainder;
809 	u64 quotient;
810 
811 	quotient = rate;
812 	remainder = do_div(quotient, prate);
813 	*l = quotient;
814 
815 	if (!remainder) {
816 		*a = 0;
817 		return rate;
818 	}
819 
820 	quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH;
821 	remainder = do_div(quotient, prate);
822 
823 	if (remainder)
824 		quotient++;
825 
826 	/*
827 	 * alpha_val should be in two’s complement number in the range
828 	 * of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value
829 	 * since alpha value will be subtracted in this case.
830 	 */
831 	if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
832 		*l += 1;
833 
834 	*a = quotient;
835 	return alpha_huayra_pll_calc_rate(prate, *l, *a);
836 }
837 
838 static unsigned long
839 alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
840 {
841 	u64 rate = parent_rate, tmp;
842 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
843 	u32 l, alpha = 0, ctl, alpha_m, alpha_n;
844 
845 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
846 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
847 
848 	if (ctl & PLL_ALPHA_EN) {
849 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha);
850 		/*
851 		 * Depending upon alpha_mode, it can be treated as M/N value or
852 		 * as a two’s complement number. When alpha_mode=1,
853 		 * pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N
854 		 *
855 		 *		Fout=FIN*(L+(M/N))
856 		 *
857 		 * M is a signed number (-128 to 127) and N is unsigned
858 		 * (0 to 255). M/N has to be within +/-0.5.
859 		 *
860 		 * When alpha_mode=0, it is a two’s complement number in the
861 		 * range [-0.5, 0.5).
862 		 *
863 		 *		Fout=FIN*(L+(alpha_val)/2^16)
864 		 *
865 		 * where alpha_val is two’s complement number.
866 		 */
867 		if (!(ctl & PLL_ALPHA_MODE))
868 			return alpha_huayra_pll_calc_rate(rate, l, alpha);
869 
870 		alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK;
871 		alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK;
872 
873 		rate *= l;
874 		tmp = parent_rate;
875 		if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) {
876 			alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m;
877 			tmp *= alpha_m;
878 			do_div(tmp, alpha_n);
879 			rate -= tmp;
880 		} else {
881 			tmp *= alpha_m;
882 			do_div(tmp, alpha_n);
883 			rate += tmp;
884 		}
885 
886 		return rate;
887 	}
888 
889 	return alpha_huayra_pll_calc_rate(rate, l, alpha);
890 }
891 
892 static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate,
893 				     unsigned long prate)
894 {
895 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
896 	u32 l, a, ctl, cur_alpha = 0;
897 
898 	rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a);
899 
900 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
901 
902 	if (ctl & PLL_ALPHA_EN)
903 		regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha);
904 
905 	/*
906 	 * Huayra PLL supports PLL dynamic programming. User can change L_VAL,
907 	 * without having to go through the power on sequence.
908 	 */
909 	if (clk_alpha_pll_is_enabled(hw)) {
910 		if (cur_alpha != a) {
911 			pr_err("%s: clock needs to be gated\n",
912 			       clk_hw_get_name(hw));
913 			return -EBUSY;
914 		}
915 
916 		regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
917 		/* Ensure that the write above goes to detect L val change. */
918 		mb();
919 		return wait_for_pll_enable_lock(pll);
920 	}
921 
922 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
923 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
924 
925 	if (a == 0)
926 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
927 				   PLL_ALPHA_EN, 0x0);
928 	else
929 		regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
930 				   PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN);
931 
932 	return 0;
933 }
934 
935 static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate,
936 					unsigned long *prate)
937 {
938 	u32 l, a;
939 
940 	return alpha_huayra_pll_round_rate(rate, *prate, &l, &a);
941 }
942 
943 static int trion_pll_is_enabled(struct clk_alpha_pll *pll,
944 				struct regmap *regmap)
945 {
946 	u32 mode_val, opmode_val;
947 	int ret;
948 
949 	ret = regmap_read(regmap, PLL_MODE(pll), &mode_val);
950 	ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
951 	if (ret)
952 		return 0;
953 
954 	return ((opmode_val & PLL_RUN) && (mode_val & PLL_OUTCTRL));
955 }
956 
957 static int clk_trion_pll_is_enabled(struct clk_hw *hw)
958 {
959 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
960 
961 	return trion_pll_is_enabled(pll, pll->clkr.regmap);
962 }
963 
964 static int clk_trion_pll_enable(struct clk_hw *hw)
965 {
966 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
967 	struct regmap *regmap = pll->clkr.regmap;
968 	u32 val;
969 	int ret;
970 
971 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
972 	if (ret)
973 		return ret;
974 
975 	/* If in FSM mode, just vote for it */
976 	if (val & PLL_VOTE_FSM_ENA) {
977 		ret = clk_enable_regmap(hw);
978 		if (ret)
979 			return ret;
980 		return wait_for_pll_enable_active(pll);
981 	}
982 
983 	/* Set operation mode to RUN */
984 	regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
985 
986 	ret = wait_for_pll_enable_lock(pll);
987 	if (ret)
988 		return ret;
989 
990 	/* Enable the PLL outputs */
991 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
992 				 PLL_OUT_MASK, PLL_OUT_MASK);
993 	if (ret)
994 		return ret;
995 
996 	/* Enable the global PLL outputs */
997 	return regmap_update_bits(regmap, PLL_MODE(pll),
998 				 PLL_OUTCTRL, PLL_OUTCTRL);
999 }
1000 
1001 static void clk_trion_pll_disable(struct clk_hw *hw)
1002 {
1003 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1004 	struct regmap *regmap = pll->clkr.regmap;
1005 	u32 val;
1006 	int ret;
1007 
1008 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
1009 	if (ret)
1010 		return;
1011 
1012 	/* If in FSM mode, just unvote it */
1013 	if (val & PLL_VOTE_FSM_ENA) {
1014 		clk_disable_regmap(hw);
1015 		return;
1016 	}
1017 
1018 	/* Disable the global PLL output */
1019 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1020 	if (ret)
1021 		return;
1022 
1023 	/* Disable the PLL outputs */
1024 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
1025 				 PLL_OUT_MASK, 0);
1026 	if (ret)
1027 		return;
1028 
1029 	/* Place the PLL mode in STANDBY */
1030 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1031 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1032 }
1033 
1034 static unsigned long
1035 clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
1036 {
1037 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1038 	u32 l, frac, alpha_width = pll_alpha_width(pll);
1039 
1040 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
1041 	regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &frac);
1042 
1043 	return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
1044 }
1045 
1046 const struct clk_ops clk_alpha_pll_fixed_ops = {
1047 	.enable = clk_alpha_pll_enable,
1048 	.disable = clk_alpha_pll_disable,
1049 	.is_enabled = clk_alpha_pll_is_enabled,
1050 	.recalc_rate = clk_alpha_pll_recalc_rate,
1051 };
1052 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_ops);
1053 
1054 const struct clk_ops clk_alpha_pll_ops = {
1055 	.enable = clk_alpha_pll_enable,
1056 	.disable = clk_alpha_pll_disable,
1057 	.is_enabled = clk_alpha_pll_is_enabled,
1058 	.recalc_rate = clk_alpha_pll_recalc_rate,
1059 	.round_rate = clk_alpha_pll_round_rate,
1060 	.set_rate = clk_alpha_pll_set_rate,
1061 };
1062 EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
1063 
1064 const struct clk_ops clk_alpha_pll_huayra_ops = {
1065 	.enable = clk_alpha_pll_enable,
1066 	.disable = clk_alpha_pll_disable,
1067 	.is_enabled = clk_alpha_pll_is_enabled,
1068 	.recalc_rate = alpha_pll_huayra_recalc_rate,
1069 	.round_rate = alpha_pll_huayra_round_rate,
1070 	.set_rate = alpha_pll_huayra_set_rate,
1071 };
1072 EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops);
1073 
1074 const struct clk_ops clk_alpha_pll_hwfsm_ops = {
1075 	.enable = clk_alpha_pll_hwfsm_enable,
1076 	.disable = clk_alpha_pll_hwfsm_disable,
1077 	.is_enabled = clk_alpha_pll_hwfsm_is_enabled,
1078 	.recalc_rate = clk_alpha_pll_recalc_rate,
1079 	.round_rate = clk_alpha_pll_round_rate,
1080 	.set_rate = clk_alpha_pll_hwfsm_set_rate,
1081 };
1082 EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
1083 
1084 const struct clk_ops clk_alpha_pll_fixed_trion_ops = {
1085 	.enable = clk_trion_pll_enable,
1086 	.disable = clk_trion_pll_disable,
1087 	.is_enabled = clk_trion_pll_is_enabled,
1088 	.recalc_rate = clk_trion_pll_recalc_rate,
1089 	.round_rate = clk_alpha_pll_round_rate,
1090 };
1091 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_trion_ops);
1092 
1093 static unsigned long
1094 clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
1095 {
1096 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1097 	u32 ctl;
1098 
1099 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
1100 
1101 	ctl >>= PLL_POST_DIV_SHIFT;
1102 	ctl &= PLL_POST_DIV_MASK(pll);
1103 
1104 	return parent_rate >> fls(ctl);
1105 }
1106 
1107 static const struct clk_div_table clk_alpha_div_table[] = {
1108 	{ 0x0, 1 },
1109 	{ 0x1, 2 },
1110 	{ 0x3, 4 },
1111 	{ 0x7, 8 },
1112 	{ 0xf, 16 },
1113 	{ }
1114 };
1115 
1116 static const struct clk_div_table clk_alpha_2bit_div_table[] = {
1117 	{ 0x0, 1 },
1118 	{ 0x1, 2 },
1119 	{ 0x3, 4 },
1120 	{ }
1121 };
1122 
1123 static long
1124 clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
1125 				 unsigned long *prate)
1126 {
1127 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1128 	const struct clk_div_table *table;
1129 
1130 	if (pll->width == 2)
1131 		table = clk_alpha_2bit_div_table;
1132 	else
1133 		table = clk_alpha_div_table;
1134 
1135 	return divider_round_rate(hw, rate, prate, table,
1136 				  pll->width, CLK_DIVIDER_POWER_OF_TWO);
1137 }
1138 
1139 static long
1140 clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate,
1141 				    unsigned long *prate)
1142 {
1143 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1144 	u32 ctl, div;
1145 
1146 	regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
1147 
1148 	ctl >>= PLL_POST_DIV_SHIFT;
1149 	ctl &= BIT(pll->width) - 1;
1150 	div = 1 << fls(ctl);
1151 
1152 	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
1153 		*prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate);
1154 
1155 	return DIV_ROUND_UP_ULL((u64)*prate, div);
1156 }
1157 
1158 static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1159 					  unsigned long parent_rate)
1160 {
1161 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1162 	int div;
1163 
1164 	/* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
1165 	div = DIV_ROUND_UP_ULL(parent_rate, rate) - 1;
1166 
1167 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1168 				  PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
1169 				  div << PLL_POST_DIV_SHIFT);
1170 }
1171 
1172 const struct clk_ops clk_alpha_pll_postdiv_ops = {
1173 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
1174 	.round_rate = clk_alpha_pll_postdiv_round_rate,
1175 	.set_rate = clk_alpha_pll_postdiv_set_rate,
1176 };
1177 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
1178 
1179 const struct clk_ops clk_alpha_pll_postdiv_ro_ops = {
1180 	.round_rate = clk_alpha_pll_postdiv_round_ro_rate,
1181 	.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
1182 };
1183 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);
1184 
1185 void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1186 			     const struct alpha_pll_config *config)
1187 {
1188 	u32 val, mask;
1189 
1190 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1191 	clk_alpha_pll_write_config(regmap, PLL_FRAC(pll), config->alpha);
1192 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
1193 						config->config_ctl_val);
1194 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
1195 						config->config_ctl_hi_val);
1196 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
1197 						config->user_ctl_val);
1198 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll),
1199 						config->user_ctl_hi_val);
1200 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
1201 						config->test_ctl_val);
1202 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
1203 						config->test_ctl_hi_val);
1204 
1205 	if (config->post_div_mask) {
1206 		mask = config->post_div_mask;
1207 		val = config->post_div_val;
1208 		regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
1209 	}
1210 
1211 	if (pll->flags & SUPPORTS_FSM_LEGACY_MODE)
1212 		regmap_update_bits(regmap, PLL_MODE(pll), PLL_FSM_LEGACY_MODE,
1213 							PLL_FSM_LEGACY_MODE);
1214 
1215 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
1216 							PLL_UPDATE_BYPASS);
1217 
1218 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1219 }
1220 EXPORT_SYMBOL_GPL(clk_fabia_pll_configure);
1221 
1222 static int alpha_pll_fabia_enable(struct clk_hw *hw)
1223 {
1224 	int ret;
1225 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1226 	u32 val, opmode_val;
1227 	struct regmap *regmap = pll->clkr.regmap;
1228 
1229 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
1230 	if (ret)
1231 		return ret;
1232 
1233 	/* If in FSM mode, just vote for it */
1234 	if (val & PLL_VOTE_FSM_ENA) {
1235 		ret = clk_enable_regmap(hw);
1236 		if (ret)
1237 			return ret;
1238 		return wait_for_pll_enable_active(pll);
1239 	}
1240 
1241 	ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
1242 	if (ret)
1243 		return ret;
1244 
1245 	/* Skip If PLL is already running */
1246 	if ((opmode_val & PLL_RUN) && (val & PLL_OUTCTRL))
1247 		return 0;
1248 
1249 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1250 	if (ret)
1251 		return ret;
1252 
1253 	ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1254 	if (ret)
1255 		return ret;
1256 
1257 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N,
1258 				 PLL_RESET_N);
1259 	if (ret)
1260 		return ret;
1261 
1262 	ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
1263 	if (ret)
1264 		return ret;
1265 
1266 	ret = wait_for_pll_enable_lock(pll);
1267 	if (ret)
1268 		return ret;
1269 
1270 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
1271 				 PLL_OUT_MASK, PLL_OUT_MASK);
1272 	if (ret)
1273 		return ret;
1274 
1275 	return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL,
1276 				 PLL_OUTCTRL);
1277 }
1278 
1279 static void alpha_pll_fabia_disable(struct clk_hw *hw)
1280 {
1281 	int ret;
1282 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1283 	u32 val;
1284 	struct regmap *regmap = pll->clkr.regmap;
1285 
1286 	ret = regmap_read(regmap, PLL_MODE(pll), &val);
1287 	if (ret)
1288 		return;
1289 
1290 	/* If in FSM mode, just unvote it */
1291 	if (val & PLL_FSM_ENA) {
1292 		clk_disable_regmap(hw);
1293 		return;
1294 	}
1295 
1296 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1297 	if (ret)
1298 		return;
1299 
1300 	/* Disable main outputs */
1301 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
1302 	if (ret)
1303 		return;
1304 
1305 	/* Place the PLL in STANDBY */
1306 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1307 }
1308 
1309 static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw,
1310 						unsigned long parent_rate)
1311 {
1312 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1313 	u32 l, frac, alpha_width = pll_alpha_width(pll);
1314 
1315 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
1316 	regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac);
1317 
1318 	return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
1319 }
1320 
1321 /*
1322  * Due to limited number of bits for fractional rate programming, the
1323  * rounded up rate could be marginally higher than the requested rate.
1324  */
1325 static int alpha_pll_check_rate_margin(struct clk_hw *hw,
1326 			unsigned long rrate, unsigned long rate)
1327 {
1328 	unsigned long rate_margin = rate + PLL_RATE_MARGIN;
1329 
1330 	if (rrate > rate_margin || rrate < rate) {
1331 		pr_err("%s: Rounded rate %lu not within range [%lu, %lu)\n",
1332 		       clk_hw_get_name(hw), rrate, rate, rate_margin);
1333 		return -EINVAL;
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate,
1340 						unsigned long prate)
1341 {
1342 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1343 	u32 l, alpha_width = pll_alpha_width(pll);
1344 	unsigned long rrate;
1345 	int ret;
1346 	u64 a;
1347 
1348 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1349 
1350 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1351 	if (ret < 0)
1352 		return ret;
1353 
1354 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1355 	regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a);
1356 
1357 	return __clk_alpha_pll_update_latch(pll);
1358 }
1359 
1360 static int alpha_pll_fabia_prepare(struct clk_hw *hw)
1361 {
1362 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1363 	const struct pll_vco *vco;
1364 	struct clk_hw *parent_hw;
1365 	unsigned long cal_freq, rrate;
1366 	u32 cal_l, val, alpha_width = pll_alpha_width(pll);
1367 	const char *name = clk_hw_get_name(hw);
1368 	u64 a;
1369 	int ret;
1370 
1371 	/* Check if calibration needs to be done i.e. PLL is in reset */
1372 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1373 	if (ret)
1374 		return ret;
1375 
1376 	/* Return early if calibration is not needed. */
1377 	if (val & PLL_RESET_N)
1378 		return 0;
1379 
1380 	vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw));
1381 	if (!vco) {
1382 		pr_err("%s: alpha pll not in a valid vco range\n", name);
1383 		return -EINVAL;
1384 	}
1385 
1386 	cal_freq = DIV_ROUND_CLOSEST((pll->vco_table[0].min_freq +
1387 				pll->vco_table[0].max_freq) * 54, 100);
1388 
1389 	parent_hw = clk_hw_get_parent(hw);
1390 	if (!parent_hw)
1391 		return -EINVAL;
1392 
1393 	rrate = alpha_pll_round_rate(cal_freq, clk_hw_get_rate(parent_hw),
1394 					&cal_l, &a, alpha_width);
1395 
1396 	ret = alpha_pll_check_rate_margin(hw, rrate, cal_freq);
1397 	if (ret < 0)
1398 		return ret;
1399 
1400 	/* Setup PLL for calibration frequency */
1401 	regmap_write(pll->clkr.regmap, PLL_CAL_L_VAL(pll), cal_l);
1402 
1403 	/* Bringup the PLL at calibration frequency */
1404 	ret = clk_alpha_pll_enable(hw);
1405 	if (ret) {
1406 		pr_err("%s: alpha pll calibration failed\n", name);
1407 		return ret;
1408 	}
1409 
1410 	clk_alpha_pll_disable(hw);
1411 
1412 	return 0;
1413 }
1414 
1415 const struct clk_ops clk_alpha_pll_fabia_ops = {
1416 	.prepare = alpha_pll_fabia_prepare,
1417 	.enable = alpha_pll_fabia_enable,
1418 	.disable = alpha_pll_fabia_disable,
1419 	.is_enabled = clk_alpha_pll_is_enabled,
1420 	.set_rate = alpha_pll_fabia_set_rate,
1421 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1422 	.round_rate = clk_alpha_pll_round_rate,
1423 };
1424 EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops);
1425 
1426 const struct clk_ops clk_alpha_pll_fixed_fabia_ops = {
1427 	.enable = alpha_pll_fabia_enable,
1428 	.disable = alpha_pll_fabia_disable,
1429 	.is_enabled = clk_alpha_pll_is_enabled,
1430 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1431 	.round_rate = clk_alpha_pll_round_rate,
1432 };
1433 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops);
1434 
1435 static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw,
1436 					unsigned long parent_rate)
1437 {
1438 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1439 	u32 i, div = 1, val;
1440 	int ret;
1441 
1442 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1443 	if (ret)
1444 		return ret;
1445 
1446 	val >>= pll->post_div_shift;
1447 	val &= BIT(pll->width) - 1;
1448 
1449 	for (i = 0; i < pll->num_post_div; i++) {
1450 		if (pll->post_div_table[i].val == val) {
1451 			div = pll->post_div_table[i].div;
1452 			break;
1453 		}
1454 	}
1455 
1456 	return (parent_rate / div);
1457 }
1458 
1459 static unsigned long
1460 clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
1461 {
1462 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1463 	struct regmap *regmap = pll->clkr.regmap;
1464 	u32 i, div = 1, val;
1465 
1466 	regmap_read(regmap, PLL_USER_CTL(pll), &val);
1467 
1468 	val >>= pll->post_div_shift;
1469 	val &= PLL_POST_DIV_MASK(pll);
1470 
1471 	for (i = 0; i < pll->num_post_div; i++) {
1472 		if (pll->post_div_table[i].val == val) {
1473 			div = pll->post_div_table[i].div;
1474 			break;
1475 		}
1476 	}
1477 
1478 	return (parent_rate / div);
1479 }
1480 
1481 static long
1482 clk_trion_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
1483 				 unsigned long *prate)
1484 {
1485 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1486 
1487 	return divider_round_rate(hw, rate, prate, pll->post_div_table,
1488 				  pll->width, CLK_DIVIDER_ROUND_CLOSEST);
1489 };
1490 
1491 static int
1492 clk_trion_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1493 			       unsigned long parent_rate)
1494 {
1495 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1496 	struct regmap *regmap = pll->clkr.regmap;
1497 	int i, val = 0, div;
1498 
1499 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
1500 	for (i = 0; i < pll->num_post_div; i++) {
1501 		if (pll->post_div_table[i].div == div) {
1502 			val = pll->post_div_table[i].val;
1503 			break;
1504 		}
1505 	}
1506 
1507 	return regmap_update_bits(regmap, PLL_USER_CTL(pll),
1508 				  PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
1509 				  val << PLL_POST_DIV_SHIFT);
1510 }
1511 
1512 const struct clk_ops clk_alpha_pll_postdiv_trion_ops = {
1513 	.recalc_rate = clk_trion_pll_postdiv_recalc_rate,
1514 	.round_rate = clk_trion_pll_postdiv_round_rate,
1515 	.set_rate = clk_trion_pll_postdiv_set_rate,
1516 };
1517 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_trion_ops);
1518 
1519 static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw,
1520 				unsigned long rate, unsigned long *prate)
1521 {
1522 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1523 
1524 	return divider_round_rate(hw, rate, prate, pll->post_div_table,
1525 				pll->width, CLK_DIVIDER_ROUND_CLOSEST);
1526 }
1527 
1528 static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw,
1529 				unsigned long rate, unsigned long parent_rate)
1530 {
1531 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1532 	int i, val = 0, div, ret;
1533 
1534 	/*
1535 	 * If the PLL is in FSM mode, then treat set_rate callback as a
1536 	 * no-operation.
1537 	 */
1538 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1539 	if (ret)
1540 		return ret;
1541 
1542 	if (val & PLL_VOTE_FSM_ENA)
1543 		return 0;
1544 
1545 	div = DIV_ROUND_UP_ULL(parent_rate, rate);
1546 	for (i = 0; i < pll->num_post_div; i++) {
1547 		if (pll->post_div_table[i].div == div) {
1548 			val = pll->post_div_table[i].val;
1549 			break;
1550 		}
1551 	}
1552 
1553 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1554 				(BIT(pll->width) - 1) << pll->post_div_shift,
1555 				val << pll->post_div_shift);
1556 }
1557 
1558 const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = {
1559 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1560 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1561 	.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
1562 };
1563 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);
1564 
1565 /**
1566  * clk_trion_pll_configure - configure the trion pll
1567  *
1568  * @pll: clk alpha pll
1569  * @regmap: register map
1570  * @config: configuration to apply for pll
1571  */
1572 void clk_trion_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1573 			     const struct alpha_pll_config *config)
1574 {
1575 	/*
1576 	 * If the bootloader left the PLL enabled it's likely that there are
1577 	 * RCGs that will lock up if we disable the PLL below.
1578 	 */
1579 	if (trion_pll_is_enabled(pll, regmap)) {
1580 		pr_debug("Trion PLL is already enabled, skipping configuration\n");
1581 		return;
1582 	}
1583 
1584 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1585 	regmap_write(regmap, PLL_CAL_L_VAL(pll), TRION_PLL_CAL_VAL);
1586 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
1587 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
1588 				     config->config_ctl_val);
1589 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
1590 				     config->config_ctl_hi_val);
1591 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll),
1592 				     config->config_ctl_hi1_val);
1593 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
1594 					config->user_ctl_val);
1595 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll),
1596 					config->user_ctl_hi_val);
1597 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll),
1598 					config->user_ctl_hi1_val);
1599 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
1600 					config->test_ctl_val);
1601 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
1602 					config->test_ctl_hi_val);
1603 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll),
1604 					config->test_ctl_hi1_val);
1605 
1606 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
1607 			   PLL_UPDATE_BYPASS);
1608 
1609 	/* Disable PLL output */
1610 	regmap_update_bits(regmap, PLL_MODE(pll),  PLL_OUTCTRL, 0);
1611 
1612 	/* Set operation mode to OFF */
1613 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1614 
1615 	/* Place the PLL in STANDBY mode */
1616 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1617 }
1618 EXPORT_SYMBOL_GPL(clk_trion_pll_configure);
1619 
1620 /*
1621  * The TRION PLL requires a power-on self-calibration which happens when the
1622  * PLL comes out of reset. Calibrate in case it is not completed.
1623  */
1624 static int __alpha_pll_trion_prepare(struct clk_hw *hw, u32 pcal_done)
1625 {
1626 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1627 	u32 val;
1628 	int ret;
1629 
1630 	/* Return early if calibration is not needed. */
1631 	regmap_read(pll->clkr.regmap, PLL_STATUS(pll), &val);
1632 	if (val & pcal_done)
1633 		return 0;
1634 
1635 	/* On/off to calibrate */
1636 	ret = clk_trion_pll_enable(hw);
1637 	if (!ret)
1638 		clk_trion_pll_disable(hw);
1639 
1640 	return ret;
1641 }
1642 
1643 static int alpha_pll_trion_prepare(struct clk_hw *hw)
1644 {
1645 	return __alpha_pll_trion_prepare(hw, TRION_PCAL_DONE);
1646 }
1647 
1648 static int alpha_pll_lucid_prepare(struct clk_hw *hw)
1649 {
1650 	return __alpha_pll_trion_prepare(hw, LUCID_PCAL_DONE);
1651 }
1652 
1653 static int __alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate,
1654 				      unsigned long prate, u32 latch_bit, u32 latch_ack)
1655 {
1656 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1657 	unsigned long rrate;
1658 	u32 val, l, alpha_width = pll_alpha_width(pll);
1659 	u64 a;
1660 	int ret;
1661 
1662 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1663 
1664 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1665 	if (ret < 0)
1666 		return ret;
1667 
1668 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1669 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
1670 
1671 	/* Latch the PLL input */
1672 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, latch_bit);
1673 	if (ret)
1674 		return ret;
1675 
1676 	/* Wait for 2 reference cycles before checking the ACK bit. */
1677 	udelay(1);
1678 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1679 	if (!(val & latch_ack)) {
1680 		pr_err("Lucid PLL latch failed. Output may be unstable!\n");
1681 		return -EINVAL;
1682 	}
1683 
1684 	/* Return the latch input to 0 */
1685 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, 0);
1686 	if (ret)
1687 		return ret;
1688 
1689 	if (clk_hw_is_enabled(hw)) {
1690 		ret = wait_for_pll_enable_lock(pll);
1691 		if (ret)
1692 			return ret;
1693 	}
1694 
1695 	/* Wait for PLL output to stabilize */
1696 	udelay(100);
1697 	return 0;
1698 }
1699 
1700 static int alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate,
1701 				    unsigned long prate)
1702 {
1703 	return __alpha_pll_trion_set_rate(hw, rate, prate, PLL_UPDATE, ALPHA_PLL_ACK_LATCH);
1704 }
1705 
1706 const struct clk_ops clk_alpha_pll_trion_ops = {
1707 	.prepare = alpha_pll_trion_prepare,
1708 	.enable = clk_trion_pll_enable,
1709 	.disable = clk_trion_pll_disable,
1710 	.is_enabled = clk_trion_pll_is_enabled,
1711 	.recalc_rate = clk_trion_pll_recalc_rate,
1712 	.round_rate = clk_alpha_pll_round_rate,
1713 	.set_rate = alpha_pll_trion_set_rate,
1714 };
1715 EXPORT_SYMBOL_GPL(clk_alpha_pll_trion_ops);
1716 
1717 const struct clk_ops clk_alpha_pll_lucid_ops = {
1718 	.prepare = alpha_pll_lucid_prepare,
1719 	.enable = clk_trion_pll_enable,
1720 	.disable = clk_trion_pll_disable,
1721 	.is_enabled = clk_trion_pll_is_enabled,
1722 	.recalc_rate = clk_trion_pll_recalc_rate,
1723 	.round_rate = clk_alpha_pll_round_rate,
1724 	.set_rate = alpha_pll_trion_set_rate,
1725 };
1726 EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_ops);
1727 
1728 const struct clk_ops clk_alpha_pll_postdiv_lucid_ops = {
1729 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1730 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1731 	.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
1732 };
1733 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_ops);
1734 
1735 void clk_agera_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1736 			const struct alpha_pll_config *config)
1737 {
1738 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1739 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
1740 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
1741 							config->user_ctl_val);
1742 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
1743 						config->config_ctl_val);
1744 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
1745 						config->config_ctl_hi_val);
1746 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
1747 						config->test_ctl_val);
1748 	clk_alpha_pll_write_config(regmap,  PLL_TEST_CTL_U(pll),
1749 						config->test_ctl_hi_val);
1750 }
1751 EXPORT_SYMBOL_GPL(clk_agera_pll_configure);
1752 
1753 static int clk_alpha_pll_agera_set_rate(struct clk_hw *hw, unsigned long rate,
1754 							unsigned long prate)
1755 {
1756 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1757 	u32 l, alpha_width = pll_alpha_width(pll);
1758 	int ret;
1759 	unsigned long rrate;
1760 	u64 a;
1761 
1762 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
1763 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
1764 	if (ret < 0)
1765 		return ret;
1766 
1767 	/* change L_VAL without having to go through the power on sequence */
1768 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
1769 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
1770 
1771 	if (clk_hw_is_enabled(hw))
1772 		return wait_for_pll_enable_lock(pll);
1773 
1774 	return 0;
1775 }
1776 
1777 const struct clk_ops clk_alpha_pll_agera_ops = {
1778 	.enable = clk_alpha_pll_enable,
1779 	.disable = clk_alpha_pll_disable,
1780 	.is_enabled = clk_alpha_pll_is_enabled,
1781 	.recalc_rate = alpha_pll_fabia_recalc_rate,
1782 	.round_rate = clk_alpha_pll_round_rate,
1783 	.set_rate = clk_alpha_pll_agera_set_rate,
1784 };
1785 EXPORT_SYMBOL_GPL(clk_alpha_pll_agera_ops);
1786 
1787 static int alpha_pll_lucid_5lpe_enable(struct clk_hw *hw)
1788 {
1789 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1790 	u32 val;
1791 	int ret;
1792 
1793 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1794 	if (ret)
1795 		return ret;
1796 
1797 	/* If in FSM mode, just vote for it */
1798 	if (val & LUCID_5LPE_ENABLE_VOTE_RUN) {
1799 		ret = clk_enable_regmap(hw);
1800 		if (ret)
1801 			return ret;
1802 		return wait_for_pll_enable_lock(pll);
1803 	}
1804 
1805 	/* Check if PLL is already enabled, return if enabled */
1806 	ret = trion_pll_is_enabled(pll, pll->clkr.regmap);
1807 	if (ret < 0)
1808 		return ret;
1809 
1810 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1811 	if (ret)
1812 		return ret;
1813 
1814 	regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_RUN);
1815 
1816 	ret = wait_for_pll_enable_lock(pll);
1817 	if (ret)
1818 		return ret;
1819 
1820 	/* Enable the PLL outputs */
1821 	ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, PLL_OUT_MASK);
1822 	if (ret)
1823 		return ret;
1824 
1825 	/* Enable the global PLL outputs */
1826 	return regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
1827 }
1828 
1829 static void alpha_pll_lucid_5lpe_disable(struct clk_hw *hw)
1830 {
1831 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1832 	u32 val;
1833 	int ret;
1834 
1835 	ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
1836 	if (ret)
1837 		return;
1838 
1839 	/* If in FSM mode, just unvote it */
1840 	if (val & LUCID_5LPE_ENABLE_VOTE_RUN) {
1841 		clk_disable_regmap(hw);
1842 		return;
1843 	}
1844 
1845 	/* Disable the global PLL output */
1846 	ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1847 	if (ret)
1848 		return;
1849 
1850 	/* Disable the PLL outputs */
1851 	ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
1852 	if (ret)
1853 		return;
1854 
1855 	/* Place the PLL mode in STANDBY */
1856 	regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_STANDBY);
1857 }
1858 
1859 /*
1860  * The Lucid 5LPE PLL requires a power-on self-calibration which happens
1861  * when the PLL comes out of reset. Calibrate in case it is not completed.
1862  */
1863 static int alpha_pll_lucid_5lpe_prepare(struct clk_hw *hw)
1864 {
1865 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1866 	struct clk_hw *p;
1867 	u32 val = 0;
1868 	int ret;
1869 
1870 	/* Return early if calibration is not needed. */
1871 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
1872 	if (val & LUCID_5LPE_PCAL_DONE)
1873 		return 0;
1874 
1875 	p = clk_hw_get_parent(hw);
1876 	if (!p)
1877 		return -EINVAL;
1878 
1879 	ret = alpha_pll_lucid_5lpe_enable(hw);
1880 	if (ret)
1881 		return ret;
1882 
1883 	alpha_pll_lucid_5lpe_disable(hw);
1884 
1885 	return 0;
1886 }
1887 
1888 static int alpha_pll_lucid_5lpe_set_rate(struct clk_hw *hw, unsigned long rate,
1889 					 unsigned long prate)
1890 {
1891 	return __alpha_pll_trion_set_rate(hw, rate, prate,
1892 					  LUCID_5LPE_PLL_LATCH_INPUT,
1893 					  LUCID_5LPE_ALPHA_PLL_ACK_LATCH);
1894 }
1895 
1896 static int __clk_lucid_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1897 					    unsigned long parent_rate,
1898 					    unsigned long enable_vote_run)
1899 {
1900 	struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
1901 	struct regmap *regmap = pll->clkr.regmap;
1902 	int i, val, div, ret;
1903 	u32 mask;
1904 
1905 	/*
1906 	 * If the PLL is in FSM mode, then treat set_rate callback as a
1907 	 * no-operation.
1908 	 */
1909 	ret = regmap_read(regmap, PLL_USER_CTL(pll), &val);
1910 	if (ret)
1911 		return ret;
1912 
1913 	if (val & enable_vote_run)
1914 		return 0;
1915 
1916 	if (!pll->post_div_table) {
1917 		pr_err("Missing the post_div_table for the %s PLL\n",
1918 		       clk_hw_get_name(&pll->clkr.hw));
1919 		return -EINVAL;
1920 	}
1921 
1922 	div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
1923 	for (i = 0; i < pll->num_post_div; i++) {
1924 		if (pll->post_div_table[i].div == div) {
1925 			val = pll->post_div_table[i].val;
1926 			break;
1927 		}
1928 	}
1929 
1930 	mask = GENMASK(pll->width + pll->post_div_shift - 1, pll->post_div_shift);
1931 	return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
1932 				  mask, val << pll->post_div_shift);
1933 }
1934 
1935 static int clk_lucid_5lpe_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
1936 					       unsigned long parent_rate)
1937 {
1938 	return __clk_lucid_pll_postdiv_set_rate(hw, rate, parent_rate, LUCID_5LPE_ENABLE_VOTE_RUN);
1939 }
1940 
1941 const struct clk_ops clk_alpha_pll_lucid_5lpe_ops = {
1942 	.prepare = alpha_pll_lucid_5lpe_prepare,
1943 	.enable = alpha_pll_lucid_5lpe_enable,
1944 	.disable = alpha_pll_lucid_5lpe_disable,
1945 	.is_enabled = clk_trion_pll_is_enabled,
1946 	.recalc_rate = clk_trion_pll_recalc_rate,
1947 	.round_rate = clk_alpha_pll_round_rate,
1948 	.set_rate = alpha_pll_lucid_5lpe_set_rate,
1949 };
1950 EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_5lpe_ops);
1951 
1952 const struct clk_ops clk_alpha_pll_fixed_lucid_5lpe_ops = {
1953 	.enable = alpha_pll_lucid_5lpe_enable,
1954 	.disable = alpha_pll_lucid_5lpe_disable,
1955 	.is_enabled = clk_trion_pll_is_enabled,
1956 	.recalc_rate = clk_trion_pll_recalc_rate,
1957 	.round_rate = clk_alpha_pll_round_rate,
1958 };
1959 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_lucid_5lpe_ops);
1960 
1961 const struct clk_ops clk_alpha_pll_postdiv_lucid_5lpe_ops = {
1962 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
1963 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
1964 	.set_rate = clk_lucid_5lpe_pll_postdiv_set_rate,
1965 };
1966 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_5lpe_ops);
1967 
1968 void clk_zonda_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
1969 			     const struct alpha_pll_config *config)
1970 {
1971 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
1972 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
1973 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
1974 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val);
1975 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val);
1976 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
1977 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val);
1978 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll), config->user_ctl_hi1_val);
1979 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
1980 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
1981 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll), config->test_ctl_hi1_val);
1982 
1983 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, 0);
1984 
1985 	/* Disable PLL output */
1986 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
1987 
1988 	/* Set operation mode to OFF */
1989 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
1990 
1991 	/* Place the PLL in STANDBY mode */
1992 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
1993 }
1994 EXPORT_SYMBOL_GPL(clk_zonda_pll_configure);
1995 
1996 static int clk_zonda_pll_enable(struct clk_hw *hw)
1997 {
1998 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
1999 	struct regmap *regmap = pll->clkr.regmap;
2000 	u32 val;
2001 	int ret;
2002 
2003 	regmap_read(regmap, PLL_MODE(pll), &val);
2004 
2005 	/* If in FSM mode, just vote for it */
2006 	if (val & PLL_VOTE_FSM_ENA) {
2007 		ret = clk_enable_regmap(hw);
2008 		if (ret)
2009 			return ret;
2010 		return wait_for_pll_enable_active(pll);
2011 	}
2012 
2013 	/* Get the PLL out of bypass mode */
2014 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, PLL_BYPASSNL);
2015 
2016 	/*
2017 	 * H/W requires a 1us delay between disabling the bypass and
2018 	 * de-asserting the reset.
2019 	 */
2020 	udelay(1);
2021 
2022 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
2023 
2024 	/* Set operation mode to RUN */
2025 	regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
2026 
2027 	regmap_read(regmap, PLL_TEST_CTL(pll), &val);
2028 
2029 	/* If cfa mode then poll for freq lock */
2030 	if (val & ZONDA_STAY_IN_CFA)
2031 		ret = wait_for_zonda_pll_freq_lock(pll);
2032 	else
2033 		ret = wait_for_pll_enable_lock(pll);
2034 	if (ret)
2035 		return ret;
2036 
2037 	/* Enable the PLL outputs */
2038 	regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, ZONDA_PLL_OUT_MASK);
2039 
2040 	/* Enable the global PLL outputs */
2041 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
2042 
2043 	return 0;
2044 }
2045 
2046 static void clk_zonda_pll_disable(struct clk_hw *hw)
2047 {
2048 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
2049 	struct regmap *regmap = pll->clkr.regmap;
2050 	u32 val;
2051 
2052 	regmap_read(regmap, PLL_MODE(pll), &val);
2053 
2054 	/* If in FSM mode, just unvote it */
2055 	if (val & PLL_VOTE_FSM_ENA) {
2056 		clk_disable_regmap(hw);
2057 		return;
2058 	}
2059 
2060 	/* Disable the global PLL output */
2061 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
2062 
2063 	/* Disable the PLL outputs */
2064 	regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, 0);
2065 
2066 	/* Put the PLL in bypass and reset */
2067 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N | PLL_BYPASSNL, 0);
2068 
2069 	/* Place the PLL mode in OFF state */
2070 	regmap_write(regmap, PLL_OPMODE(pll), 0x0);
2071 }
2072 
2073 static int clk_zonda_pll_set_rate(struct clk_hw *hw, unsigned long rate,
2074 				  unsigned long prate)
2075 {
2076 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
2077 	unsigned long rrate;
2078 	u32 test_ctl_val;
2079 	u32 l, alpha_width = pll_alpha_width(pll);
2080 	u64 a;
2081 	int ret;
2082 
2083 	rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
2084 
2085 	ret = alpha_pll_check_rate_margin(hw, rrate, rate);
2086 	if (ret < 0)
2087 		return ret;
2088 
2089 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
2090 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
2091 
2092 	/* Wait before polling for the frequency latch */
2093 	udelay(5);
2094 
2095 	/* Read stay in cfa mode */
2096 	regmap_read(pll->clkr.regmap, PLL_TEST_CTL(pll), &test_ctl_val);
2097 
2098 	/* If cfa mode then poll for freq lock */
2099 	if (test_ctl_val & ZONDA_STAY_IN_CFA)
2100 		ret = wait_for_zonda_pll_freq_lock(pll);
2101 	else
2102 		ret = wait_for_pll_enable_lock(pll);
2103 	if (ret)
2104 		return ret;
2105 
2106 	/* Wait for PLL output to stabilize */
2107 	udelay(100);
2108 	return 0;
2109 }
2110 
2111 const struct clk_ops clk_alpha_pll_zonda_ops = {
2112 	.enable = clk_zonda_pll_enable,
2113 	.disable = clk_zonda_pll_disable,
2114 	.is_enabled = clk_trion_pll_is_enabled,
2115 	.recalc_rate = clk_trion_pll_recalc_rate,
2116 	.round_rate = clk_alpha_pll_round_rate,
2117 	.set_rate = clk_zonda_pll_set_rate,
2118 };
2119 EXPORT_SYMBOL_GPL(clk_alpha_pll_zonda_ops);
2120 
2121 void clk_lucid_evo_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
2122 				 const struct alpha_pll_config *config)
2123 {
2124 	u32 lval = config->l;
2125 
2126 	/*
2127 	 * If the bootloader left the PLL enabled it's likely that there are
2128 	 * RCGs that will lock up if we disable the PLL below.
2129 	 */
2130 	if (trion_pll_is_enabled(pll, regmap)) {
2131 		pr_debug("Lucid Evo PLL is already enabled, skipping configuration\n");
2132 		return;
2133 	}
2134 
2135 	lval |= TRION_PLL_CAL_VAL << LUCID_EVO_PLL_CAL_L_VAL_SHIFT;
2136 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), lval);
2137 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
2138 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
2139 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val);
2140 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val);
2141 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
2142 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val);
2143 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
2144 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
2145 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll), config->test_ctl_hi1_val);
2146 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U2(pll), config->test_ctl_hi2_val);
2147 
2148 	/* Disable PLL output */
2149 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
2150 
2151 	/* Set operation mode to STANDBY and de-assert the reset */
2152 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
2153 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
2154 }
2155 EXPORT_SYMBOL_GPL(clk_lucid_evo_pll_configure);
2156 
2157 void clk_lucid_ole_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
2158 				 const struct alpha_pll_config *config)
2159 {
2160 	u32 lval = config->l;
2161 
2162 	lval |= TRION_PLL_CAL_VAL << LUCID_EVO_PLL_CAL_L_VAL_SHIFT;
2163 	lval |= TRION_PLL_CAL_VAL << LUCID_OLE_PLL_RINGOSC_CAL_L_VAL_SHIFT;
2164 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), lval);
2165 	clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
2166 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
2167 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val);
2168 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val);
2169 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
2170 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val);
2171 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
2172 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
2173 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll), config->test_ctl_hi1_val);
2174 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U2(pll), config->test_ctl_hi2_val);
2175 
2176 	/* Disable PLL output */
2177 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
2178 
2179 	/* Set operation mode to STANDBY and de-assert the reset */
2180 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
2181 	regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
2182 }
2183 EXPORT_SYMBOL_GPL(clk_lucid_ole_pll_configure);
2184 
2185 static int alpha_pll_lucid_evo_enable(struct clk_hw *hw)
2186 {
2187 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
2188 	struct regmap *regmap = pll->clkr.regmap;
2189 	u32 val;
2190 	int ret;
2191 
2192 	ret = regmap_read(regmap, PLL_USER_CTL(pll), &val);
2193 	if (ret)
2194 		return ret;
2195 
2196 	/* If in FSM mode, just vote for it */
2197 	if (val & LUCID_EVO_ENABLE_VOTE_RUN) {
2198 		ret = clk_enable_regmap(hw);
2199 		if (ret)
2200 			return ret;
2201 		return wait_for_pll_enable_lock(pll);
2202 	}
2203 
2204 	/* Check if PLL is already enabled */
2205 	ret = trion_pll_is_enabled(pll, regmap);
2206 	if (ret < 0) {
2207 		return ret;
2208 	} else if (ret) {
2209 		pr_warn("%s PLL is already enabled\n", clk_hw_get_name(&pll->clkr.hw));
2210 		return 0;
2211 	}
2212 
2213 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
2214 	if (ret)
2215 		return ret;
2216 
2217 	/* Set operation mode to RUN */
2218 	regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
2219 
2220 	ret = wait_for_pll_enable_lock(pll);
2221 	if (ret)
2222 		return ret;
2223 
2224 	/* Enable the PLL outputs */
2225 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, PLL_OUT_MASK);
2226 	if (ret)
2227 		return ret;
2228 
2229 	/* Enable the global PLL outputs */
2230 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
2231 	if (ret)
2232 		return ret;
2233 
2234 	/* Ensure that the write above goes through before returning. */
2235 	mb();
2236 	return ret;
2237 }
2238 
2239 static void _alpha_pll_lucid_evo_disable(struct clk_hw *hw, bool reset)
2240 {
2241 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
2242 	struct regmap *regmap = pll->clkr.regmap;
2243 	u32 val;
2244 	int ret;
2245 
2246 	ret = regmap_read(regmap, PLL_USER_CTL(pll), &val);
2247 	if (ret)
2248 		return;
2249 
2250 	/* If in FSM mode, just unvote it */
2251 	if (val & LUCID_EVO_ENABLE_VOTE_RUN) {
2252 		clk_disable_regmap(hw);
2253 		return;
2254 	}
2255 
2256 	/* Disable the global PLL output */
2257 	ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
2258 	if (ret)
2259 		return;
2260 
2261 	/* Disable the PLL outputs */
2262 	ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
2263 	if (ret)
2264 		return;
2265 
2266 	/* Place the PLL mode in STANDBY */
2267 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
2268 
2269 	if (reset)
2270 		regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, 0);
2271 }
2272 
2273 static int _alpha_pll_lucid_evo_prepare(struct clk_hw *hw, bool reset)
2274 {
2275 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
2276 	struct clk_hw *p;
2277 	u32 val = 0;
2278 	int ret;
2279 
2280 	/* Return early if calibration is not needed. */
2281 	regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
2282 	if (!(val & LUCID_EVO_PCAL_NOT_DONE))
2283 		return 0;
2284 
2285 	p = clk_hw_get_parent(hw);
2286 	if (!p)
2287 		return -EINVAL;
2288 
2289 	ret = alpha_pll_lucid_evo_enable(hw);
2290 	if (ret)
2291 		return ret;
2292 
2293 	_alpha_pll_lucid_evo_disable(hw, reset);
2294 
2295 	return 0;
2296 }
2297 
2298 static void alpha_pll_lucid_evo_disable(struct clk_hw *hw)
2299 {
2300 	_alpha_pll_lucid_evo_disable(hw, false);
2301 }
2302 
2303 static int alpha_pll_lucid_evo_prepare(struct clk_hw *hw)
2304 {
2305 	return _alpha_pll_lucid_evo_prepare(hw, false);
2306 }
2307 
2308 static void alpha_pll_reset_lucid_evo_disable(struct clk_hw *hw)
2309 {
2310 	_alpha_pll_lucid_evo_disable(hw, true);
2311 }
2312 
2313 static int alpha_pll_reset_lucid_evo_prepare(struct clk_hw *hw)
2314 {
2315 	return _alpha_pll_lucid_evo_prepare(hw, true);
2316 }
2317 
2318 static unsigned long alpha_pll_lucid_evo_recalc_rate(struct clk_hw *hw,
2319 						     unsigned long parent_rate)
2320 {
2321 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
2322 	struct regmap *regmap = pll->clkr.regmap;
2323 	u32 l, frac;
2324 
2325 	regmap_read(regmap, PLL_L_VAL(pll), &l);
2326 	l &= LUCID_EVO_PLL_L_VAL_MASK;
2327 	regmap_read(regmap, PLL_ALPHA_VAL(pll), &frac);
2328 
2329 	return alpha_pll_calc_rate(parent_rate, l, frac, pll_alpha_width(pll));
2330 }
2331 
2332 static int clk_lucid_evo_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
2333 					      unsigned long parent_rate)
2334 {
2335 	return __clk_lucid_pll_postdiv_set_rate(hw, rate, parent_rate, LUCID_EVO_ENABLE_VOTE_RUN);
2336 }
2337 
2338 const struct clk_ops clk_alpha_pll_fixed_lucid_evo_ops = {
2339 	.enable = alpha_pll_lucid_evo_enable,
2340 	.disable = alpha_pll_lucid_evo_disable,
2341 	.is_enabled = clk_trion_pll_is_enabled,
2342 	.recalc_rate = alpha_pll_lucid_evo_recalc_rate,
2343 	.round_rate = clk_alpha_pll_round_rate,
2344 };
2345 EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_lucid_evo_ops);
2346 
2347 const struct clk_ops clk_alpha_pll_postdiv_lucid_evo_ops = {
2348 	.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
2349 	.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
2350 	.set_rate = clk_lucid_evo_pll_postdiv_set_rate,
2351 };
2352 EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_evo_ops);
2353 
2354 const struct clk_ops clk_alpha_pll_lucid_evo_ops = {
2355 	.prepare = alpha_pll_lucid_evo_prepare,
2356 	.enable = alpha_pll_lucid_evo_enable,
2357 	.disable = alpha_pll_lucid_evo_disable,
2358 	.is_enabled = clk_trion_pll_is_enabled,
2359 	.recalc_rate = alpha_pll_lucid_evo_recalc_rate,
2360 	.round_rate = clk_alpha_pll_round_rate,
2361 	.set_rate = alpha_pll_lucid_5lpe_set_rate,
2362 };
2363 EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_evo_ops);
2364 
2365 const struct clk_ops clk_alpha_pll_reset_lucid_evo_ops = {
2366 	.prepare = alpha_pll_reset_lucid_evo_prepare,
2367 	.enable = alpha_pll_lucid_evo_enable,
2368 	.disable = alpha_pll_reset_lucid_evo_disable,
2369 	.is_enabled = clk_trion_pll_is_enabled,
2370 	.recalc_rate = alpha_pll_lucid_evo_recalc_rate,
2371 	.round_rate = clk_alpha_pll_round_rate,
2372 	.set_rate = alpha_pll_lucid_5lpe_set_rate,
2373 };
2374 EXPORT_SYMBOL_GPL(clk_alpha_pll_reset_lucid_evo_ops);
2375 
2376 void clk_rivian_evo_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
2377 				  const struct alpha_pll_config *config)
2378 {
2379 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
2380 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val);
2381 	clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val);
2382 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
2383 	clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
2384 	clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
2385 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
2386 	clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val);
2387 
2388 	regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
2389 
2390 	regmap_update_bits(regmap, PLL_MODE(pll),
2391 			   PLL_RESET_N | PLL_BYPASSNL | PLL_OUTCTRL,
2392 			   PLL_RESET_N | PLL_BYPASSNL);
2393 }
2394 EXPORT_SYMBOL_GPL(clk_rivian_evo_pll_configure);
2395 
2396 static unsigned long clk_rivian_evo_pll_recalc_rate(struct clk_hw *hw,
2397 						    unsigned long parent_rate)
2398 {
2399 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
2400 	u32 l;
2401 
2402 	regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
2403 
2404 	return parent_rate * l;
2405 }
2406 
2407 static long clk_rivian_evo_pll_round_rate(struct clk_hw *hw, unsigned long rate,
2408 					  unsigned long *prate)
2409 {
2410 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
2411 	unsigned long min_freq, max_freq;
2412 	u32 l;
2413 	u64 a;
2414 
2415 	rate = alpha_pll_round_rate(rate, *prate, &l, &a, 0);
2416 	if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
2417 		return rate;
2418 
2419 	min_freq = pll->vco_table[0].min_freq;
2420 	max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
2421 
2422 	return clamp(rate, min_freq, max_freq);
2423 }
2424 
2425 const struct clk_ops clk_alpha_pll_rivian_evo_ops = {
2426 	.enable = alpha_pll_lucid_5lpe_enable,
2427 	.disable = alpha_pll_lucid_5lpe_disable,
2428 	.is_enabled = clk_trion_pll_is_enabled,
2429 	.recalc_rate = clk_rivian_evo_pll_recalc_rate,
2430 	.round_rate = clk_rivian_evo_pll_round_rate,
2431 };
2432 EXPORT_SYMBOL_GPL(clk_alpha_pll_rivian_evo_ops);
2433 
2434 void clk_stromer_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
2435 			       const struct alpha_pll_config *config)
2436 {
2437 	u32 val, val_u, mask, mask_u;
2438 
2439 	regmap_write(regmap, PLL_L_VAL(pll), config->l);
2440 	regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
2441 	regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
2442 
2443 	if (pll_has_64bit_config(pll))
2444 		regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
2445 			     config->config_ctl_hi_val);
2446 
2447 	if (pll_alpha_width(pll) > 32)
2448 		regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
2449 
2450 	val = config->main_output_mask;
2451 	val |= config->aux_output_mask;
2452 	val |= config->aux2_output_mask;
2453 	val |= config->early_output_mask;
2454 	val |= config->pre_div_val;
2455 	val |= config->post_div_val;
2456 	val |= config->vco_val;
2457 	val |= config->alpha_en_mask;
2458 	val |= config->alpha_mode_mask;
2459 
2460 	mask = config->main_output_mask;
2461 	mask |= config->aux_output_mask;
2462 	mask |= config->aux2_output_mask;
2463 	mask |= config->early_output_mask;
2464 	mask |= config->pre_div_mask;
2465 	mask |= config->post_div_mask;
2466 	mask |= config->vco_mask;
2467 	mask |= config->alpha_en_mask;
2468 	mask |= config->alpha_mode_mask;
2469 
2470 	regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
2471 
2472 	/* Stromer APSS PLL does not enable LOCK_DET by default, so enable it */
2473 	val_u = config->status_val << ALPHA_PLL_STATUS_REG_SHIFT;
2474 	val_u |= config->lock_det;
2475 
2476 	mask_u = config->status_mask;
2477 	mask_u |= config->lock_det;
2478 
2479 	regmap_update_bits(regmap, PLL_USER_CTL_U(pll), mask_u, val_u);
2480 	regmap_write(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
2481 	regmap_write(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
2482 
2483 	if (pll->flags & SUPPORTS_FSM_MODE)
2484 		qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
2485 }
2486 EXPORT_SYMBOL_GPL(clk_stromer_pll_configure);
2487 
2488 static int clk_alpha_pll_stromer_determine_rate(struct clk_hw *hw,
2489 						struct clk_rate_request *req)
2490 {
2491 	u32 l;
2492 	u64 a;
2493 
2494 	req->rate = alpha_pll_round_rate(req->rate, req->best_parent_rate,
2495 					 &l, &a, ALPHA_REG_BITWIDTH);
2496 
2497 	return 0;
2498 }
2499 
2500 static int clk_alpha_pll_stromer_set_rate(struct clk_hw *hw, unsigned long rate,
2501 					  unsigned long prate)
2502 {
2503 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
2504 	int ret;
2505 	u32 l;
2506 	u64 a;
2507 
2508 	rate = alpha_pll_round_rate(rate, prate, &l, &a, ALPHA_REG_BITWIDTH);
2509 
2510 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
2511 
2512 	a <<= ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH;
2513 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
2514 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
2515 		     a >> ALPHA_BITWIDTH);
2516 
2517 	regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
2518 			   PLL_ALPHA_EN, PLL_ALPHA_EN);
2519 
2520 	if (!clk_hw_is_enabled(hw))
2521 		return 0;
2522 
2523 	/*
2524 	 * Stromer PLL supports Dynamic programming.
2525 	 * It allows the PLL frequency to be changed on-the-fly without first
2526 	 * execution of a shutdown procedure followed by a bring up procedure.
2527 	 */
2528 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
2529 			   PLL_UPDATE);
2530 
2531 	ret = wait_for_pll_update(pll);
2532 	if (ret)
2533 		return ret;
2534 
2535 	return wait_for_pll_enable_lock(pll);
2536 }
2537 
2538 const struct clk_ops clk_alpha_pll_stromer_ops = {
2539 	.enable = clk_alpha_pll_enable,
2540 	.disable = clk_alpha_pll_disable,
2541 	.is_enabled = clk_alpha_pll_is_enabled,
2542 	.recalc_rate = clk_alpha_pll_recalc_rate,
2543 	.determine_rate = clk_alpha_pll_stromer_determine_rate,
2544 	.set_rate = clk_alpha_pll_stromer_set_rate,
2545 };
2546 EXPORT_SYMBOL_GPL(clk_alpha_pll_stromer_ops);
2547 
2548 static int clk_alpha_pll_stromer_plus_set_rate(struct clk_hw *hw,
2549 					       unsigned long rate,
2550 					       unsigned long prate)
2551 {
2552 	struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
2553 	u32 l, alpha_width = pll_alpha_width(pll);
2554 	int ret, pll_mode;
2555 	u64 a;
2556 
2557 	rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
2558 
2559 	ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &pll_mode);
2560 	if (ret)
2561 		return ret;
2562 
2563 	regmap_write(pll->clkr.regmap, PLL_MODE(pll), 0);
2564 
2565 	/* Delay of 2 output clock ticks required until output is disabled */
2566 	udelay(1);
2567 
2568 	regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
2569 
2570 	if (alpha_width > ALPHA_BITWIDTH)
2571 		a <<= alpha_width - ALPHA_BITWIDTH;
2572 
2573 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
2574 	regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
2575 					a >> ALPHA_BITWIDTH);
2576 
2577 	regmap_write(pll->clkr.regmap, PLL_MODE(pll), PLL_BYPASSNL);
2578 
2579 	/* Wait five micro seconds or more */
2580 	udelay(5);
2581 	regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_RESET_N,
2582 			   PLL_RESET_N);
2583 
2584 	/* The lock time should be less than 50 micro seconds worst case */
2585 	usleep_range(50, 60);
2586 
2587 	ret = wait_for_pll_enable_lock(pll);
2588 	if (ret) {
2589 		pr_err("Wait for PLL enable lock failed [%s] %d\n",
2590 		       clk_hw_get_name(hw), ret);
2591 		return ret;
2592 	}
2593 
2594 	if (pll_mode & PLL_OUTCTRL)
2595 		regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL,
2596 				   PLL_OUTCTRL);
2597 
2598 	return 0;
2599 }
2600 
2601 const struct clk_ops clk_alpha_pll_stromer_plus_ops = {
2602 	.prepare = clk_alpha_pll_enable,
2603 	.unprepare = clk_alpha_pll_disable,
2604 	.is_enabled = clk_alpha_pll_is_enabled,
2605 	.recalc_rate = clk_alpha_pll_recalc_rate,
2606 	.determine_rate = clk_alpha_pll_stromer_determine_rate,
2607 	.set_rate = clk_alpha_pll_stromer_plus_set_rate,
2608 };
2609 EXPORT_SYMBOL_GPL(clk_alpha_pll_stromer_plus_ops);
2610