xref: /linux/drivers/clk/pxa/clk-pxa.c (revision 6c8c1406a6d6a3f2e61ac590f5c0994231bc6be7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Marvell PXA family clocks
4  *
5  * Copyright (C) 2014 Robert Jarzmik
6  *
7  * Common clock code for PXA clocks ("CKEN" type clocks + DT)
8  */
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clkdev.h>
12 #include <linux/io.h>
13 #include <linux/of.h>
14 #include <linux/soc/pxa/smemc.h>
15 
16 #include <dt-bindings/clock/pxa-clock.h>
17 #include "clk-pxa.h"
18 
19 #define KHz 1000
20 #define MHz (1000 * 1000)
21 
22 #define MDREFR_K0DB4	(1 << 29)	/* SDCLK0 Divide by 4 Control/Status */
23 #define MDREFR_K2FREE	(1 << 25)	/* SDRAM Free-Running Control */
24 #define MDREFR_K1FREE	(1 << 24)	/* SDRAM Free-Running Control */
25 #define MDREFR_K0FREE	(1 << 23)	/* SDRAM Free-Running Control */
26 #define MDREFR_SLFRSH	(1 << 22)	/* SDRAM Self-Refresh Control/Status */
27 #define MDREFR_APD	(1 << 20)	/* SDRAM/SSRAM Auto-Power-Down Enable */
28 #define MDREFR_K2DB2	(1 << 19)	/* SDCLK2 Divide by 2 Control/Status */
29 #define MDREFR_K2RUN	(1 << 18)	/* SDCLK2 Run Control/Status */
30 #define MDREFR_K1DB2	(1 << 17)	/* SDCLK1 Divide by 2 Control/Status */
31 #define MDREFR_K1RUN	(1 << 16)	/* SDCLK1 Run Control/Status */
32 #define MDREFR_E1PIN	(1 << 15)	/* SDCKE1 Level Control/Status */
33 #define MDREFR_K0DB2	(1 << 14)	/* SDCLK0 Divide by 2 Control/Status */
34 #define MDREFR_K0RUN	(1 << 13)	/* SDCLK0 Run Control/Status */
35 #define MDREFR_E0PIN	(1 << 12)	/* SDCKE0 Level Control/Status */
36 #define MDREFR_DB2_MASK	(MDREFR_K2DB2 | MDREFR_K1DB2)
37 #define MDREFR_DRI_MASK	0xFFF
38 
39 static DEFINE_SPINLOCK(pxa_clk_lock);
40 
41 static struct clk *pxa_clocks[CLK_MAX];
42 static struct clk_onecell_data onecell_data = {
43 	.clks = pxa_clocks,
44 	.clk_num = CLK_MAX,
45 };
46 
47 struct pxa_clk {
48 	struct clk_hw hw;
49 	struct clk_fixed_factor lp;
50 	struct clk_fixed_factor hp;
51 	struct clk_gate gate;
52 	bool (*is_in_low_power)(void);
53 };
54 
55 #define to_pxa_clk(_hw) container_of(_hw, struct pxa_clk, hw)
56 
57 static unsigned long cken_recalc_rate(struct clk_hw *hw,
58 				      unsigned long parent_rate)
59 {
60 	struct pxa_clk *pclk = to_pxa_clk(hw);
61 	struct clk_fixed_factor *fix;
62 
63 	if (!pclk->is_in_low_power || pclk->is_in_low_power())
64 		fix = &pclk->lp;
65 	else
66 		fix = &pclk->hp;
67 	__clk_hw_set_clk(&fix->hw, hw);
68 	return clk_fixed_factor_ops.recalc_rate(&fix->hw, parent_rate);
69 }
70 
71 static const struct clk_ops cken_rate_ops = {
72 	.recalc_rate = cken_recalc_rate,
73 };
74 
75 static u8 cken_get_parent(struct clk_hw *hw)
76 {
77 	struct pxa_clk *pclk = to_pxa_clk(hw);
78 
79 	if (!pclk->is_in_low_power)
80 		return 0;
81 	return pclk->is_in_low_power() ? 0 : 1;
82 }
83 
84 static const struct clk_ops cken_mux_ops = {
85 	.get_parent = cken_get_parent,
86 	.set_parent = dummy_clk_set_parent,
87 };
88 
89 void __init clkdev_pxa_register(int ckid, const char *con_id,
90 				const char *dev_id, struct clk *clk)
91 {
92 	if (!IS_ERR(clk) && (ckid != CLK_NONE))
93 		pxa_clocks[ckid] = clk;
94 	if (!IS_ERR(clk))
95 		clk_register_clkdev(clk, con_id, dev_id);
96 }
97 
98 int __init clk_pxa_cken_init(const struct desc_clk_cken *clks,
99 			     int nb_clks, void __iomem *clk_regs)
100 {
101 	int i;
102 	struct pxa_clk *pxa_clk;
103 	struct clk *clk;
104 
105 	for (i = 0; i < nb_clks; i++) {
106 		pxa_clk = kzalloc(sizeof(*pxa_clk), GFP_KERNEL);
107 		if (!pxa_clk)
108 			return -ENOMEM;
109 		pxa_clk->is_in_low_power = clks[i].is_in_low_power;
110 		pxa_clk->lp = clks[i].lp;
111 		pxa_clk->hp = clks[i].hp;
112 		pxa_clk->gate = clks[i].gate;
113 		pxa_clk->gate.reg = clk_regs + clks[i].cken_reg;
114 		pxa_clk->gate.lock = &pxa_clk_lock;
115 		clk = clk_register_composite(NULL, clks[i].name,
116 					     clks[i].parent_names, 2,
117 					     &pxa_clk->hw, &cken_mux_ops,
118 					     &pxa_clk->hw, &cken_rate_ops,
119 					     &pxa_clk->gate.hw, &clk_gate_ops,
120 					     clks[i].flags);
121 		clkdev_pxa_register(clks[i].ckid, clks[i].con_id,
122 				    clks[i].dev_id, clk);
123 	}
124 	return 0;
125 }
126 
127 void __init clk_pxa_dt_common_init(struct device_node *np)
128 {
129 	of_clk_add_provider(np, of_clk_src_onecell_get, &onecell_data);
130 }
131 
132 void pxa2xx_core_turbo_switch(bool on)
133 {
134 	unsigned long flags;
135 	unsigned int unused, clkcfg;
136 
137 	local_irq_save(flags);
138 
139 	asm("mrc p14, 0, %0, c6, c0, 0" : "=r" (clkcfg));
140 	clkcfg &= ~CLKCFG_TURBO & ~CLKCFG_HALFTURBO;
141 	if (on)
142 		clkcfg |= CLKCFG_TURBO;
143 	clkcfg |= CLKCFG_FCS;
144 
145 	asm volatile(
146 	"	b	2f\n"
147 	"	.align	5\n"
148 	"1:	mcr	p14, 0, %1, c6, c0, 0\n"
149 	"	b	3f\n"
150 	"2:	b	1b\n"
151 	"3:	nop\n"
152 		: "=&r" (unused) : "r" (clkcfg));
153 
154 	local_irq_restore(flags);
155 }
156 
157 void pxa2xx_cpll_change(struct pxa2xx_freq *freq,
158 			u32 (*mdrefr_dri)(unsigned int),
159 			void __iomem *cccr)
160 {
161 	unsigned int clkcfg = freq->clkcfg;
162 	unsigned int unused, preset_mdrefr, postset_mdrefr;
163 	unsigned long flags;
164 	void __iomem *mdrefr = pxa_smemc_get_mdrefr();
165 
166 	local_irq_save(flags);
167 
168 	/* Calculate the next MDREFR.  If we're slowing down the SDRAM clock
169 	 * we need to preset the smaller DRI before the change.	 If we're
170 	 * speeding up we need to set the larger DRI value after the change.
171 	 */
172 	preset_mdrefr = postset_mdrefr = readl(mdrefr);
173 	if ((preset_mdrefr & MDREFR_DRI_MASK) > mdrefr_dri(freq->membus_khz)) {
174 		preset_mdrefr = (preset_mdrefr & ~MDREFR_DRI_MASK);
175 		preset_mdrefr |= mdrefr_dri(freq->membus_khz);
176 	}
177 	postset_mdrefr =
178 		(postset_mdrefr & ~MDREFR_DRI_MASK) |
179 		mdrefr_dri(freq->membus_khz);
180 
181 	/* If we're dividing the memory clock by two for the SDRAM clock, this
182 	 * must be set prior to the change.  Clearing the divide must be done
183 	 * after the change.
184 	 */
185 	if (freq->div2) {
186 		preset_mdrefr  |= MDREFR_DB2_MASK;
187 		postset_mdrefr |= MDREFR_DB2_MASK;
188 	} else {
189 		postset_mdrefr &= ~MDREFR_DB2_MASK;
190 	}
191 
192 	/* Set new the CCCR and prepare CLKCFG */
193 	writel(freq->cccr, cccr);
194 
195 	asm volatile(
196 	"	ldr	r4, [%1]\n"
197 	"	b	2f\n"
198 	"	.align	5\n"
199 	"1:	str	%3, [%1]		/* preset the MDREFR */\n"
200 	"	mcr	p14, 0, %2, c6, c0, 0	/* set CLKCFG[FCS] */\n"
201 	"	str	%4, [%1]		/* postset the MDREFR */\n"
202 	"	b	3f\n"
203 	"2:	b	1b\n"
204 	"3:	nop\n"
205 	     : "=&r" (unused)
206 	     : "r" (mdrefr), "r" (clkcfg), "r" (preset_mdrefr),
207 	       "r" (postset_mdrefr)
208 	     : "r4", "r5");
209 
210 	local_irq_restore(flags);
211 }
212 
213 int pxa2xx_determine_rate(struct clk_rate_request *req,
214 			  struct pxa2xx_freq *freqs, int nb_freqs)
215 {
216 	int i, closest_below = -1, closest_above = -1;
217 	unsigned long rate;
218 
219 	for (i = 0; i < nb_freqs; i++) {
220 		rate = freqs[i].cpll;
221 		if (rate == req->rate)
222 			break;
223 		if (rate < req->min_rate)
224 			continue;
225 		if (rate > req->max_rate)
226 			continue;
227 		if (rate <= req->rate)
228 			closest_below = i;
229 		if ((rate >= req->rate) && (closest_above == -1))
230 			closest_above = i;
231 	}
232 
233 	req->best_parent_hw = NULL;
234 
235 	if (i < nb_freqs) {
236 		rate = req->rate;
237 	} else if (closest_below >= 0) {
238 		rate = freqs[closest_below].cpll;
239 	} else if (closest_above >= 0) {
240 		rate = freqs[closest_above].cpll;
241 	} else {
242 		pr_debug("%s(rate=%lu) no match\n", __func__, req->rate);
243 		return -EINVAL;
244 	}
245 
246 	pr_debug("%s(rate=%lu) rate=%lu\n", __func__, req->rate, rate);
247 	req->rate = rate;
248 
249 	return 0;
250 }
251