1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Marvell Armada 37xx SoC Peripheral clocks 4 * 5 * Copyright (C) 2016 Marvell 6 * 7 * Gregory CLEMENT <gregory.clement@free-electrons.com> 8 * 9 * Most of the peripheral clocks can be modelled like this: 10 * _____ _______ _______ 11 * TBG-A-P --| | | | | | ______ 12 * TBG-B-P --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk 13 * TBG-A-S --| | | | | | |______| 14 * TBG-B-S --|_____| |_______| |_______| 15 * 16 * However some clocks may use only one or two block or and use the 17 * xtal clock as parent. 18 */ 19 20 #include <linux/clk-provider.h> 21 #include <linux/io.h> 22 #include <linux/mfd/syscon.h> 23 #include <linux/of.h> 24 #include <linux/platform_device.h> 25 #include <linux/regmap.h> 26 #include <linux/slab.h> 27 #include <linux/jiffies.h> 28 29 #define TBG_SEL 0x0 30 #define DIV_SEL0 0x4 31 #define DIV_SEL1 0x8 32 #define DIV_SEL2 0xC 33 #define CLK_SEL 0x10 34 #define CLK_DIS 0x14 35 36 #define ARMADA_37XX_DVFS_LOAD_1 1 37 #define LOAD_LEVEL_NR 4 38 39 #define ARMADA_37XX_NB_L0L1 0x18 40 #define ARMADA_37XX_NB_L2L3 0x1C 41 #define ARMADA_37XX_NB_TBG_DIV_OFF 13 42 #define ARMADA_37XX_NB_TBG_DIV_MASK 0x7 43 #define ARMADA_37XX_NB_CLK_SEL_OFF 11 44 #define ARMADA_37XX_NB_CLK_SEL_MASK 0x1 45 #define ARMADA_37XX_NB_TBG_SEL_OFF 9 46 #define ARMADA_37XX_NB_TBG_SEL_MASK 0x3 47 #define ARMADA_37XX_NB_CONFIG_SHIFT 16 48 #define ARMADA_37XX_NB_DYN_MOD 0x24 49 #define ARMADA_37XX_NB_DFS_EN 31 50 #define ARMADA_37XX_NB_CPU_LOAD 0x30 51 #define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3 52 #define ARMADA_37XX_DVFS_LOAD_0 0 53 #define ARMADA_37XX_DVFS_LOAD_1 1 54 #define ARMADA_37XX_DVFS_LOAD_2 2 55 #define ARMADA_37XX_DVFS_LOAD_3 3 56 57 struct clk_periph_driver_data { 58 struct clk_hw_onecell_data *hw_data; 59 spinlock_t lock; 60 void __iomem *reg; 61 62 /* Storage registers for suspend/resume operations */ 63 u32 tbg_sel; 64 u32 div_sel0; 65 u32 div_sel1; 66 u32 div_sel2; 67 u32 clk_sel; 68 u32 clk_dis; 69 }; 70 71 struct clk_double_div { 72 struct clk_hw hw; 73 void __iomem *reg1; 74 u8 shift1; 75 void __iomem *reg2; 76 u8 shift2; 77 }; 78 79 struct clk_pm_cpu { 80 struct clk_hw hw; 81 void __iomem *reg_mux; 82 u8 shift_mux; 83 u32 mask_mux; 84 void __iomem *reg_div; 85 u8 shift_div; 86 struct regmap *nb_pm_base; 87 unsigned long l1_expiration; 88 }; 89 90 #define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw) 91 #define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw) 92 93 struct clk_periph_data { 94 const char *name; 95 const char * const *parent_names; 96 int num_parents; 97 struct clk_hw *mux_hw; 98 struct clk_hw *rate_hw; 99 struct clk_hw *gate_hw; 100 struct clk_hw *muxrate_hw; 101 bool is_double_div; 102 }; 103 104 static const struct clk_div_table clk_table6[] = { 105 { .val = 1, .div = 1, }, 106 { .val = 2, .div = 2, }, 107 { .val = 3, .div = 3, }, 108 { .val = 4, .div = 4, }, 109 { .val = 5, .div = 5, }, 110 { .val = 6, .div = 6, }, 111 { .val = 0, .div = 0, }, /* last entry */ 112 }; 113 114 static const struct clk_div_table clk_table1[] = { 115 { .val = 0, .div = 1, }, 116 { .val = 1, .div = 2, }, 117 { .val = 0, .div = 0, }, /* last entry */ 118 }; 119 120 static const struct clk_div_table clk_table2[] = { 121 { .val = 0, .div = 2, }, 122 { .val = 1, .div = 4, }, 123 { .val = 0, .div = 0, }, /* last entry */ 124 }; 125 126 static const struct clk_ops clk_double_div_ops; 127 static const struct clk_ops clk_pm_cpu_ops; 128 129 #define PERIPH_GATE(_name, _bit) \ 130 struct clk_gate gate_##_name = { \ 131 .reg = (void *)CLK_DIS, \ 132 .bit_idx = _bit, \ 133 .hw.init = &(struct clk_init_data){ \ 134 .ops = &clk_gate_ops, \ 135 } \ 136 }; 137 138 #define PERIPH_MUX(_name, _shift) \ 139 struct clk_mux mux_##_name = { \ 140 .reg = (void *)TBG_SEL, \ 141 .shift = _shift, \ 142 .mask = 3, \ 143 .hw.init = &(struct clk_init_data){ \ 144 .ops = &clk_mux_ro_ops, \ 145 } \ 146 }; 147 148 #define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2) \ 149 struct clk_double_div rate_##_name = { \ 150 .reg1 = (void *)_reg1, \ 151 .reg2 = (void *)_reg2, \ 152 .shift1 = _shift1, \ 153 .shift2 = _shift2, \ 154 .hw.init = &(struct clk_init_data){ \ 155 .ops = &clk_double_div_ops, \ 156 } \ 157 }; 158 159 #define PERIPH_DIV(_name, _reg, _shift, _table) \ 160 struct clk_divider rate_##_name = { \ 161 .reg = (void *)_reg, \ 162 .table = _table, \ 163 .shift = _shift, \ 164 .hw.init = &(struct clk_init_data){ \ 165 .ops = &clk_divider_ro_ops, \ 166 } \ 167 }; 168 169 #define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2) \ 170 struct clk_pm_cpu muxrate_##_name = { \ 171 .reg_mux = (void *)TBG_SEL, \ 172 .mask_mux = 3, \ 173 .shift_mux = _shift1, \ 174 .reg_div = (void *)_reg, \ 175 .shift_div = _shift2, \ 176 .hw.init = &(struct clk_init_data){ \ 177 .ops = &clk_pm_cpu_ops, \ 178 } \ 179 }; 180 181 #define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\ 182 static PERIPH_GATE(_name, _bit); \ 183 static PERIPH_MUX(_name, _shift); \ 184 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2); 185 186 #define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table) \ 187 static PERIPH_GATE(_name, _bit); \ 188 static PERIPH_MUX(_name, _shift); \ 189 static PERIPH_DIV(_name, _reg, _shift1, _table); 190 191 #define PERIPH_CLK_GATE_DIV(_name, _bit, _reg, _shift, _table) \ 192 static PERIPH_GATE(_name, _bit); \ 193 static PERIPH_DIV(_name, _reg, _shift, _table); 194 195 #define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\ 196 static PERIPH_MUX(_name, _shift); \ 197 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2); 198 199 #define REF_CLK_FULL(_name) \ 200 { .name = #_name, \ 201 .parent_names = (const char *[]){ "TBG-A-P", \ 202 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \ 203 .num_parents = 4, \ 204 .mux_hw = &mux_##_name.hw, \ 205 .gate_hw = &gate_##_name.hw, \ 206 .rate_hw = &rate_##_name.hw, \ 207 } 208 209 #define REF_CLK_FULL_DD(_name) \ 210 { .name = #_name, \ 211 .parent_names = (const char *[]){ "TBG-A-P", \ 212 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \ 213 .num_parents = 4, \ 214 .mux_hw = &mux_##_name.hw, \ 215 .gate_hw = &gate_##_name.hw, \ 216 .rate_hw = &rate_##_name.hw, \ 217 .is_double_div = true, \ 218 } 219 220 #define REF_CLK_GATE(_name, _parent_name) \ 221 { .name = #_name, \ 222 .parent_names = (const char *[]){ _parent_name}, \ 223 .num_parents = 1, \ 224 .gate_hw = &gate_##_name.hw, \ 225 } 226 227 #define REF_CLK_GATE_DIV(_name, _parent_name) \ 228 { .name = #_name, \ 229 .parent_names = (const char *[]){ _parent_name}, \ 230 .num_parents = 1, \ 231 .gate_hw = &gate_##_name.hw, \ 232 .rate_hw = &rate_##_name.hw, \ 233 } 234 235 #define REF_CLK_PM_CPU(_name) \ 236 { .name = #_name, \ 237 .parent_names = (const char *[]){ "TBG-A-P", \ 238 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \ 239 .num_parents = 4, \ 240 .muxrate_hw = &muxrate_##_name.hw, \ 241 } 242 243 #define REF_CLK_MUX_DD(_name) \ 244 { .name = #_name, \ 245 .parent_names = (const char *[]){ "TBG-A-P", \ 246 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \ 247 .num_parents = 4, \ 248 .mux_hw = &mux_##_name.hw, \ 249 .rate_hw = &rate_##_name.hw, \ 250 .is_double_div = true, \ 251 } 252 253 /* NB periph clocks */ 254 PERIPH_CLK_FULL_DD(mmc, 2, 0, DIV_SEL2, DIV_SEL2, 16, 13); 255 PERIPH_CLK_FULL_DD(sata_host, 3, 2, DIV_SEL2, DIV_SEL2, 10, 7); 256 PERIPH_CLK_FULL_DD(sec_at, 6, 4, DIV_SEL1, DIV_SEL1, 3, 0); 257 PERIPH_CLK_FULL_DD(sec_dap, 7, 6, DIV_SEL1, DIV_SEL1, 9, 6); 258 PERIPH_CLK_FULL_DD(tscem, 8, 8, DIV_SEL1, DIV_SEL1, 15, 12); 259 PERIPH_CLK_FULL(tscem_tmx, 10, 10, DIV_SEL1, 18, clk_table6); 260 static PERIPH_GATE(avs, 11); 261 PERIPH_CLK_FULL_DD(pwm, 13, 14, DIV_SEL0, DIV_SEL0, 3, 0); 262 PERIPH_CLK_FULL_DD(sqf, 12, 12, DIV_SEL1, DIV_SEL1, 27, 24); 263 static PERIPH_GATE(i2c_2, 16); 264 static PERIPH_GATE(i2c_1, 17); 265 PERIPH_CLK_GATE_DIV(ddr_phy, 19, DIV_SEL0, 18, clk_table2); 266 PERIPH_CLK_FULL_DD(ddr_fclk, 21, 16, DIV_SEL0, DIV_SEL0, 15, 12); 267 PERIPH_CLK_FULL(trace, 22, 18, DIV_SEL0, 20, clk_table6); 268 PERIPH_CLK_FULL(counter, 23, 20, DIV_SEL0, 23, clk_table6); 269 PERIPH_CLK_FULL_DD(eip97, 24, 24, DIV_SEL2, DIV_SEL2, 22, 19); 270 static PERIPH_PM_CPU(cpu, 22, DIV_SEL0, 28); 271 272 static struct clk_periph_data data_nb[] = { 273 REF_CLK_FULL_DD(mmc), 274 REF_CLK_FULL_DD(sata_host), 275 REF_CLK_FULL_DD(sec_at), 276 REF_CLK_FULL_DD(sec_dap), 277 REF_CLK_FULL_DD(tscem), 278 REF_CLK_FULL(tscem_tmx), 279 REF_CLK_GATE(avs, "xtal"), 280 REF_CLK_FULL_DD(sqf), 281 REF_CLK_FULL_DD(pwm), 282 REF_CLK_GATE(i2c_2, "xtal"), 283 REF_CLK_GATE(i2c_1, "xtal"), 284 REF_CLK_GATE_DIV(ddr_phy, "TBG-A-S"), 285 REF_CLK_FULL_DD(ddr_fclk), 286 REF_CLK_FULL(trace), 287 REF_CLK_FULL(counter), 288 REF_CLK_FULL_DD(eip97), 289 REF_CLK_PM_CPU(cpu), 290 { }, 291 }; 292 293 /* SB periph clocks */ 294 PERIPH_CLK_MUX_DD(gbe_50, 6, DIV_SEL2, DIV_SEL2, 6, 9); 295 PERIPH_CLK_MUX_DD(gbe_core, 8, DIV_SEL1, DIV_SEL1, 18, 21); 296 PERIPH_CLK_MUX_DD(gbe_125, 10, DIV_SEL1, DIV_SEL1, 6, 9); 297 static PERIPH_GATE(gbe1_50, 0); 298 static PERIPH_GATE(gbe0_50, 1); 299 static PERIPH_GATE(gbe1_125, 2); 300 static PERIPH_GATE(gbe0_125, 3); 301 PERIPH_CLK_GATE_DIV(gbe1_core, 4, DIV_SEL1, 13, clk_table1); 302 PERIPH_CLK_GATE_DIV(gbe0_core, 5, DIV_SEL1, 14, clk_table1); 303 PERIPH_CLK_GATE_DIV(gbe_bm, 12, DIV_SEL1, 0, clk_table1); 304 PERIPH_CLK_FULL_DD(sdio, 11, 14, DIV_SEL0, DIV_SEL0, 3, 6); 305 PERIPH_CLK_FULL_DD(usb32_usb2_sys, 16, 16, DIV_SEL0, DIV_SEL0, 9, 12); 306 PERIPH_CLK_FULL_DD(usb32_ss_sys, 17, 18, DIV_SEL0, DIV_SEL0, 15, 18); 307 static PERIPH_GATE(pcie, 14); 308 309 static struct clk_periph_data data_sb[] = { 310 REF_CLK_MUX_DD(gbe_50), 311 REF_CLK_MUX_DD(gbe_core), 312 REF_CLK_MUX_DD(gbe_125), 313 REF_CLK_GATE(gbe1_50, "gbe_50"), 314 REF_CLK_GATE(gbe0_50, "gbe_50"), 315 REF_CLK_GATE(gbe1_125, "gbe_125"), 316 REF_CLK_GATE(gbe0_125, "gbe_125"), 317 REF_CLK_GATE_DIV(gbe1_core, "gbe_core"), 318 REF_CLK_GATE_DIV(gbe0_core, "gbe_core"), 319 REF_CLK_GATE_DIV(gbe_bm, "gbe_core"), 320 REF_CLK_FULL_DD(sdio), 321 REF_CLK_FULL_DD(usb32_usb2_sys), 322 REF_CLK_FULL_DD(usb32_ss_sys), 323 REF_CLK_GATE(pcie, "gbe_core"), 324 { }, 325 }; 326 327 static unsigned int get_div(void __iomem *reg, int shift) 328 { 329 u32 val; 330 331 val = (readl(reg) >> shift) & 0x7; 332 if (val > 6) 333 return 0; 334 return val; 335 } 336 337 static unsigned long clk_double_div_recalc_rate(struct clk_hw *hw, 338 unsigned long parent_rate) 339 { 340 struct clk_double_div *double_div = to_clk_double_div(hw); 341 unsigned int div; 342 343 div = get_div(double_div->reg1, double_div->shift1); 344 div *= get_div(double_div->reg2, double_div->shift2); 345 346 return DIV_ROUND_UP_ULL((u64)parent_rate, div); 347 } 348 349 static const struct clk_ops clk_double_div_ops = { 350 .recalc_rate = clk_double_div_recalc_rate, 351 }; 352 353 static void armada_3700_pm_dvfs_update_regs(unsigned int load_level, 354 unsigned int *reg, 355 unsigned int *offset) 356 { 357 if (load_level <= ARMADA_37XX_DVFS_LOAD_1) 358 *reg = ARMADA_37XX_NB_L0L1; 359 else 360 *reg = ARMADA_37XX_NB_L2L3; 361 362 if (load_level == ARMADA_37XX_DVFS_LOAD_0 || 363 load_level == ARMADA_37XX_DVFS_LOAD_2) 364 *offset += ARMADA_37XX_NB_CONFIG_SHIFT; 365 } 366 367 static bool armada_3700_pm_dvfs_is_enabled(struct regmap *base) 368 { 369 unsigned int val, reg = ARMADA_37XX_NB_DYN_MOD; 370 371 if (IS_ERR(base)) 372 return false; 373 374 regmap_read(base, reg, &val); 375 376 return !!(val & BIT(ARMADA_37XX_NB_DFS_EN)); 377 } 378 379 static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap *base) 380 { 381 unsigned int reg = ARMADA_37XX_NB_CPU_LOAD; 382 unsigned int offset = ARMADA_37XX_NB_TBG_DIV_OFF; 383 unsigned int load_level, div; 384 385 /* 386 * This function is always called after the function 387 * armada_3700_pm_dvfs_is_enabled, so no need to check again 388 * if the base is valid. 389 */ 390 regmap_read(base, reg, &load_level); 391 392 /* 393 * The register and the offset inside this register accessed to 394 * read the current divider depend on the load level 395 */ 396 load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK; 397 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset); 398 399 regmap_read(base, reg, &div); 400 401 return (div >> offset) & ARMADA_37XX_NB_TBG_DIV_MASK; 402 } 403 404 static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap *base) 405 { 406 unsigned int reg = ARMADA_37XX_NB_CPU_LOAD; 407 unsigned int offset = ARMADA_37XX_NB_TBG_SEL_OFF; 408 unsigned int load_level, sel; 409 410 /* 411 * This function is always called after the function 412 * armada_3700_pm_dvfs_is_enabled, so no need to check again 413 * if the base is valid 414 */ 415 regmap_read(base, reg, &load_level); 416 417 /* 418 * The register and the offset inside this register accessed to 419 * read the current divider depend on the load level 420 */ 421 load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK; 422 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset); 423 424 regmap_read(base, reg, &sel); 425 426 return (sel >> offset) & ARMADA_37XX_NB_TBG_SEL_MASK; 427 } 428 429 static u8 clk_pm_cpu_get_parent(struct clk_hw *hw) 430 { 431 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw); 432 u32 val; 433 434 if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) { 435 val = armada_3700_pm_dvfs_get_cpu_parent(pm_cpu->nb_pm_base); 436 } else { 437 val = readl(pm_cpu->reg_mux) >> pm_cpu->shift_mux; 438 val &= pm_cpu->mask_mux; 439 } 440 441 return val; 442 } 443 444 static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw *hw, 445 unsigned long parent_rate) 446 { 447 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw); 448 unsigned int div; 449 450 if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) 451 div = armada_3700_pm_dvfs_get_cpu_div(pm_cpu->nb_pm_base); 452 else 453 div = get_div(pm_cpu->reg_div, pm_cpu->shift_div); 454 return DIV_ROUND_UP_ULL((u64)parent_rate, div); 455 } 456 457 static long clk_pm_cpu_round_rate(struct clk_hw *hw, unsigned long rate, 458 unsigned long *parent_rate) 459 { 460 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw); 461 struct regmap *base = pm_cpu->nb_pm_base; 462 unsigned int div = *parent_rate / rate; 463 unsigned int load_level; 464 /* only available when DVFS is enabled */ 465 if (!armada_3700_pm_dvfs_is_enabled(base)) 466 return -EINVAL; 467 468 for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) { 469 unsigned int reg, val, offset = ARMADA_37XX_NB_TBG_DIV_OFF; 470 471 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset); 472 473 regmap_read(base, reg, &val); 474 475 val >>= offset; 476 val &= ARMADA_37XX_NB_TBG_DIV_MASK; 477 if (val == div) 478 /* 479 * We found a load level matching the target 480 * divider, switch to this load level and 481 * return. 482 */ 483 return *parent_rate / div; 484 } 485 486 /* We didn't find any valid divider */ 487 return -EINVAL; 488 } 489 490 /* 491 * Workaround when base CPU frequnecy is 1000 or 1200 MHz 492 * 493 * Switching the CPU from the L2 or L3 frequencies (250/300 or 200 MHz 494 * respectively) to L0 frequency (1/1.2 GHz) requires a significant 495 * amount of time to let VDD stabilize to the appropriate 496 * voltage. This amount of time is large enough that it cannot be 497 * covered by the hardware countdown register. Due to this, the CPU 498 * might start operating at L0 before the voltage is stabilized, 499 * leading to CPU stalls. 500 * 501 * To work around this problem, we prevent switching directly from the 502 * L2/L3 frequencies to the L0 frequency, and instead switch to the L1 503 * frequency in-between. The sequence therefore becomes: 504 * 1. First switch from L2/L3 (200/250/300 MHz) to L1 (500/600 MHz) 505 * 2. Sleep 20ms for stabling VDD voltage 506 * 3. Then switch from L1 (500/600 MHz) to L0 (1000/1200 MHz). 507 */ 508 static void clk_pm_cpu_set_rate_wa(struct clk_pm_cpu *pm_cpu, 509 unsigned int new_level, unsigned long rate, 510 struct regmap *base) 511 { 512 unsigned int cur_level; 513 514 regmap_read(base, ARMADA_37XX_NB_CPU_LOAD, &cur_level); 515 cur_level &= ARMADA_37XX_NB_CPU_LOAD_MASK; 516 517 if (cur_level == new_level) 518 return; 519 520 /* 521 * System wants to go to L1 on its own. If we are going from L2/L3, 522 * remember when 20ms will expire. If from L0, set the value so that 523 * next switch to L0 won't have to wait. 524 */ 525 if (new_level == ARMADA_37XX_DVFS_LOAD_1) { 526 if (cur_level == ARMADA_37XX_DVFS_LOAD_0) 527 pm_cpu->l1_expiration = jiffies; 528 else 529 pm_cpu->l1_expiration = jiffies + msecs_to_jiffies(20); 530 return; 531 } 532 533 /* 534 * If we are setting to L2/L3, just invalidate L1 expiration time, 535 * sleeping is not needed. 536 */ 537 if (rate < 1000*1000*1000) 538 goto invalidate_l1_exp; 539 540 /* 541 * We are going to L0 with rate >= 1GHz. Check whether we have been at 542 * L1 for long enough time. If not, go to L1 for 20ms. 543 */ 544 if (pm_cpu->l1_expiration && time_is_before_eq_jiffies(pm_cpu->l1_expiration)) 545 goto invalidate_l1_exp; 546 547 regmap_update_bits(base, ARMADA_37XX_NB_CPU_LOAD, 548 ARMADA_37XX_NB_CPU_LOAD_MASK, 549 ARMADA_37XX_DVFS_LOAD_1); 550 msleep(20); 551 552 invalidate_l1_exp: 553 pm_cpu->l1_expiration = 0; 554 } 555 556 static int clk_pm_cpu_set_rate(struct clk_hw *hw, unsigned long rate, 557 unsigned long parent_rate) 558 { 559 struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw); 560 struct regmap *base = pm_cpu->nb_pm_base; 561 unsigned int div = parent_rate / rate; 562 unsigned int load_level; 563 564 /* only available when DVFS is enabled */ 565 if (!armada_3700_pm_dvfs_is_enabled(base)) 566 return -EINVAL; 567 568 for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) { 569 unsigned int reg, mask, val, 570 offset = ARMADA_37XX_NB_TBG_DIV_OFF; 571 572 armada_3700_pm_dvfs_update_regs(load_level, ®, &offset); 573 574 regmap_read(base, reg, &val); 575 val >>= offset; 576 val &= ARMADA_37XX_NB_TBG_DIV_MASK; 577 578 if (val == div) { 579 /* 580 * We found a load level matching the target 581 * divider, switch to this load level and 582 * return. 583 */ 584 reg = ARMADA_37XX_NB_CPU_LOAD; 585 mask = ARMADA_37XX_NB_CPU_LOAD_MASK; 586 587 /* Apply workaround when base CPU frequency is 1000 or 1200 MHz */ 588 if (parent_rate >= 1000*1000*1000) 589 clk_pm_cpu_set_rate_wa(pm_cpu, load_level, rate, base); 590 591 regmap_update_bits(base, reg, mask, load_level); 592 593 return rate; 594 } 595 } 596 597 /* We didn't find any valid divider */ 598 return -EINVAL; 599 } 600 601 static const struct clk_ops clk_pm_cpu_ops = { 602 .get_parent = clk_pm_cpu_get_parent, 603 .round_rate = clk_pm_cpu_round_rate, 604 .set_rate = clk_pm_cpu_set_rate, 605 .recalc_rate = clk_pm_cpu_recalc_rate, 606 }; 607 608 static const struct of_device_id armada_3700_periph_clock_of_match[] = { 609 { .compatible = "marvell,armada-3700-periph-clock-nb", 610 .data = data_nb, }, 611 { .compatible = "marvell,armada-3700-periph-clock-sb", 612 .data = data_sb, }, 613 { } 614 }; 615 616 static int armada_3700_add_composite_clk(const struct clk_periph_data *data, 617 void __iomem *reg, spinlock_t *lock, 618 struct device *dev, struct clk_hw **hw) 619 { 620 const struct clk_ops *mux_ops = NULL, *gate_ops = NULL, 621 *rate_ops = NULL; 622 struct clk_hw *mux_hw = NULL, *gate_hw = NULL, *rate_hw = NULL; 623 624 if (data->mux_hw) { 625 struct clk_mux *mux; 626 627 mux_hw = data->mux_hw; 628 mux = to_clk_mux(mux_hw); 629 mux->lock = lock; 630 mux_ops = mux_hw->init->ops; 631 mux->reg = reg + (u64)mux->reg; 632 } 633 634 if (data->gate_hw) { 635 struct clk_gate *gate; 636 637 gate_hw = data->gate_hw; 638 gate = to_clk_gate(gate_hw); 639 gate->lock = lock; 640 gate_ops = gate_hw->init->ops; 641 gate->reg = reg + (u64)gate->reg; 642 gate->flags = CLK_GATE_SET_TO_DISABLE; 643 } 644 645 if (data->rate_hw) { 646 rate_hw = data->rate_hw; 647 rate_ops = rate_hw->init->ops; 648 if (data->is_double_div) { 649 struct clk_double_div *rate; 650 651 rate = to_clk_double_div(rate_hw); 652 rate->reg1 = reg + (u64)rate->reg1; 653 rate->reg2 = reg + (u64)rate->reg2; 654 } else { 655 struct clk_divider *rate = to_clk_divider(rate_hw); 656 const struct clk_div_table *clkt; 657 int table_size = 0; 658 659 rate->reg = reg + (u64)rate->reg; 660 for (clkt = rate->table; clkt->div; clkt++) 661 table_size++; 662 rate->width = order_base_2(table_size); 663 rate->lock = lock; 664 } 665 } 666 667 if (data->muxrate_hw) { 668 struct clk_pm_cpu *pmcpu_clk; 669 struct clk_hw *muxrate_hw = data->muxrate_hw; 670 struct regmap *map; 671 672 pmcpu_clk = to_clk_pm_cpu(muxrate_hw); 673 pmcpu_clk->reg_mux = reg + (u64)pmcpu_clk->reg_mux; 674 pmcpu_clk->reg_div = reg + (u64)pmcpu_clk->reg_div; 675 676 mux_hw = muxrate_hw; 677 rate_hw = muxrate_hw; 678 mux_ops = muxrate_hw->init->ops; 679 rate_ops = muxrate_hw->init->ops; 680 681 map = syscon_regmap_lookup_by_compatible( 682 "marvell,armada-3700-nb-pm"); 683 pmcpu_clk->nb_pm_base = map; 684 } 685 686 *hw = clk_hw_register_composite(dev, data->name, data->parent_names, 687 data->num_parents, mux_hw, 688 mux_ops, rate_hw, rate_ops, 689 gate_hw, gate_ops, CLK_IGNORE_UNUSED); 690 691 return PTR_ERR_OR_ZERO(*hw); 692 } 693 694 static int __maybe_unused armada_3700_periph_clock_suspend(struct device *dev) 695 { 696 struct clk_periph_driver_data *data = dev_get_drvdata(dev); 697 698 data->tbg_sel = readl(data->reg + TBG_SEL); 699 data->div_sel0 = readl(data->reg + DIV_SEL0); 700 data->div_sel1 = readl(data->reg + DIV_SEL1); 701 data->div_sel2 = readl(data->reg + DIV_SEL2); 702 data->clk_sel = readl(data->reg + CLK_SEL); 703 data->clk_dis = readl(data->reg + CLK_DIS); 704 705 return 0; 706 } 707 708 static int __maybe_unused armada_3700_periph_clock_resume(struct device *dev) 709 { 710 struct clk_periph_driver_data *data = dev_get_drvdata(dev); 711 712 /* Follow the same order than what the Cortex-M3 does (ATF code) */ 713 writel(data->clk_dis, data->reg + CLK_DIS); 714 writel(data->div_sel0, data->reg + DIV_SEL0); 715 writel(data->div_sel1, data->reg + DIV_SEL1); 716 writel(data->div_sel2, data->reg + DIV_SEL2); 717 writel(data->tbg_sel, data->reg + TBG_SEL); 718 writel(data->clk_sel, data->reg + CLK_SEL); 719 720 return 0; 721 } 722 723 static const struct dev_pm_ops armada_3700_periph_clock_pm_ops = { 724 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(armada_3700_periph_clock_suspend, 725 armada_3700_periph_clock_resume) 726 }; 727 728 static int armada_3700_periph_clock_probe(struct platform_device *pdev) 729 { 730 struct clk_periph_driver_data *driver_data; 731 struct device_node *np = pdev->dev.of_node; 732 const struct clk_periph_data *data; 733 struct device *dev = &pdev->dev; 734 int num_periph = 0, i, ret; 735 736 data = of_device_get_match_data(dev); 737 if (!data) 738 return -ENODEV; 739 740 while (data[num_periph].name) 741 num_periph++; 742 743 driver_data = devm_kzalloc(dev, sizeof(*driver_data), GFP_KERNEL); 744 if (!driver_data) 745 return -ENOMEM; 746 747 driver_data->hw_data = devm_kzalloc(dev, 748 struct_size(driver_data->hw_data, 749 hws, num_periph), 750 GFP_KERNEL); 751 if (!driver_data->hw_data) 752 return -ENOMEM; 753 driver_data->hw_data->num = num_periph; 754 755 driver_data->reg = devm_platform_ioremap_resource(pdev, 0); 756 if (IS_ERR(driver_data->reg)) 757 return PTR_ERR(driver_data->reg); 758 759 spin_lock_init(&driver_data->lock); 760 761 for (i = 0; i < num_periph; i++) { 762 struct clk_hw **hw = &driver_data->hw_data->hws[i]; 763 if (armada_3700_add_composite_clk(&data[i], driver_data->reg, 764 &driver_data->lock, dev, hw)) 765 dev_err(dev, "Can't register periph clock %s\n", 766 data[i].name); 767 } 768 769 ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, 770 driver_data->hw_data); 771 if (ret) { 772 for (i = 0; i < num_periph; i++) 773 clk_hw_unregister(driver_data->hw_data->hws[i]); 774 return ret; 775 } 776 777 platform_set_drvdata(pdev, driver_data); 778 return 0; 779 } 780 781 static void armada_3700_periph_clock_remove(struct platform_device *pdev) 782 { 783 struct clk_periph_driver_data *data = platform_get_drvdata(pdev); 784 struct clk_hw_onecell_data *hw_data = data->hw_data; 785 int i; 786 787 of_clk_del_provider(pdev->dev.of_node); 788 789 for (i = 0; i < hw_data->num; i++) 790 clk_hw_unregister(hw_data->hws[i]); 791 } 792 793 static struct platform_driver armada_3700_periph_clock_driver = { 794 .probe = armada_3700_periph_clock_probe, 795 .remove = armada_3700_periph_clock_remove, 796 .driver = { 797 .name = "marvell-armada-3700-periph-clock", 798 .of_match_table = armada_3700_periph_clock_of_match, 799 .pm = &armada_3700_periph_clock_pm_ops, 800 }, 801 }; 802 803 builtin_platform_driver(armada_3700_periph_clock_driver); 804