xref: /linux/drivers/clk/mstar/clk-msc313-cpupll.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Daniel Palmer <daniel@thingy.jp>
4  */
5 
6 #include <linux/clk-provider.h>
7 #include <linux/device.h>
8 #include <linux/kernel.h>
9 #include <linux/of_address.h>
10 #include <linux/platform_device.h>
11 
12 /*
13  * This IP is not documented outside of the messy vendor driver.
14  * Below is what we think the registers look like based on looking at
15  * the vendor code and poking at the hardware:
16  *
17  * 0x140 -- LPF low. Seems to store one half of the clock transition
18  * 0x144 /
19  * 0x148 -- LPF high. Seems to store one half of the clock transition
20  * 0x14c /
21  * 0x150 -- vendor code says "toggle lpf enable"
22  * 0x154 -- mu?
23  * 0x15c -- lpf_update_count?
24  * 0x160 -- vendor code says "switch to LPF". Clock source config? Register bank?
25  * 0x164 -- vendor code says "from low to high" which seems to mean transition from LPF low to
26  * LPF high.
27  * 0x174 -- Seems to be the PLL lock status bit
28  * 0x180 -- Seems to be the current frequency, this might need to be populated by software?
29  * 0x184 /  The vendor driver uses these to set the initial value of LPF low
30  *
31  * Frequency seems to be calculated like this:
32  * (parent clock (432mhz) / register_magic_value) * 16 * 524288
33  * Only the lower 24 bits of the resulting value will be used. In addition, the
34  * PLL doesn't seem to be able to lock on frequencies lower than 220 MHz, as
35  * divisor 0xfb586f (220 MHz) works but 0xfb7fff locks up.
36  *
37  * Vendor values:
38  * frequency - register value
39  *
40  * 400000000  - 0x0067AE14
41  * 600000000  - 0x00451EB8,
42  * 800000000  - 0x0033D70A,
43  * 1000000000 - 0x002978d4,
44  */
45 
46 #define REG_LPF_LOW_L		0x140
47 #define REG_LPF_LOW_H		0x144
48 #define REG_LPF_HIGH_BOTTOM	0x148
49 #define REG_LPF_HIGH_TOP	0x14c
50 #define REG_LPF_TOGGLE		0x150
51 #define REG_LPF_MYSTERYTWO	0x154
52 #define REG_LPF_UPDATE_COUNT	0x15c
53 #define REG_LPF_MYSTERYONE	0x160
54 #define REG_LPF_TRANSITIONCTRL	0x164
55 #define REG_LPF_LOCK		0x174
56 #define REG_CURRENT		0x180
57 
58 #define LPF_LOCK_TIMEOUT	100000000
59 
60 #define MULTIPLIER_1		16
61 #define MULTIPLIER_2		524288
62 #define MULTIPLIER		(MULTIPLIER_1 * MULTIPLIER_2)
63 
64 struct msc313_cpupll {
65 	void __iomem *base;
66 	struct clk_hw clk_hw;
67 };
68 
69 #define to_cpupll(_hw) container_of(_hw, struct msc313_cpupll, clk_hw)
70 
71 static u32 msc313_cpupll_reg_read32(struct msc313_cpupll *cpupll, unsigned int reg)
72 {
73 	u32 value;
74 
75 	value = ioread16(cpupll->base + reg + 4) << 16;
76 	value |= ioread16(cpupll->base + reg);
77 
78 	return value;
79 }
80 
81 static void msc313_cpupll_reg_write32(struct msc313_cpupll *cpupll, unsigned int reg, u32 value)
82 {
83 	u16 l = value & 0xffff, h = (value >> 16) & 0xffff;
84 
85 	iowrite16(l, cpupll->base + reg);
86 	iowrite16(h, cpupll->base + reg + 4);
87 }
88 
89 static void msc313_cpupll_setfreq(struct msc313_cpupll *cpupll, u32 regvalue)
90 {
91 	ktime_t timeout;
92 
93 	msc313_cpupll_reg_write32(cpupll, REG_LPF_HIGH_BOTTOM, regvalue);
94 
95 	iowrite16(0x1, cpupll->base + REG_LPF_MYSTERYONE);
96 	iowrite16(0x6, cpupll->base + REG_LPF_MYSTERYTWO);
97 	iowrite16(0x8, cpupll->base + REG_LPF_UPDATE_COUNT);
98 	iowrite16(BIT(12), cpupll->base + REG_LPF_TRANSITIONCTRL);
99 
100 	iowrite16(0, cpupll->base + REG_LPF_TOGGLE);
101 	iowrite16(1, cpupll->base + REG_LPF_TOGGLE);
102 
103 	timeout = ktime_add_ns(ktime_get(), LPF_LOCK_TIMEOUT);
104 	while (!(ioread16(cpupll->base + REG_LPF_LOCK))) {
105 		if (ktime_after(ktime_get(), timeout)) {
106 			pr_err("timeout waiting for LPF_LOCK\n");
107 			return;
108 		}
109 		cpu_relax();
110 	}
111 
112 	iowrite16(0, cpupll->base + REG_LPF_TOGGLE);
113 
114 	msc313_cpupll_reg_write32(cpupll, REG_LPF_LOW_L, regvalue);
115 }
116 
117 static unsigned long msc313_cpupll_frequencyforreg(u32 reg, unsigned long parent_rate)
118 {
119 	unsigned long long prescaled = ((unsigned long long)parent_rate) * MULTIPLIER;
120 
121 	if (prescaled == 0 || reg == 0)
122 		return 0;
123 	return DIV_ROUND_DOWN_ULL(prescaled, reg);
124 }
125 
126 static u32 msc313_cpupll_regforfrequecy(unsigned long rate, unsigned long parent_rate)
127 {
128 	unsigned long long prescaled = ((unsigned long long)parent_rate) * MULTIPLIER;
129 
130 	if (prescaled == 0 || rate == 0)
131 		return 0;
132 	return DIV_ROUND_UP_ULL(prescaled, rate);
133 }
134 
135 static unsigned long msc313_cpupll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
136 {
137 	struct msc313_cpupll *cpupll = to_cpupll(hw);
138 
139 	return msc313_cpupll_frequencyforreg(msc313_cpupll_reg_read32(cpupll, REG_LPF_LOW_L),
140 					     parent_rate);
141 }
142 
143 static long msc313_cpupll_round_rate(struct clk_hw *hw, unsigned long rate,
144 				     unsigned long *parent_rate)
145 {
146 	u32 reg = msc313_cpupll_regforfrequecy(rate, *parent_rate);
147 	long rounded = msc313_cpupll_frequencyforreg(reg, *parent_rate);
148 
149 	/*
150 	 * This is my poor attempt at making sure the resulting
151 	 * rate doesn't overshoot the requested rate.
152 	 */
153 	for (; rounded >= rate && reg > 0; reg--)
154 		rounded = msc313_cpupll_frequencyforreg(reg, *parent_rate);
155 
156 	return rounded;
157 }
158 
159 static int msc313_cpupll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
160 {
161 	struct msc313_cpupll *cpupll = to_cpupll(hw);
162 	u32 reg = msc313_cpupll_regforfrequecy(rate, parent_rate);
163 
164 	msc313_cpupll_setfreq(cpupll, reg);
165 
166 	return 0;
167 }
168 
169 static const struct clk_ops msc313_cpupll_ops = {
170 	.recalc_rate	= msc313_cpupll_recalc_rate,
171 	.round_rate	= msc313_cpupll_round_rate,
172 	.set_rate	= msc313_cpupll_set_rate,
173 };
174 
175 static const struct of_device_id msc313_cpupll_of_match[] = {
176 	{ .compatible = "mstar,msc313-cpupll" },
177 	{}
178 };
179 
180 static int msc313_cpupll_probe(struct platform_device *pdev)
181 {
182 	struct clk_init_data clk_init = {};
183 	struct clk_parent_data cpupll_parent = { .index	= 0 };
184 	struct device *dev = &pdev->dev;
185 	struct msc313_cpupll *cpupll;
186 	int ret;
187 
188 	cpupll = devm_kzalloc(&pdev->dev, sizeof(*cpupll), GFP_KERNEL);
189 	if (!cpupll)
190 		return -ENOMEM;
191 
192 	cpupll->base = devm_platform_ioremap_resource(pdev, 0);
193 	if (IS_ERR(cpupll->base))
194 		return PTR_ERR(cpupll->base);
195 
196 	/* LPF might not contain the current frequency so fix that up */
197 	msc313_cpupll_reg_write32(cpupll, REG_LPF_LOW_L,
198 				  msc313_cpupll_reg_read32(cpupll, REG_CURRENT));
199 
200 	clk_init.name = dev_name(dev);
201 	clk_init.ops = &msc313_cpupll_ops;
202 	clk_init.parent_data = &cpupll_parent;
203 	clk_init.num_parents = 1;
204 	cpupll->clk_hw.init = &clk_init;
205 
206 	ret = devm_clk_hw_register(dev, &cpupll->clk_hw);
207 	if (ret)
208 		return ret;
209 
210 	return devm_of_clk_add_hw_provider(&pdev->dev, of_clk_hw_simple_get, &cpupll->clk_hw);
211 }
212 
213 static struct platform_driver msc313_cpupll_driver = {
214 	.driver = {
215 		.name = "mstar-msc313-cpupll",
216 		.of_match_table = msc313_cpupll_of_match,
217 	},
218 	.probe = msc313_cpupll_probe,
219 };
220 builtin_platform_driver(msc313_cpupll_driver);
221